

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB and its many features
varies across reading devices and applications. Use your device or app settings to customize the presentation to
your liking. Settings that you can customize often include font, font size, single or double column, landscape
or portrait mode, and figures that you can click or tap to enlarge. For additional information about the
settings and features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of these
elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format, we have included images of the
code that mimic the presentation found in the print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the
link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on
your device or app.

2

A Tour of C++

Bjarne Stroustrup

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

3

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Stroustrup, Bjarne.
 A Tour of C++ / Bjarne Stroustrup.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-321-958310 (pbk. : alk. paper)—ISBN 0-321-958314 (pbk. : alk. paper)
 1. C++ (Computer programming language) I. Title.

 QA76.73.C153 S77 2013
 005.13’3—dc23 2013002159

Copyright © 2014 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

This book was typeset in Times and Helvetica by the author.

4

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw

ISBN-13: 978-0-321-958310
ISBN-10: 0-321-958314
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, September 2013

5

The C++ In-Depth Series
BJARNE STROUSTRUP, Editor

“I have made this letter longer than usual, because I lack the time to make it short.”

— Blaise Pascal

The C++ In-Depth Series is a collection of concise and focused books providing real-world programmers with
reliable information about the C++ programming language. Selected by the designer and original implementer
of C++, Bjarne Stroustrup, and written by experts in the field, each book in this series presents either a single
topic, at a technical level appropriate to that topic, or a fast-paced overview, for a quick understanding of
broader language features. Its practical approach, in either case, is designed to lift professionals (and aspiring
professionals) to the next level of programming skill or knowledge.

These short books are meant to be read and referenced without the distraction of unrelated material. As
C++ matures, it becomes increasingly important to be able to separate essential information from hype and
glitz, and to find the deep content and practical guidance needed for continued development. The C++ In-
Depth Series provides the background, tools, concepts, techniques, and new approaches that can enable this
development, and thereby give readers a valuable, critical edge.

6

Contents

Preface

1 The Basics

1.1 Introduction

1.2 Programs

1.3 Hello, World!

1.4 Functions

1.5 Types, Variables, and Arithmetic

1.6 Scope

1.7 Constants

1.8 Pointers, Arrays, and References

1.9 Tests

1.10 Advice

2 User-Defined Types

2.1 Introduction

2.2 Structures

2.3 Classes

2.4 Unions

2.5 Enumerations

2.6 Advice

3 Modularity

3.1 Introduction

3.2 Separate Compilation

3.3 Namespaces

3.4 Error Handling

3.5 Advice

4 Classes

4.1 Introduction

4.2 Concrete Types

4.3 Abstract Types

4.4 Virtual Functions

7

4.5 Class Hierarchies

4.6 Copy and Move

4.7 Advice

5 Templates

5.1 Introduction

5.2 Parameterized Types

5.3 Function Templates

5.4 Concepts and Generic Programming

5.5 Function Objects

5.6 Variadic Templates

5.7 Aliases

5.8 Template Compilation Model

5.9 Advice

6 Library Overview

6.1 Introduction

6.2 Standard-Library Components

6.3 Standard-Library Headers and Namespace

6.4 Advice

7 Strings and Regular Expressions

7.1 Introduction

7.2 Strings

7.3 Regular Expressions

7.4 Advice

8 I/O Streams

8.1 Introduction

8.2 Output

8.3 Input

8.4 I/O State

8.5 I/O of User-Defined Types

8.6 Formatting

8.7 File Streams

8.8 String Streams

8

8.9 Advice

9 Containers

9.1 Introduction

9.2 vector

9.3 list

9.4 map

9.5 unordered_map

9.6 Container Overview

9.7 Advice

10 Algorithms

10.1 Introduction

10.2 Use of Iterators

10.3 Iterator Types

10.4 Stream Iterators

10.5 Predicates

10.6 Algorithm Overview

10.7 Container Algorithms

10.8 Advice

11 Utilities

11.1 Introduction

11.2 Resource Management

11.3 Specialized Containers

11.4 Time

11.5 Function Adaptors

11.6 Type Functions

11.7 Advice

12 Numerics

12.1 Introduction

12.2 Mathematical Functions

12.3 Numerical Algorithms

12.4 Complex Numbers

12.5 Random Numbers

9

12.6 Vector Arithmetic

12.7 Numeric Limits

12.8 Advice

13 Concurrency

13.1 Introduction

13.2 Tasks and threads

13.3 Passing Arguments

13.4 Returning Results

13.5 Sharing Data

13.6 Waiting for Events

13.7 Communicating Tasks

13.8 Advice

14 History and Compatibility

14.1 History

14.2 C++11 Extensions

14.3 C/C++ Compatibility

14.4 Bibliography

14.5 Advice

Index

10

Preface

When you wish to instruct, be brief.

– Cicero

C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and more directly in
C++11 than I could in C++98. Furthermore, the resulting programs are better checked by the compiler and
run faster.

Like other modern languages, C++ is large and there are a large number of libraries needed for effective
use. This thin book aims to give an experienced programmer an idea of what constitutes modern C++. It
covers most major language features and the major standard-library components. This book can be read in just
a few hours but, obviously, there is much more to writing good C++ than can be learned in a day. However,
the aim here is not mastery, but to give an overview, to give key examples, and to help a programmer get
started. For mastery, consider my The C++ Programming Language, Fourth Edition (TC++PL4)
[Stroustrup,2013]. In fact, this book is an extended version of the material that constitutes Chapters 2-5 of
TC++PL4, also entitled A Tour of C++. I have added extensions and improvements to make this book
reasonably self-contained. The structure of this tour follows that of TC++PL4, so it is easy to find
supplementary material. Similarly, the exercises for TC++PL4 that are available on my Web site
(www.stroustrup.com) can be used to support this tour.

The assumption is that you have programmed before. If not, please consider reading a textbook, such as
Programming: Principles and Practice Using C++ [Stroustrup,2009], before continuing here. Even if you have
programmed before, the language you used or the applications you wrote may be very different from the style
of C++ presented here.

As an analogy, think of a short sightseeing tour of a city, such as Copenhagen or New York. In just a few
hours, you are given a quick peek at the major attractions, told a few background stories, and usually given
some suggestions about what to see next. You do not know the city after such a tour. You do not understand
all you have seen and heard. You do not know how to navigate the formal and informal rules that govern life
in the city. To really know a city, you have to live in it, often for years. However, with a bit of luck, you will
have gained a bit of an overview, a notion of what is special about the city, and ideas of what might be of
interest to you. After the tour, the real exploration can begin.

This tour presents the major C++ language features as they support programming styles, such as object-
oriented and generic programming. It does not attempt to provide a detailed, reference-manual, feature-by-
feature view of the language. Similarly, it presents the standard libraries in terms of examples, rather than
exhaustively. It does not describe libraries beyond those defined by the ISO standard. The reader can search
out supporting material as needed. [Stroustrup,2009] and [Stroustrup,2012] are examples of such material,
but there is an enormous amount of material (of varying quality) available on the Web. For example, when I
mention a standard library function or class, its definition can easily be looked up, and by examining the
documentation of its header (also easily accessible on the Web), many related facilities can be found.

This tour presents C++ as an integrated whole, rather than as a layer cake. Consequently, it does not

11

http://www.stroustrup.com

identify language features as present in C, part of C++98, or new in C++11. Such information can be found in
Chapter 14 (History and Compatibility).

Acknowledgments

Much of the material presented here is borrowed from TC++PL4 [Stroustrup,2012], so thanks to all who
helped completing that book. Also, thanks to my editor at Addison-Wesley, Peter Gordon, who first
suggested that the four Tour chapters from TC++PL4 might be expanded into a reasonably self-contained
and consistent publication of their own.

College Station, Texas

Bjarne Stroustrup

12

1. The Basics

The first thing we do, let’s
kill all the language lawyers.

– Henry VI, Part II

• Introduction

• Programs

• Hello, World!

• Functions

• Types, Variables, and Arithmetic

• Scope and Lifetime

• Constants

• Pointers, Arrays, and References

• Tests

• Advice

1.1. Introduction

This chapter informally presents the notation of C++, C++’s model of memory and computation, and the basic
mechanisms for organizing code into a program. These are the language facilities supporting the styles most
often seen in C and sometimes called procedural programming.

1.2. Programs

C++ is a compiled language. For a program to run, its source text has to be processed by a compiler, producing
object files, which are combined by a linker yielding an executable program. A C++ program typically consists
of many source code files (usually simply called source files).

An executable program is created for a specific hardware/system combination; it is not portable, say, from a
Mac to a Windows PC. When we talk about portability of C++ programs, we usually mean portability of
source code; that is, the source code can be successfully compiled and run on a variety of systems.

The ISO C++ standard defines two kinds of entities:

• Core language features, such as built-in types (e.g., char and int) and loops (e.g., for-statements and
while-statements)

• Standard-library components, such as containers (e.g., vector and map) and I/O operations (e.g., <<
and getline())

The standard-library components are perfectly ordinary C++ code provided by every C++ implementation.

13

That is, the C++ standard library can be implemented in C++ itself (and is with very minor uses of machine
code for things such as thread context switching). This implies that C++ is sufficiently expressive and efficient
for the most demanding systems programming tasks.

C++ is a statically typed language. That is, the type of every entity (e.g., object, value, name, and
expression) must be known to the compiler at its point of use. The type of an object determines the set of
operations applicable to it.

1.3. Hello, World!

The minimal C++ program is

Click here to view code image

int main() { } // the minimal C++ program

This defines a function called main, which takes no arguments and does nothing.

Curly braces, { }, express grouping in C++. Here, they indicate the start and end of the function body.
The double slash, //, begins a comment that extends to the end of the line. A comment is for the human
reader; the compiler ignores comments.

Every C++ program must have exactly one global function named main(). The program starts by
executing that function. The int value returned by main(), if any, is the program’s return value to “the
system.” If no value is returned, the system will receive a value indicating successful completion. A nonzero
value from main() indicates failure. Not every operating system and execution environment make use of that
return value: Linux/Unix-based environments often do, but Windows-based environments rarely do.

Typically, a program produces some output. Here is a program that writes Hello, World!:

Click here to view code image

#include <iostream>

int main()
{
 std::cout << "Hello, World!\n";
}

The line #include <iostream> instructs the compiler to include the declarations of the standard stream
I/O facilities as found in iostream. Without these declarations, the expression

Click here to view code image

std::cout << "Hello, World!\n"

would make no sense. The operator << (“put to”) writes its second argument onto its first. In this case, the
string literal "Hello, World!\n" is written onto the standard output stream std::cout. A string literal is a
sequence of characters surrounded by double quotes. In a string literal, the backslash character \ followed by
another character denotes a single “special character.” In this case, \n is the newline character, so that the
characters written are Hello, World! followed by a newline.

The std:: specifies that the name cout is to be found in the standard-library namespace (§3.3). I usually
leave out the std:: when discussing standard features; §3.3 shows how to make names from a namespace

14

visible without explicit qualification.

Essentially all executable code is placed in functions and called directly or indirectly from main(). For
example:

Click here to view code image

#include <iostream> // include ("import") the declarations for the I/O stream library

using namespace std; // make names from std visible without std:: (§3.3)

double square(double x) // square a double precision floating-point number
{
 return x*x;
}

void print_square(double x)
{
 cout << "the square of " << x << " is " << square(x) << "\n";
}

int main()
{
 print_square(1.234); // print: the square of 1.234 is 1.52276
}

A “return type” void indicates that a function does not return a value.

1.4. Functions

The main way of getting something done in a C++ program is to call a function to do it. Defining a function
is the way you specify how an operation is to be done. A function cannot be called unless it has been
previously declared.

A function declaration gives the name of the function, the type of the value returned (if any), and the
number and types of the arguments that must be supplied in a call. For example:

Click here to view code image

Elem* next_elem(); // no argument; return a pointer to Elem (an Elem*)
void exit(int); // int argument; return nothing
double sqrt(double); // double argument; return a double

In a function declaration, the return type comes before the name of the function and the argument types after
the name enclosed in parentheses.

The semantics of argument passing are identical to the semantics of copy initialization. That is, argument
types are checked and implicit argument type conversion takes place when necessary (§1.5). For example:

Click here to view code image

double s2 = sqrt(2); // call sqrt() with the argument double{2}
double s3 = sqrt("three"); // error: sqrt() requires an argument of type double

The value of such compile-time checking and type conversion should not be underestimated.

A function declaration may contain argument names. This can be a help to the reader of a program, but
unless the declaration is also a function definition, the compiler simply ignores such names. For example:

15

Click here to view code image

double sqrt(double d); // return the square root of d
double square(double); // return the square of the argument

The type of a function consists of the return type and the argument types. For class member functions (§2.3,
§4.2.1), the name of the class is also part of the function type. For example:

Click here to view code image

double get(const vector<double>& vec, int index); // type: double(const
vector<double>&,int)
char& String::operator[](int index); // type: char& String::(int)

We want our code to be comprehensible, because that is the first step on the way to maintainability. The first
step to comprehensibility is to break computational tasks into comprehensible chunks (represented as
functions and classes) and name those. Such functions then provide the basic vocabulary of computation, just
as the types (built-in and user-defined) provide the basic vocabulary of data. The C++ standard algorithms
(e.g., find, sort, and iota) provide a good start (Chapter 10). Next, we can compose functions representing
common or specialized tasks into larger computations.

The number of errors in code correlates strongly with the amount of code and the complexity of the code.
Both problems can be addressed by using more and shorter functions. Using a function to do a specific task
often saves us from writing a specific piece of code in the middle of other code; making it a function forces us
to name the activity and document its dependencies.

If two functions are defined with the same name, but with different argument types, the compiler will
choose the most appropriate function to invoke for each call. For example:

Click here to view code image

void print(int); // takes an integer argument
void print(double); // takes a floating-point argument
void print(string); // takes a string argument

void user()
{
 print(42); // calls print(int)
 print(9.65); // calls print(double)
 print("D is for Digital"); // calls print(string)
}

If two alternative functions could be called, but neither is better than the other, the call is deemed ambiguous
and the compiler gives an error. For example:

Click here to view code image

void print(int,double);
void print(double,int);

void user2()
{
 print(0,0); // error: ambiguous
}

This is known as function overloading and is one of the essential parts of generic programming (§5.4). When

16

a function is overloaded, each function of the same name should implement the same semantics. The print()
functions are an example of this; each print() prints its argument.

1.5. Types, Variables, and Arithmetic

Every name and every expression has a type that determines the operations that may be performed on it. For
example, the declaration

int inch;

specifies that inch is of type int; that is, inch is an integer variable.

A declaration is a statement that introduces a name into the program. It specifies a type for the named
entity:

• A type defines a set of possible values and a set of operations (for an object).

• An object is some memory that holds a value of some type.

• A value is a set of bits interpreted according to a type.

• A variable is a named object.

C++ offers a variety of fundamental types. For example:

Click here to view code image

bool // Boolean, possible values are true and false
char // character, for example, 'a', 'z', and '9'
int // integer, for example, -273, 42, and 1066
double // double-precision floating-point number, for example, -273.15, 3.14, and
299793.0
unsigned // non-negative integer, for example, 0, 1, and 999

Each fundamental type corresponds directly to hardware facilities and has a fixed size that determines the
range of values that can be stored in it:

A char variable is of the natural size to hold a character on a given machine (typically an 8-bit byte), and the
sizes of other types are quoted in multiples of the size of a char. The size of a type is implementation-defined
(i.e., it can vary among different machines) and can be obtained by the sizeof operator; for example,
sizeof(char) equals 1 and sizeof(int) is often 4.

The arithmetic operators can be used for appropriate combinations of these types:

Click here to view code image

x+y // plus
+x // unary plus
x-y // minus
-x // unary minus
x*y // multiply
x/y // divide

17

x%y // remainder (modulus) for integers

So can the comparison operators:

Click here to view code image

x==y // equal
x!=y // not equal
x<y // less than
x>y // greater than
x<=y // less than or equal
x>=y // greater than or equal

Furthermore, logical operators are provided:

Click here to view code image

x&y // bitwise and
x|y // bitwise or
x^y // bitwise exclusive or
~x // bitwise complement
x&&y // logical and
x||y // logical or

A bitwise logical operator yield a result of their operand type for which the operation has been performed on
each bit. The logical operators && and || simply return true or false depending on the values of their
operands.

In assignments and in arithmetic operations, C++ performs all meaningful conversions between the basic
types so that they can be mixed freely:

Click here to view code image

void some_function() // function that doesn't return a value
{
 double d = 2.2; // initialize floating-pointinitializefloating number
 int i = 7; // initialize integer
 d = d+i; // assign sum to d
 i = d*i; // assign product to i (truncating the double d*i to an int)
}

The conversions use in expressions are called the usual arithmetic conversions and aim to ensure that expressions
are computed at the highest precision of its operands. For example, an addition of a double and an int is
calculated using double-precision floating-point arithmetic.

Note that = is the assignment operator and == tests equality.

C++ offers a variety of notations for expressing initialization, such as the = used above, and a universal
form based on curly-brace-delimited initializer lists:

Click here to view code image

double d1 = 2.3; // initialize d1 to 2.3
double d2 {2.3}; // initialize d2 to 2.3

Click here to view code image

complex<double> z = 1; // a complex number with double-precision floating-point
scalars
complex<double> z2 {d1,d2};

18

complex<double> z3 = {1,2}; // the = is optional with { ... }

vector<int> v {1,2,3,4,5,6}; // a vector of ints

The = form is traditional and dates back to C, but if in doubt, use the general {}-list form. If nothing else, it
saves you from conversions that lose information:

Click here to view code image

int i1 = 7.2; // i1 becomes 7 (surprise?)
int i2 {7.2}; // error: floating-point to integer conversion
int i3 = {7.2}; // error: floating-point to integer conversion (the = is redundant)

Unfortunately, conversions that lose information, narrowing conversions, such as double to int and int to
char are allowed and implicitly applied. The problems caused by implicit narrowing conversions is a price
paid for C compatibility (§14.3).

A constant (§1.7) cannot be left uninitialized and a variable should only be left uninitialized in extremely
rare circumstances. Don’t introduce a name until you have a suitable value for it. User-defined types (such as
string, vector, Matrix, Motor_controller, and Orc_warrior) can be defined to be implicitly
initialized (§4.2.1).

When defining a variable, you don’t actually need to state its type explicitly when it can be deduced from
the initializer:

Click here to view code image

auto b = true; // a bool
auto ch = 'x'; // a char
auto i = 123; // an int
auto d = 1.2; // a double
auto z = sqrt(y); // z has the type of whatever sqrt(y) returns

With auto, we use the = because there is no potentially troublesome type conversion involved.

We use auto where we don’t have a specific reason to mention the type explicitly. “Specific reasons”
include:

• The definition is in a large scope where we want to make the type clearly visible to readers of our code.

• We want to be explicit about a variable’s range or precision (e.g., double rather than float).

Using auto, we avoid redundancy and writing long type names. This is especially important in generic
programming where the exact type of an object can be hard for the programmer to know and the type names
can be quite long (§10.2).

In addition to the conventional arithmetic and logical operators, C++ offers more specific operations for
modifying a variable:

Click here to view code image

x+=y // x = x+y
++x // increment: x = x+1
x-=y // x = x-y
--x // decrement: x = x-1
x*=y // scaling: x = x*y
x/=y // scaling: x = x/y
x%=y // x = x%y

19

These operators are concise, convenient, and very frequently used.

1.6. Scope and Lifetime

A declaration introduces its name into a scope:

• Local scope: A name declared in a function (§1.4) or lambda (§5.5) is called a local name. Its scope
extends from its point of declaration to the end of the block in which its declaration occurs. A block is
delimited by a { } pair. Function argument names are considered local names.

• Class scope: A name is called a member name (or a class member name) if it is defined in a class (§2.2,
§2.3, Chapter 4), outside any function (§1.4), lambda (§5.5), or enum class (§2.5). Its scope extends
from the opening { of its enclosing declaration to the end of that declaration.

• Namespace scope: A name is called a namespace member name if it is defined in a name-space (§3.3)
outside any function, lambda (§5.5), class (§2.2, §2.3, Chapter 4), or enum class (§2.5). Its scope
extends from the point of declaration to the end of its namespace.

A name not declared inside any other construct is called a global name and is said to be in the global namespace.

In addition, we can have objects without names, such as temporaries and objects created using new
(§4.2.2). For example:

Click here to view code image

vector<int> vec; // vec is global (a global vector of integers)

struct Record {
 string name; // name is a member (a string member)
 // ...
};

void fct(int arg) // fct is global (a global function)
 // arg is local (an integer argument)
{
 string motto {"Who dares win"}; // motto is local
 auto p = new Record{"Hume"}; // p points to an unnamed Record (created by
new)
 // ...
}

An object must be constructed (initialized) before it is used and will be destroyed at the end of its scope. For a
namespace object the point of destruction is the end of the program. For a member, the point of destruction is
determined by the point of destruction of the object of which it is a member. An object created by new
“lives” until destroyed by delete (§4.2.2).

1.7. Constants

C++ supports two notions of immutability:

• const: meaning roughly “I promise not to change this value.” This is used primarily to specify
interfaces, so that data can be passed to functions without fear of it being modified. The compiler
enforces the promise made by const.

• constexpr: meaning roughly “to be evaluated at compile time.” This is used primarily to specify
constants, to allow placement of data in read-only memory (where it is unlikely to be corrupted) and

20

for performance.

For example:

Click here to view code image

const int dmv = 17; // dmv is a named constant
int var = 17; // var is not a constant

constexpr double max1 = 1.4*square(dmv); // OK if square(17) is a constant
expression
constexpr double max2 = 1.4*square(var); // error: var is not a constant expression
const double max3 = 1.4*square(var); // OK, may be evaluated at run time

double sum(const vector<double>&); // sum will not modify its argument (§1.8)
vector<double> v {1.2, 3.4, 4.5}; // v is not a constant
const double s1 = sum(v); // OK: evaluated at run time
constexpr double s2 = sum(v); // error: sum(v) not constant expression

For a function to be usable in a constant expression, that is, in an expression that will be evaluated by the
compiler, it must be defined constexpr. For example:

Click here to view code image

constexpr double square(double x) { return x*x; }

To be constexpr, a function must be rather simple: just a return-statement computing a value. A
constexpr function can be used for non-constant arguments, but when that is done the result is not a
constant expression. We allow a constexpr function to be called with non-constant-expression arguments in
contexts that do not require constant expressions, so that we don’t have to define essentially the same function
twice: once for constant expressions and once for variables.

In a few places, constant expressions are required by language rules (e.g., array bounds (§1.8), case labels
(§1.9), template value arguments (§5.2), and constants declared using constexpr). In other cases, compile-
time evaluation is important for performance. Independently of performance issues, the notion of
immutability (of an object with an unchangeable state) is an important design concern.

1.8. Pointers, Arrays, and References

An array of elements of type char can be declared like this:

Click here to view code image

char v[6]; // array of 6 characters

Similarly, a pointer can be declared like this:

Click here to view code image

char* p; // pointer to character

In declarations, [] means “array of” and * means “pointer to.” All arrays have 0 as their lower bound, so v has
six elements, v[0] to v[5]. The size of an array must be a constant expression (§1.7). A pointer variable can
hold the address of an object of the appropriate type:

Click here to view code image

char* p = &v[3]; // p points to v's fourth element

21

char x = *p; // *p is the object that p points to

In an expression, prefix unary * means “contents of” and prefix unary & means “address of.” We can represent
the result of that initialized definition graphically:

Consider copying ten elements from one array to another:

Click here to view code image

void copy_fct()
{
 int v1[10] = {0,1,2,3,4,5,6,7,8,9};
 int v2[10]; // to become a copy of v1

 for (auto i=0; i!=10; ++i) // copy elements
 v2[i]=v1[i];
 // ...
}

This for-statement can be read as “set i to zero; while i is not 10, copy the ith element and increment i.”
When applied to an integer variable, the increment operator, ++, simply adds 1. C++ also offers a simpler
for-statement, called a range-for-statement, for loops that traverse a sequence in the simplest way:

Click here to view code image

void print()
{
 int v[] = {0,1,2,3,4,5,6,7,8,9};

 for (auto x : v) // for each x in v
 cout << x << '\n';

 for (auto x : {10,21,32,43,54,65})
 cout << x << '\n';
 // ...
}

The first range-for-statement can be read as “for every element of v, from the first to the last, place a copy in
x and print it.” Note that we don’t have to specify an array bound when we initialize it with a list. The range-
for-statement can be used for any sequence of elements (§10.1).

If we didn’t want to copy the values from v into the variable x, but rather just have x refer to an element,
we could write:

Click here to view code image

void increment()
{
 int v[] = {0,1,2,3,4,5,6,7,8,9};
 for (auto& x : v)
 ++x;
 // ...
}

22

In a declaration, the unary suffix & means “reference to.” A reference is similar to a pointer, except that you
don’t need to use a prefix * to access the value referred to by the reference. Also, a reference cannot be made
to refer to a different object after its initialization.

References are particularly useful for specifying function arguments. For example:

Click here to view code image

void sort(vector<double>& v); // sort v

By using a reference, we ensure that for a call sort(my_vec), we do not copy my_vec and that it really is
my_vec that is sorted and not a copy of it.

When we don’t want to modify an argument, but still don’t want the cost of copying, we use a const
reference. For example:

Click here to view code image

double sum(const vector<double>&)

Functions taking const references are very common.

When used in declarations, operators (such as &, *, and []) are called declarator operators:

Click here to view code image

T a[n]; // T[n]: array of n Ts
T* p; // T*: pointer to T
T& r; // T&: reference to T
T f(A); // T(A): function taking an argument of type A returning a result of type T

We try to ensure that a pointer always points to an object, so that dereferencing it is valid. When we don’t
have an object to point to or if we need to represent the notion of “no object available” (e.g., for an end of a
list), we give the pointer the value nullptr (“the null pointer”). There is only one nullptr shared by all
pointer types:

Click here to view code image

double* pd = nullptr;
Link<Record>* lst = nullptr; // pointer to a Link to a Record
int x = nullptr; // error: nullptr is a pointer not an integer

It is often wise to check that a pointer argument that is supposed to point to something, actually points to
something:

Click here to view code image

int count_x(char* p, char x)
 // count the number of occurrences of x in p[]
 // p is assumed to point to a zero-terminated array of char (or to nothing)
{
 if (p==nullptr) return 0;
 int count = 0;
 for (;p!=nullptr; ++p)
 if (*p==x)
 ++count;
 return count;
}

23

Note how we can move a pointer to point to the next element of an array using ++ and that we can leave out
the initializer in a for-statement if we don’t need it.

The definition of count_x() assumes that the char * is a C-style string, that is, that the pointer points to
a zero-terminated array of char.

In older code, 0 or NULL is typically used instead of nullptr. However, using nullptr eliminates
potential confusion between integers (such as 0 or NULL) and pointers (such as nullptr).

The count_if() example is unnecessarily complicated. We can simplify it by testing for the nullptr in
one place only. We are not using the initializer part of the for-statement, so we can use the simpler while-
statement:

Click here to view code image

int count_x(char* p, char x)
 // count the number of occurrences of x in p[]
 // p is assumed to point to a zero-terminated array of char (or to nothing)
{
 int count = 0;
 while (p) {
 if (*p==x)
 ++count;
 ++p;
 }
 return count;
}

The while-statement executes until its condition becomes false.

A test of a pointer (e.g., while (p)) is equivalent to comparing the pointer to the null pointer (e.g., while
(p!=nullptr)).

1.9. Tests

C++ provides a conventional set of statements for expressing selection and looping. For example, here is a
simple function that prompts the user and returns a Boolean indicating the response:

Click here to view code image

bool accept()
{
 cout << "Do you want to proceed (y or n)?\n"; // write question

 char answer = 0;
 cin >> answer; // read answer

 if (answer == 'y')
 return true;
 return false;
}

To match the << output operator (“put to”), the >> operator (“get from”) is used for input; cin is the
standard input stream (Chapter 8). The type of the right-hand operand of >> determines what input is
accepted, and its right-hand operand is the target of the input operation. The \n character at the end of the
output string represents a newline (§1.3).

24

Note that the definition of answer appears where it is needed (and not before that). A declaration can
appear anywhere a statement can.

The example could be improved by taking an n (for “no”) answer into account:

Click here to view code image

bool accept2()
{
 cout << "Do you want to proceed (y or n)?\n"; // write question

 char answer = 0;
 cin >> answer; // read answer

 switch (answer) {
 case 'y':
 return true;
 case 'n':
 return false;
 default:
 cout << "I'll take that for a no.\n";
 return false;
 }
}

A switch-statement tests a value against a set of constants. The case constants must be distinct, and if the
value tested does not match any of them, the default is chosen. If no default is provided, no action is taken
if the value doesn’t match any case constant.

We don’t have to exit a case by returning from the function that contains its switch-statement. Often,
we just want to continue execution with the statement following the switch-statement. We can do that
using a break statement. As an example, consider an overly clever, yet primitive, parser for a trivial command
video game:

Click here to view code image

void action()
{
 while (true) {
 cout << "enter action:\n"; // request action
 string act;
 cin >> act; // rear characters into a string
 Point delta {0,0}; // Point holds an {x,y} pair

 for (char ch : act) {
 switch (ch) {
 case 'u': // up
 case 'n': // north
 ++delta.y;
 break;
 case 'r': // right
 case 'e': // east
 ++delta.x;
 break;
 // ... more actions ...

 default:
 cout << "I freeze!\n";
 }

25

 move(current+delta*scale);
 update_display();
 }
 }
}

1.10. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in
Chapters 5-6, 9-10, and 12 of [Stroustrup,2013].

[2] Don’t panic! All will become clear in time; §1.1.

[3] You don’t have to know every detail of C++ to write good programs.

[4] Focus on programming techniques, not on language features.

[5] For the final word on language definition issues, see the ISO C++ standard; §14.1.3.

[6] “Package” meaningful operations as carefully named functions; §1.4.

[7] A function should perform a single logical operation; §1.4.

[8] Keep functions short; §1.4.

[9] Use overloading when functions perform conceptually the same task on different types; §1.4.

[10] If a function may have to be evaluated at compile time, declare it constexpr; §1.7.

[11] Avoid “magic constants;” use symbolic constants; §1.7.

[12] Declare one name (only) per declaration.

[13] Keep common and local names short, and keep uncommon and nonlocal names longer.

[14] Avoid similar-looking names.

[15] Avoid ALL_CAPS names.

[16] Prefer the {}-initializer syntax for declarations with a named type; §1.5.

[17] Prefer the = syntax for the initialization in declarations using auto; §1.5.

[18] Avoid uninitialized variables; §1.5.

[19] Keep scopes small; §1.6.

[20] Keep use of pointers simple and straightforward; §1.8.

[21] Use nullptr rather than 0 or NULL; §1.8.

[22] Don’t declare a variable until you have a value to initialize it with; §1.8, §1.9.

[23] Don’t say in comments what can be clearly stated in code.

[24] State intent in comments.

[25] Maintain a consistent indentation style.

[26] Avoid complicated expressions.

[27] Avoid narrowing conversions; §1.5.

26

27

2. User-Defined Types

Don’t Panic!

– Douglas Adams

• Introduction

• Structures

• Classes

• Unions

• Enumerations

• Advice

2.1. Introduction

We call the types that can be built from the fundamental types (§1.5), the const modifier (§1.7), and the
declarator operators (§1.8) built-in types. C++’s set of built-in types and operations is rich, but deliberately
low-level. They directly and efficiently reflect the capabilities of conventional computer hardware. However,
they don’t provide the programmer with high-level facilities to conveniently write advanced applications.
Instead, C++ augments the built-in types and operations with a sophisticated set of abstraction mechanisms out
of which programmers can build such high-level facilities. The C++ abstraction mechanisms are primarily
designed to let programmers design and implement their own types, with suitable representations and
operations, and for programmers to simply and elegantly use such types. Types built out of the built-in types
using C++’s abstraction mechanisms are called user-defined types. They are referred to as classes and
enumerations. Most of this book is devoted to the design, implementation, and use of user-defined types. The
rest of this chapter presents the simplest and most fundamental facilities for that. Chapters 4-5 are a more
complete description of the abstraction mechanisms and the programming styles they support. Chapters 6-13
present an overview of the standard library, and since the standard library mainly consists of user-defined
types, they provide examples of what can be built using the language facilities and programming techniques
presented in Chapters 1-5.

2.2. Structures

The first step in building a new type is often to organize the elements it needs into a data structure, a struct:

Click here to view code image

struct Vector {
 int sz; // number of elements
 double* elem; // pointer to elements
};

This first version of Vector consists of an int and a double*.

A variable of type Vector can be defined like this:

Vector v;

28

However, by itself that is not of much use because v’s elem pointer doesn’t point to anything. To be useful,
we must give v some elements to point to. For example, we can construct a Vector like this:

Click here to view code image

void vector_init(Vector& v, int s)
{
 v.elem = new double[s]; // allocate an array of s doubles
 v.sz = s;
}

That is, v’s elem member gets a pointer produced by the new operator and v’s sz member gets the number
of elements. The & in Vector& indicates that we pass v by non-const reference (§1.8); that way,
vector_init() can modify the vector passed to it.

The new operator allocates memory from an area called the free store (also known as dynamic memory and
heap). Objects allocated on the free store are independent of the scope from which they are created and “live”
until they are destroyed using the delete operator (§4.2.2).

A simple use of Vector looks like this:

Click here to view code image

double read_and_sum(int s)
 // read s integers from cin and return their sum; s is assumed to be positive
{
 Vector v;
 vector_init(v,s); // allocate s elements for v
 for (int i=0; i!=s; ++i)
 cin>>v.elem[i]; // read into elements

 double sum = 0;
 for (int i=0; i!=s; ++i)
 sum+=v.elem[i]; // take the sum of the elements
 return sum;
}

There is a long way to go before our Vector is as elegant and flexible as the standard-library vector. In
particular, a user of Vector has to know every detail of Vector’s representation. The rest of this chapter and
the next two gradually improve Vector as an example of language features and techniques. Chapter 9
presents the standard-library vector, which contains many nice improvements.

I use vector and other standard-library components as examples

• to illustrate language features and design techniques, and

• to help you learn and use the standard-library components.

Don’t reinvent standard-library components, such as vector and string; use them.

We use . (dot) to access struct members through a name (and through a reference) and -> to access
struct members through a pointer. For example:

Click here to view code image

void f(Vector v, Vector& rv, Vector* pv)
{
 int i1 = v.sz; // access through name
 int i2 = rv.sz; // access through reference

29

 int i4 = pv->sz; // access through pointer
}

2.3. Classes

Having the data specified separately from the operations on it has advantages, such as the ability to use the
data in arbitrary ways. However, a tighter connection between the representation and the operations is needed
for a user-defined type to have all the properties expected of a “real type.” In particular, we often want to keep
the representation inaccessible to users, so as to ease use, guarantee consistent use of the data, and allow us to
later improve the representation. To do that we have to distinguish between the interface to a type (to be used
by all) and its implementation (which has access to the otherwise inaccessible data). The language mechanism
for that is called a class. A class is defined to have a set of members, which can be data, function, or type
members. The interface is defined by the public members of a class, and private members are accessible
only through that interface. For example:

Click here to view code image

class Vector {
public:
 Vector(int s) :elem{new double[s]}, sz{s} { } // construct a Vector
 double& operator[](int i) { return elem[i]; } // element access: subscripting
 int size() { return sz; }
private:
 double* elem; // pointer to the elements
 int sz; // the number of elements
};

Given that, we can define a variable of our new type Vector:

Click here to view code image

Vector v(6); // a Vector with 6 elements

We can illustrate a Vector object graphically:

Basically, the Vector object is a “handle” containing a pointer to the elements (elem) plus the number of
elements (sz). The number of elements (6 in the example) can vary from Vector object to Vector object,
and a Vector object can have a different number of elements at different times (§4.2.3). However, the
Vector object itself is always the same size. This is the basic technique for handling varying amounts of
information in C++: a fixed-size handle referring to a variable amount of data “elsewhere” (e.g., on the free
store allocated by new; §4.2.2). How to design and use such objects is the main topic of Chapter 4.

Here, the representation of a Vector (the members elem and sz) is accessible only through the interface
provided by the public members: Vector(), operator[](), and size(). The read_and_sum()
example from §2.2 simplifies to:

Click here to view code image

double read_and_sum(int s)
{
 Vector v(s); // make a vector of s elements

30

 for (int i=0; i!=v.size(); ++i)
 cin>>v[i]; // read into elements

 double sum = 0;
 for (int i=0; i!=v.size(); ++i)
 sum+=v[i]; // take the sum of the elements
 return sum;
}

A “function” with the same name as its class is called a constructor, that is, a function used to construct objects
of a class. So, the constructor, Vector(), replaces vector_init() from §2.2. Unlike an ordinary function, a
constructor is guaranteed to be used to initialize objects of its class. Thus, defining a constructor eliminates
the problem of uninitialized variables for a class.

Vector(int) defines how objects of type Vector are constructed. In particular, it states that it needs an
integer to do that. That integer is used as the number of elements. The constructor initializes the Vector
members using a member initializer list:

:elem{new double[s]}, sz{s}
That is, we first initialize elem with a pointer to s elements of type double obtained from the free store.
Then, we initialize sz to s.

Access to elements is provided by a subscript function, called operator[]. It returns a reference to the
appropriate element (a double&).

The size() function is supplied to give users the number of elements.

Obviously, error handling is completely missing, but we’ll return to that in §3.4. Similarly, we did not
provide a mechanism to “give back” the array of doubles acquired by new; §4.2.2 shows how to use a
destructor to elegantly do that.

There is no fundamental difference between a struct and a class; a struct is simply a class with
members public by default. For example, you can define constructors and other member functions for a
struct.

2.4. Unions

A union is a struct in which all members are allocated at the same address so that the union occupies only
as much space as its largest member. Naturally, a union can hold a value for only one member at a time. For
example, consider a symbol table entry that holds a name and a value:

Click here to view code image

enum Type { str, num };

struct Entry {
 char* name;
 Type t;
 char* s; // use s if t==str
 int i; // use i if t==num
};

void f(Entry* p)
{
 if (p->t == str)

31

 cout << p->s;
 // ...
}

The members s and i can never be used at the same time, so space is wasted. It can be easily recovered by
specifying that both should be members of a union, like this:

union Value {
 char* s;
 int i;
};

The language doesn’t keep track of which kind of value is held by a union, so the programmer must do that:

Click here to view code image

struct Entry {
 char* name;
 Type t;
 Value v; // use v.s if t==str; use v.i if t==num
};

void f(Entry* p)
{
 if (p->t == str)
 cout << p->v.s;
 // ...
}

Maintaining the correspondence between a type field (here, t) and the type held in a union is error-prone. To
avoid errors, one can encapsulate a union so that the correspondence between a type field and access to the
union members is guaranteed. At the application level, abstractions relying on such tagged unions are
common and useful, but use of “naked” unions is best minimized.

2.5. Enumerations

In addition to classes, C++ supports a simple form of user-defined type for which we can enumerate the
values:

Click here to view code image

enum class Color { red, blue, green };
enum class Traffic_light { green, yellow, red };

Color col = Color::red;
Traffic_light light = Traffic_light::red;

Note that enumerators (e.g., red) are in the scope of their enum class, so that they can be used repeatedly
in different enum classes without confusion. For example, Color::red is Color’s red which is different
from Traffic_light::red.

Enumerations are used to represent small sets of integer values. They are used to make code more readable
and less error-prone than it would have been had the symbolic (and mnemonic) enumerator names not been
used.

The class after the enum specifies that an enumeration is strongly typed and that its enumerators are
scoped. Being separate types, enum classes help prevent accidental misuses of constants. In particular, we

32

cannot mix Traffic_light and Color values:

Click here to view code image

Color x = red; // error: which red?
Color y = Traffic_light::red; // error: that red is not a Color
Color z = Color::red; // OK

Similarly, we cannot implicitly mix Color and integer values:

Click here to view code image

int i = Color::red; // error: Color::red is not an int
Color c = 2; // error: 2 is not a Color

By default, an enum class has only assignment, initialization, and comparisons (e.g., == and <; §1.5)
defined. However, an enumeration is a user-defined type so we can define operators for it:

Click here to view code image

Traffic_light& operator++(Traffic_light& t)
 // prefix increment: ++
{
 switch (t) {
 case Traffic_light::green: return t=Traffic_light::yellow;
 case Traffic_light::yellow: return t=Traffic_light::red;
 case Traffic_light::red: return t=Traffic_light::green;
 }
}

Traffic_light next = ++light; // next becomes Traffic_light::green

If you don’t want to explicitly qualify enumerator names and want enumerator values to be ints (without the
need for an explicit conversion), you can remove the class from enum class to get a “plain” enum. The
enumerators from a “plain” enum are entered into the same scope as the name of their enum and implicitly
converts to their integer value. For example:

Click here to view code image

enum Color { red, green, blue };
int col = green;

Here col gets the value 1. By default, the integer values of enumerators starts with 0 and increases by one for
each additional enumerator. The “plain” enums have been in C++ (and C) from the earliest days, so even
though they are less well behaved, they are common in current code.

2.6. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in Chapter
8 of [Stroustrup,2013].

[2] Organize related data into structures (structs or classes); §2.2.

[3] Represent the distinction between an interface and an implemetation using a class; §2.3.

[4] A struct is simply a class with its members public by default; §2.3.

[5] Define constructors to guarantee and simplify initialization of classes; §2.3.

[6] Avoid “naked” unions; wrap them in a class together with a type field; §2.4.

33

[7] Use enumerations to represent sets of named constants; §2.5.

[8] Prefer class enums over “plain” enums to minimize surprises; §2.5.

[9] Define operations on enumerations for safe and simple use; §2.5.

34

3. Modularity

Don’t interrupt me while I’m interrupting.

– Winston S. Churchill

• Introduction

• Separate Compilation

• Namespaces

• Error Handling

Exceptions; Invariants; Static Assertions

• Advice

3.1. Introduction

A C++ program consists of many separately developed parts, such as functions (§1.3), user-defined types
(Chapter 2), class hierarchies (§4.5), and templates (Chapter 5). The key to managing this is to clearly define
the interactions among those parts. The first and most important step is to distinguish between the interface
to a part and its implementation. At the language level, C++ represents interfaces by declarations. A
declaration specifies all that’s needed to use a function or a type. For example:

Click here to view code image

double sqrt(double); // the square root function takes a double and returns a double

class Vector {
public:
 Vector(int s);
 double& operator[](int i);
 int size();
private:
 double* elem; // elem points to an array of sz doubles
 int sz;
};

The key point here is that the function bodies, the function definitions, are “elsewhere.” For this example, we
might like for the representation of Vector to be “elsewhere” also, but we will deal with that later (abstract
types; §4.3). The definition of sqrt() will look like this:

Click here to view code image

double sqrt(double d) // definition of sqrt()
{
 // ... algorithm as found in math textbook ...
}

For Vector, we need to define all three member functions:

Click here to view code image

Vector::Vector(int s) // definition of the constructor
 :elem{new double[s]}, sz{s} // initialize members
{

35

}

double& Vector::operator[](int i) // definition of subscripting
{
 return elem[i];
}

int Vector::size() // definition of size()
{
 return sz;
}

We must define Vector’s functions, but not sqrt() because it is part of the standard library. However, that
makes no real difference: a library is simply some “other code we happen to use” written with the same
language facilities as we use.

3.2. Separate Compilation

C++ supports a notion of separate compilation where user code sees only declarations of the types and
functions used. The definitions of those types and functions are in separate source files and compiled
separately. This can be used to organize a program into a set of semi-independent code fragments. Such
separation can be used to minimize compilation times and to strictly enforce separation of logically distinct
parts of a program (thus minimizing the chance of errors). A library is often a collection of separately
compiled code fragments (e.g., functions).

Typically, we place the declarations that specify the interface to a module in a file with a name indicating
its intended use. For example:

Click here to view code image

// Vector.h:

class Vector {
public:
 Vector(int s);
 double& operator[](int i);
 int size();
private:
 double* elem; // elem points to an array of sz doubles
 int sz;
};

This declaration would be placed in a file Vector.h, and users will include that file, called a header file, to
access that interface. For example:

Click here to view code image

// user.cpp:

#include "Vector.h" // get Vector's interface
#include <cmath> // get the the standard-library math function interface including
sqrt()

using namespace std; // make std members visible (§3.3)

double sqrt_sum(Vector& v)
{

36

 double sum = 0;
 for (int i=0; i!=v.size(); ++i)
 sum+=sqrt(v[i]); // sum of square roots
 return sum;
}

To help the compiler ensure consistency, the .cpp file providing the implementation of Vector will also
include the .h file providing its interface:

Click here to view code image

// Vector.cpp:

#include "Vector.h" // get the interface

Vector::Vector(int s)
 :elem{new double[s]}, sz{s} // initialize members
{
}

double& Vector::operator[](int i)
{
 return elem[i];
}

int Vector::size()
{
 return sz;
}

The code in user.cpp and Vector.cpp shares the Vector interface information presented in Vector.h,
but the two files are otherwise independent and can be separately compiled. Graphically, the program
fragments can be represented like this:

Strictly speaking, using separate compilation isn’t a language issue; it is an issue of how best to take advantage
of a particular language implementation. However, it is of great practical importance. The best approach is to
maximize modularity, represent that modularity logically through language features, and then exploit the
modularity physically through files for effective separate compilation.

3.3. Namespaces

In addition to functions (§1.4), classes (§2.3), and enumerations (§2.5), C++ offers namespaces as a mechanism
for expressing that some declarations belong together and that their names shouldn’t clash with other names.
For example, I might want to experiment with my own complex number type (§4.2.1, §12.4):

Click here to view code image

37

namespace My_code {
 class complex {
 // ...
 };

 complex sqrt(complex);
 // ...

 int main();
}

int My_code::main()
{
 complex z {1,2};
 auto z2 = sqrt(z);
 std::cout << '{' << z2.real() << ',' << z2.imag() << "}\n";
 // ...
};

int main()
{
 return My_code::main();
}

By putting my code into the namespace My_code, I make sure that my names do not conflict with the
standard-library names in namespace std (§3.3). The precaution is wise, because the standard library does
provide support for complex arithmetic (§4.2.1, §12.4).

The simplest way to access a name in another namespace is to qualify it with the namespace name (e.g.,
std::cout and My_code::main). The “real main()” is defined in the global namespace, that is, not local
to a defined namespace, class, or function. To gain access to names in the standard-library namespace, we can
use a using-directive:

using namespace std;

A using-directive makes names from the named namespace accessible as if they were local to the scope in
which we placed the directive. So after the using-directive for std, we can simply write cout rather than
std::std.

Namespaces are primarily used to organize larger program components, such as libraries. They simplify the
composition of a program out of separately developed parts.

3.4. Error Handling

Error handling is a large and complex topic with concerns and ramifications that go far beyond language
facilities into programming techniques and tools. However, C++ provides a few features to help. The major
tool is the type system itself. Instead of painstakingly building up our applications from the built-in types
(e.g., char, int, and double) and statements (e.g., if, while, and for), we build more types that are
appropriate for our applications (e.g., string, map, and regex) and algorithms (e.g., sort(), find_if(),
and draw_all()). Such higher-level constructs simplify our programming, limit our opportunities for
mistakes (e.g., you are unlikely to try to apply a tree traversal to a dialog box), and increase the compiler’s
chances of catching such errors. The majority of C++ constructs are dedicated to the design and
implementation of elegant and efficient abstractions (e.g., user-defined types and algorithms using them).

38

One effect of this modularity and abstraction (in particular, the use of libraries) is that the point where a run-

time error can be detected is separated from the point where it can be handled. As programs grow, and
especially when libraries are used extensively, standards for handling errors become important. It is a good
idea to design and articulate a strategy for error handling early on in the development of a program.

3.4.1. Exceptions

Consider again the Vector example. What ought to be done when we try to access an element that is out of
range for the vector from §2.3?

• The writer of Vector doesn’t know what the user would like to have done in this case (the writer of
Vector typically doesn’t even know in which program the vector will be running).

• The user of Vector cannot consistently detect the problem (if the user could, the out-of-range access
wouldn’t happen in the first place).

The solution is for the Vector implementer to detect the attempted out-of-range access and then tell the user
about it. The user can then take appropriate action. For example, Vector::operator[]() can detect an
attempted out-of-range access and throw an out_of_range exception:

Click here to view code image

double& Vector::operator[](int i)
{
 if (i<0 || size()<=i)
 throw out_of_range{"Vector::operator[]"};
 return elem[i];
}

The throw transfers control to a handler for exceptions of type out_of_range in some function that
directly or indirectly called Vector::operator[](). To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller. That is, the exception handling
mechanism will exit scopes and function as needed to get back to a caller that has expressed interest in
handling that kind of exception, invoking destructors (§4.2.2) along the way as needed. For example:

Click here to view code image

void f(Vector& v)
{
 // ...
 try { // exceptions here are handled by the handler defined below

 v[v.size()] = 7; // try to access beyond the end of v
 }
 catch (out_of_range) { // oops: out_of_range error
 // ... handle range error ...
 }
 // ...
}

We put code for which we are interested in handling exceptions into a try-block. That attempted assignment
to v[v.size()] will fail. Therefore, the catch-clause providing a handler for out_of_range will be
entered. The out_of_range type is defined in the standard library (in <stdexcept>) and is in fact used
by some standard-library container access functions.

39

Use of the exception-handling mechanisms can make error handling simpler, more systematic, and more
readable. To achieve that don’t overuse try-statements. The main technique for making error handling simple
and systematic (called Resource Aquisition Is Initialization) is explained in §4.2.2.

A function that should never throw an exception can be declared noexcept. For example:

Click here to view code image

void user(int sz) noexcept
{
 Vector v(sz);
 iota(&v[0],&v[sz],1); // fill v with 1,2,3,4...
 // ...
}

If all good intent and planning fails, so that user() still throws, the standard-library function terminate()
is called to immediately terminate the program.

3.4.2. Invariants

The use of exceptions to signal out-of-range access is an example of a function checking its argument and
refusing to act because a basic assumption, a precondition, didn’t hold. Had we formally specified Vector’s
subscript operator, we would have said something like “the index must be in the [0:size()) range,” and that
was in fact what we tested in our operator[](). The [a:b) notation specifies a half-open range, meaning
that a is part of the range, but b is not. Whenever we define a function, we should consider what its
preconditions are and if feasible test them.

However, operator[]() operates on objects of type Vector and nothing it does makes any sense unless
the members of Vector have “reasonable” values. In particular, we did say “elem points to an array of sz
doubles” but we only said that in a comment. Such a statement of what is assumed to be true for a class is
called a class invariant, or simply an invariant. It is the job of a constructor to establish the invariant for its
class (so that the member functions can rely on it) and for the member functions to make sure that the
invariant holds when they exit. Unfortunately, our Vector constructor only partially did its job. It properly
initialized the Vector members, but it failed to check that the arguments passed to it made sense. Consider:

Vector v(-27);

This is likely to cause chaos.

Here is a more appropriate definition:

Click here to view code image

Vector::Vector(int s)
{
 if (s<0)
 throw length_error{};
 elem = new double[s];
 sz = s;
}

I use the standard-library exception length_error to report a non-positive number of elements because
some standard-library operations use that exception to report problems of this kind. If operator new can’t

40

find memory to allocate, it throws a std::bad_alloc. We can now write:

Click here to view code image

void test()
{
 try {
 Vector v(-27);
 }
 catch (std::length_error) {
 // handle negative size
 }
 catch (std::bad_alloc) {
 // handle memory exhaustion
 }
}

You can define your own classes to be used as exceptions and have them carry arbitrary information from a
point where an error is detected to a point where it can be handled (§3.4.1).

Often, a function has no way of completing its assigned task after an exception is thrown. Then, “handling”
an exception simply means doing some minimal local cleanup and rethrowing the exception. To throw
(rethrow) the exception caught in an exception handler, we simply write throw;. For example:

Click here to view code image

void test()
{
 try {
 Vector v(-27);
 }
 catch (std::length_error) {
 cout << "test failed: length error\n";
 throw; // rethrow
 }
 catch (std::bad_alloc) {
 // Ouch! test() is not designed to handle memory exhaustion
 std::terminate(); // terminate the program
 }
}

The notion of invariants is central to the design of classes, and preconditions serve a similar role in the design
of functions. Invariants

• helps us to understand precisely what we want

• forces us to be specific; that gives us a better chance of getting our code correct (after debugging and
testing).

The notion of invariants underlies C++’s notions of resource management supported by constructors (Chapter
4) and destructors (§4.2.2, §11.2).

3.4.3. Static Assertions

Exceptions report errors found at run time. If an error can be found at compile time, it is usually preferable to
do so. That’s what much of the type system and the facilities for specifying the interfaces to user-defined types
are for. However, we can also perform simple checks on other properties that are known at compile time and

41

report failures as compiler error messages. For example:

Click here to view code image

static_assert(4<=sizeof(int), "integers are too small"); // check integer size

This will write integers are too small if 4<=sizeof(int) does not hold, that is, if an int on this system
does not have at least 4 bytes. We call such statements of expectations assertions.

The static_assert mechanism can be used for anything that can be expressed in terms of constant
expressions (§1.7). For example:

Click here to view code image

constexpr double C = 299792.458; // km/s

void f(double speed)
{
 const double local_max = 160.0/(60*60); // 160 km/h == 160.0/(60*60) km/s
 static_asser t(speed<C,"can't go that fast"); // error: speed must be a constant
 static_assert(local_max<C,"can't go that fast"); // OK

 // ...
}

In general, static_assert(A,S) prints S as a compiler error message if A is not true.

The most important uses of static_assert come when we make assertions about types used as
parameters in generic programming (§5.4, §11.6).

For runtime-checked assertions, use exceptions.

3.5. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in
Chapters 13-15 of [Stroustrup,2013].

[2] Distinguish between declarations (used as interfaces) and definitions (used as implementations); §3.1.

[3] Use header files to represent interfaces and to emphasize logical structure; §3.2.

[4] #include a header in the source file that implements its functions; §3.2.

[5] Avoid non-inline function definitions in headers; §3.2.

[6] Use namespaces to express logical structure; §3.3.

[7] Use using-directives for transition, for foundational libraries (such as std), or within a local scope;
§3.3.

[8] Don’t put a using-directive in a header file; §3.3.

[9] Throw an exception to indicate that you cannot perform an assigned task; §3.4.

[10] Use exceptions for error handling; §3.4.

[11] Develop an error-handling strategy early in a design; §3.4.

[12] Use purpose-designed user-defined types as exceptions (not built-in types); §3.4.1.

[13] Don’t try to catch every exception in every function; §3.4.

42

[14] If your function may not throw, declare it noexcept; §3.4.

[15] Let a constructor establish an invariant, and throw if it cannot; §3.4.2.

[16] Design your error-handling strategy around invariants; §3.4.2.

[17] What can be checked at compile time is usually best checked at compile time (using static_assert);
§3.4.3.

43

4. Classes

Those types are not “abstract”;
they are as real as int and float.

– Doug McIlroy

• Introduction

• Concrete Types

An Arithmetic Type; A Container; Initializing Containers

• Abstract Types

• Virtual Functions

• Class Hierarchies

Explicit Overriding; Benefits from Hierarchies; Hierarchy Navigation; Avoiding Resource Leaks

• Copy and Move

Copying Containers; Moving Containers; Essential Operations; Resource Management;
Suppressing Operations

• Advice

4.1. Introduction

This chapter and the next aim to give you an idea of C++’s support for abstraction and resource management
without going into a lot of detail:

• This chapter informally presents ways of defining and using new types (user-defined types). In particular,
it presents the basic properties, implementation techniques, and language facilities used for concrete
classes, abstract classes, and class hierarchies.

• The next chapter introduces templates as a mechanism for parameterizing types and algorithms with
(other) types and algorithms. Computations on user-defined and built-in types are represented as
functions, sometimes generalized to template functions and function objects.

These are the language facilities supporting the programming styles known as object-oriented programming and
generic programming. Chapters 6-13 follow up by presenting examples of standard-library facilities and their
use.

The central language feature of C++ is the class. A class is a user-defined type provided to represent a
concept in the code of a program. Whenever our design for a program has a useful concept, idea, entity, etc.,
we try to represent it as a class in the program so that the idea is there in the code, rather than just in our
head, in a design document, or in some comments. A program built out of a well chosen set of classes is far
easier to understand and get right than one that builds everything directly in terms of the built-in types. In
particular, classes are often what libraries offer.

Essentially all language facilities beyond the fundamental types, operators, and statements exist to help

44

define better classes or to use them more conveniently. By “better,” I mean more correct, easier to maintain,
more efficient, more elegant, easier to use, easier to read, and easier to reason about. Most programming
techniques rely on the design and implementation of specific kinds of classes. The needs and tastes of
programmers vary immensely. Consequently, the support for classes is extensive. Here, we will just consider
the basic support for three important kinds of classes:

• Concrete classes (§4.2)

• Abstract classes (§4.3)

• Classes in class hierarchies (§4.5)

An astounding number of useful classes turn out to be of these three kinds. Even more classes can be seen as
simple variants of these kinds or are implemented using combinations of the techniques used for these.

4.2. Concrete Types

The basic idea of concrete classes is that they behave “just like built-in types.” For example, a complex number
type and an infinite-precision integer are much like built-in int, except of course that they have their own
semantics and sets of operations. Similarly, a vector and a string are much like built-in arrays, except that
they are better behaved (§7.2, §8.3, §9.2).

The defining characteristic of a concrete type is that its representation is part of its definition. In many
important cases, such as a vector, that representation is only one or more pointers to data stored elsewhere,
but it is present in each object of a concrete class. That allows implementations to be optimally efficient in
time and space. In particular, it allows us to

• place objects of concrete types on the stack, in statically allocated memory, and in other objects (§1.6);

• refer to objects directly (and not just through pointers or references);

• initialize objects immediately and completely (e.g., using constructors; §2.3); and

• copy objects (§4.6).

The representation can be private (as it is for Vector; §2.3) and accessible only through the member
functions, but it is present. Therefore, if the representation changes in any significant way, a user must
recompile. This is the price to pay for having concrete types behave exactly like built-in types. For types that
don’t change often, and where local variables provide much-needed clarity and efficiency, this is acceptable
and often ideal. To increase flexibility, a concrete type can keep major parts of its representation on the free
store (dynamic memory, heap) and access them through the part stored in the class object itself. That’s the
way vector and string are implemented; they can be considered resource handles with carefully crafted
interfaces.

4.2.1. An Arithmetic Type

The “classical user-defined arithmetic type” is complex:

Click here to view code image

class complex {
 double re, im; // representation: two doubles
public:

45

 complex(double r, double i) :re{r}, im{i} {} // construct complex from two scalars
 complex(double r) :re{r}, im{0} {} // construct complex from one scalar
 complex() :re{0}, im{0} {} // default complex: {0,0}

 double real() const { return re; }
 void real(double d) { re=d; }
 double imag() const { return im; }
 void imag(double d) { im=d; }

 complex& operator+=(complex z) { re+=z.re, im+=z.im; return *this; } // add
to re and im
 // and return the result
 complex& operator-=(complex z) { re-=z.re, im-=z.im; return *this; }

 complex& operator*=(complex); // defined out-of-class somewhere
 complex& operator/=(complex); // defined out-of-class somewhere
};

This is a slightly simplified version of the standard-library complex (§12.4). The class definition itself
contains only the operations requiring access to the representation. The representation is simple and
conventional. For practical reasons, it has to be compatible with what Fortran provided 50 years ago, and we
need a conventional set of operators. In addition to the logical demands, complex must be efficient or it will
remain unused. This implies that simple operations must be inlined. That is, simple operations (such as
constructors, +=, and imag()) must be implemented without function calls in the generated machine code.
Functions defined in a class are inlined by default. It is possible to explicitly require inlining by preceeding a
function declaration with the keyword inline. An industrial-strength complex (like the standard-library
one) is carefully implemented to do appropriate inlining.

A constructor that can be invoked without an argument is called a default constructor. Thus, complex() is
complex’s default constructor. By defining a default constructor you eliminate the possibility of uninitialized
variables of that type.

The const specifiers on the functions returning the real and imaginary parts indicate that these functions
do not modify the object for which they are called.

Many useful operations do not require direct access to the representation of complex, so they can be
defined separately from the class definition:

Click here to view code image

complex operator+(complex a, complex b) { return a+=b; }
complex operator-(complex a, complex b) { return a-=b; }
complex operator-(complex a){ return {-a.real(), -a.imag()}; } // unary minus
complex operator*(complex a, complex b) { return a*=b; }
complex operator/(complex a, complex b) { return a/=b; }

Here, I use the fact that an argument passed by value is copied, so that I can modify an argument without
affecting the caller’s copy, and use the result as the return value.

The definitions of == and != are straightforward:

Click here to view code image

bool operator==(complex a, complex b) // equal
{
 return a.real()==b.real() && a.imag()==b.imag();

46

}

bool operator!=(complex a, complex b) // not equal
{
 return !(a==b);
}

complex sqrt(complex); // the definition is elsewhere

// ...

Class complex can be used like this:

Click here to view code image

void f(complex z)
{
 complex a {2.3}; // construct {2.3,0.0} from 2.3
 complex b {1/a};
 complex c {a+z*complex {1,2.3}};
 // ...
 if (c != b)
 c = -(b/a)+2*b;
}

The compiler converts operators involving complex numbers into appropriate function calls. For example,
c!=b means operator!=(c,b) and 1/a means operator/(complex{1},a).

User-defined operators (“overloaded operators”) should be used cautiously and conventionally. The syntax
is fixed by the language, so you can’t define a unary /. Also, it is not possible to change the meaning of an
operator for built-in types, so you can’t redefine + to subtract ints.

4.2.2. A Container

A container is an object holding a collection of elements, so we call Vector a container because it is the type
of objects that are containers. As defined in §2.3, Vector isn’t an unreasonable container of doubles: it is
simple to understand, establishes a useful invariant (§3.4.2), provides range-checked access (§3.4.1), and
provides size() to allow us to iterate over its elements. However, it does have a fatal flaw: it allocates
elements using new but never deallocates them. That’s not a good idea because although C++ defines an
interface for a garbage collector (§4.6.4), it is not guaranteed that one is available to make unused memory
available for new objects. In some environments you can’t use a collector, and sometimes you prefer more
precise control of destruction for logical or performance reasons. We need a mechanism to ensure that the
memory allocated by the constructor is deallocated; that mechanism is a destructor:

Click here to view code image

class Vector {
private:
 double* elem; // elem points to an array of sz doubles
 int sz;
public:
 Vector(int s) :elem{new double[s]}, sz{s} // constructor: acquire resources
 {
 for (int i=0; i!=s; ++i) // initialize elements
 elem[i]=0;
 }

47

 ~Vector() { delete[] elem; } // destructor: release resources

 double& operator[](int i);
 int size() const;
};

The name of a destructor is the complement operator, ~, followed by the name of the class; it is the
complement of a constructor. Vector’s constructor allocates some memory on the free store (also called the
heap or dynamic store) using the new operator. The destructor cleans up by freeing that memory using the
delete operator. This is all done without intervention by users of Vector. The users simply create and use
Vectors much as they would variables of built-in types. For example:

Click here to view code image

void fct(int n)
{
 Vector v(n);

 // ... use v ...

 {
 Vector v2(2*n);
 // ... use v and v2 ...
 } // v2 is destroyed here

 // ... use v ..

} // v is destroyed here

Vector obeys the same rules for naming, scope, allocation, lifetime, etc. (§1.6), as does a built-in type, such
as int and char. This Vector has been simplified by leaving out error handling; see §3.4.

The constructor/destructor combination is the basis of many elegant techniques. In particular, it is the basis
for most C++ general resource management techniques (§11.2). Consider a graphical illustration of a Vector:

The constructor allocates the elements and initializes the Vector members appropriately. The destructor
deallocates the elements. This handle-to-data model is very commonly used to manage data that can vary in
size during the lifetime of an object. The technique of acquiring resources in a constructor and releasing them
in a destructor, known as Resource Acquisition Is Initialization or RAII, allows us to eliminate “naked new
operations,” that is, to avoid allocations in general code and keep them buried inside the implementation of
well-behaved abstractions. Similarly, “naked delete operations” should be avoided. Avoiding naked new
and naked delete makes code far less error-prone and far easier to keep free of resource leaks (§11.2).

4.2.3. Initializing Containers

A container exists to hold elements, so obviously we need convenient ways of getting elements into a
container. We can handle that by creating a Vector with an appropriate number of elements and then
assigning to them, but typically other ways are more elegant. Here, I just mention two favorites:

48

• Initializer-list constructor: Initialize with a list of elements.

• push_back(): Add a new element at the end (at the back of) the sequence.

These can be declared like this:

Click here to view code image

class Vector {
public:
 Vector(std::initializer_list<double>); // initialize with a list of doubles
 // ...
 void push_back(double); // add element at end, increasing the size by one
 // ...
};

The push_back() is useful for input of arbitrary numbers of elements. For example:

Click here to view code image

Vector read(istream& is)
{
 Vector v;
 for (double d; is>>d;) // read floating-point values into d
 v.push_back(d); // add d to v
 return v;
}

The input loop is terminated by an end-of-file or a formatting error. Until that happens, each number read is
added to the Vector so that at the end, v’s size is the number of elements read. I used a for-statement rather
than the more conventional while-statement to keep the scope of d limited to the loop. The way to provide
Vector with a move constructor, so that returning a potentially huge amount of data from read() is cheap,
is explained in §4.6.2.

The std::initializer_list used to define the initializer-list constructor is a standard-library type known
to the compiler: when we use a {}-list, such as {1,2,3,4}, the compiler will create an object of type
initializer_list to give to the program. So, we can write:

Click here to view code image

Vector v1 = {1,2,3,4,5}; // v1 has 5 elements
Vector v2 = {1.23, 3.45, 6.7, 8}; // v2 has 4 elements

Vector’s initializer-list constructor might be defined like this:

Click here to view code image

Vector::Vector(std::initializer_list<double> lst) // initialize with a list
 :elem{new double[lst.size()]}, sz{static_cast<int>(lst.size())}
{
 copy(lst.begin(),lst.end(),elem); // copy from lst into elem (§10.6)
}

I use the ugly static_cast (§14.2.3) to convert the size of the initializer list to an int. This is pedantic
because the chance that the number of elements in a hand-written list is larger than the largest integer (32,767
for 16-bit integers and 2,147,483,647 for 32-bit integers) is rather low. However, it is worth remembering
that the type system has no common sense. It knows about the possible values of variables, rater than actual
values, so it might complain where there is no actual violation. However, sooner or later, such warnings will

49

save the programmer from a bad error.

A static_cast is does not check the value it is converting; the programmer is trusted to use it correctly.
This is not always a good assumption, so if in doubt, check the value. Explicit type conversions (often called
casts to remind you that they are used to prop up something broken) are best avoided. Judicious use of the type
system and well-designed libraries allow us to eliminate unchecked cast in higher-level software.

4.3. Abstract Types

Types such as complex and Vector are called concrete types because their representation is part of their
definition. In that, they resemble built-in types. In contrast, an abstract type is a type that completely insulates
a user from implementation details. To do that, we decouple the interface from the representation and give up
genuine local variables. Since we don’t know anything about the representation of an abstract type (not even
its size), we must allocate objects on the free store (§4.2.2) and access them through references or pointers
(§1.8, §11.2.1).

First, we define the interface of a class Container which we will design as a more abstract version of our
Vector:

Click here to view code image

class Container {
public:
 virtual double& operator[](int) = 0; // pure virtual function
 virtual int size() const = 0; // const member function (§4.2.1)
 virtual~Container() {} // destructor (§4.2.2)
};

This class is a pure interface to specific containers defined later. The word virtual means “may be redefined
later in a class derived from this one.” Unsurprisingly, a function declared virtual is called a virtual function.
A class derived from Container provides an implementation for the Container interface. The curious =0
syntax says the function is pure virtual; that is, some class derived from Container must define the function.
Thus, it is not possible to define an object that is just a Container; a Container can only serve as the
interface to a class that implements its operator[]() and size() functions. A class with a pure virtual
function is called an abstract class.

This Container can be used like this:

Click here to view code image

void use(Container& c)
{
 const int sz = c.size();

 for (int i=0; i!=sz; ++i)
 cout << c[i] << '\n';
}

Note how use() uses the Container interface in complete ignorance of implementation details. It uses
size() and [] without any idea of exactly which type provides their implementation. A class that provides
the interface to a variety of other classes is often called a polymorphic type.

As is common for abstract classes, Container does not have a constructor. After all, it does not have any

50

data to initialize. On the other hand, Container does have a destructor and that destructor is virtual.
Again, that is common for abstract classes because they tend to be manipulated through references or
pointers, and someone destroying a Container through a pointer has no idea what resources are owned by its
implementation; see also §4.5.

A container that implements the functions required by the interface defined by the abstract class
Container could use the concrete class Vector:

Click here to view code image

class Vector_container : public Container { // Vector_container implements Container
 Vector v;
public:
 Vector_container(int s) : v(s) { } // Vector of s elements
 ~Vector_container() {}

 double& operator[](int i) { return v[i]; }
 int size() const { return v.size(); }
};

The :public can be read as “is derived from” or “is a subtype of.” Class Vector_container is said to be
derived from class Container, and class Container is said to be a base of class Vector_container. An
alternative terminology calls Vector_container and Container subclass and superclass, respectively. The
derived class is said to inherit members from its base class, so the use of base and derived classes is commonly
referred to as inheritance.

The members operator[]() and size() are said to override the corresponding members in the base class
Container. The destructor (~Vector_container()) overrides the base class destructor (~Container()).
Note that the member destructor (~Vector()) is implicitly invoked by its class’s destructor
(~Vector_container()).

For a function like use(Container&) to use a Container in complete ignorance of implementation
details, some other function will have to make an object on which it can operate. For example:

Click here to view code image

void g()
{
 Vector_container vc {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
 use(vc);
}

Since use() doesn’t know about Vector_containers but only knows the Container interface, it will
work just as well for a different implementation of a Container. For example:

Click here to view code image

class List_container : public Container { // List_container implements Container
 std::list<double> ld; // (standard-library) list of doubles (§9.3)
public:
 List_container() { } // empty List
 List_container(initializer_list<double> il) : ld{il} { }
 ~List_container() {}

 double& operator[](int i);

51

 int size() const { return ld.size(); }

};

double& List_container::operator[](int i)
{
 for (auto& x : ld) {
 if (i==0) return x;
 --i;
 }
 throw out_of_range("List container");
}

Here, the representation is a standard-library list<double>. Usually, I would not implement a container
with a subscript operation using a list, because performance of list subscripting is atrocious compared to
vector subscripting. However, here I just wanted to show an implementation that is radically different from
the usual one.

A function can create a List_container and have use() use it:

Click here to view code image

void h()
{
 List_container lc = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 use(lc);
}

The point is that use(Container&) has no idea if its argument is a Vector_container, a
List_container, or some other kind of container; it doesn’t need to know. It can use any kind of
Container. It knows only the interface defined by Container. Consequently, use(Container&) needn’t
be recompiled if the implementation of List_container changes or a brand-new class derived from
Container is used.

The flip side of this flexibility is that objects must be manipulated through pointers or references (§4.6,
§11.2.1).

4.4. Virtual Functions

Consider again the use of Container:

Click here to view code image

void use(Container& c)
{
 const int sz = c.size();

 for (int i=0; i!=sz; ++i)
 cout << c[i] << '\n';
}

How is the call c[i] in use() resolved to the right operator[]()? When h() calls use(),
List_container’s operator[]() must be called. When g() calls use(), Vector_container’s
operator[]() must be called. To achieve this resolution, a Container object must contain information to
allow it to select the right function to call at run time. The usual implementation technique is for the compiler
to convert the name of a virtual function into an index into a table of pointers to functions. That table is

52

usually called the virtual function table or simply the vtbl. Each class with virtual functions has its own vtbl
identifying its virtual functions. This can be represented graphically like this:

The functions in the vtbl allow the object to be used correctly even when the size of the object and the layout
of its data are unknown to the caller. The implementation of the caller needs only to know the location of the
pointer to the vtbl in a Container and the index used for each virtual function. This virtual call mechanism
can be made almost as efficient as the “normal function call” mechanism (within 25%). Its space overhead is
one pointer in each object of a class with virtual functions plus one vtbl for each such class.

4.5. Class Hierarchies

The Container example is a very simple example of a class hierarchy. A class hierarchy is a set of classes
ordered in a lattice created by derivation (e.g., : public). We use class hierarchies to represent concepts that
have hierarchical relationships, such as “A fire engine is a kind of a truck which is a kind of a vehicle” and “A
smiley face is a kind of a circle which is a kind of a shape.” Huge hierarchies, with hundreds of classes, that are
both deep and wide are common. As a semi-realistic classic example, let’s consider shapes on a screen:

The arrows represent inheritance relationships. For example, class Circle is derived from class Shape. To
represent that simple diagram in code, we must first specify a class that defines the general properties of all
shapes:

Click here to view code image

class Shape {
public:
 virtual Point center() const =0; // pure virtual
 virtual void move(Point to) =0;

 virtual void draw() const = 0; // draw on current "Canvas"
 virtual void rotate(int angle) = 0;

53

 virtual ~Shape() {} // destructor
 // ...
};

Naturally, this interface is an abstract class: as far as representation is concerned, nothing (except the location
of the pointer to the vtbl) is common for every Shape. Given this definition, we can write general functions
manipulating vectors of pointers to shapes:

Click here to view code image

void rotate_all(vector<Shape*>& v, int angle) // rotate v's elements by angle degrees
{
 for (auto p : v)
 p->rotate(angle);
}

To define a particular shape, we must say that it is a Shape and specify its particular properties (including
its virtual functions):

Click here to view code image

class Circle : public Shape {
public:
 Circle(Point p, int rr); // constructor

 Point center() const { return x; }
 void move(Point to) { x=to; }
 void draw() const;
 void rotate(int) {} // nice simple algorithm
private:
 Point x; // center
 int r; // radius
};

So far, the Shape and Circle example provides nothing new compared to the Container and
Vector_container example, but we can build further:

Click here to view code image

class Smiley : public Circle { // use the circle as the base for a face
public:
 Smiley(Point p, int r) : Circle{p,r}, mouth{nullptr} { }

 ~Smiley()
 {
 delete mouth;
 for (auto p : eyes)
 delete p;
 }

 void move(Point to);

 void draw() const;
 void rotate(int);

 void add_eye(Shape* s) { eyes.push_back(s); }
 void set_mouth(Shape* s);
 virtual void wink(int i); // wink eye number i

 // ...

54

private:
 vector<Shape*> eyes; // usually two eyes
 Shape* mouth;
};

The push_back() member function adds its argument to the vector (here, eyes), increasing that vector’s
size by one.

We can now define Smiley::draw() using calls to Smiley’s base and member draw()s:

Click here to view code image

void Smiley::draw()
{
 Circle::draw();
 for (auto p : eyes)
 p->draw();
 mouth->draw();
}

Note the way that Smiley keeps its eyes in a standard-library vector and deletes them in its destructor.
Shape’s destructor is virtual and Smiley’s destructor overrides it. A virtual destructor is essential for an
abstract class because an object of a derived class is usually manipulated through the interface provided by its
abstract base class. In particular, it may be deleted through a pointer to a base class. Then, the virtual function
call mechanism ensures that the proper destructor is called. That destructor then implicitly invokes the
destructors of its bases and members.

In this simplified example, it is the programmer’s task to place the eyes and mouth appropriately within the
circle representing the face.

We can add data members, operations, or both as we define a new class by derivation. This gives great
flexibility with corresponding opportunities for confusion and poor design.

4.5.1. Explicit Overriding

A function in a derived class overrides a virtual function in a base class if that function has exactly the same
name and type. In large hierachies, it is not always obvious if overriding was intended. A function with a
slightly different name or a slightly different type may be intended to override or it may be intended to be a
separate function. To avoid confusion in such cases, a programmer can explicitly state that a function is meant
to override. For example, I could (equivalently) have defined Smiley like this:

Click here to view code image

class Smiley : public Circle { // use the circle as the base for a face
public:
 Smiley(Point p, int r) : Circle{p,r}, mouth{nullptr} { }

 ~Smiley()
 {
 delete mouth;
 for (auto p : eyes)
 delete p;
 }

 void move(Point to) override;

55

 void draw() const override;
 void rotate(int) override;

 void add_eye(Shape* s) { eyes.push_back(s); }
 void set_mouth(Shape* s);
 virtual void wink(int i); // wink eye number i

 // ...

private:
 vector<Shape*> eyes; // usually two eyes
 Shape* mouth;
};

Now, had I mistyped move as mve, I would have gotten an error because no base of Smiley has a virtual
function called mve. Similarly, had I added override to the declaration of wink(), I would have gotten an
error message.

4.5.2. Benefits from Hierarchies

A class hierarchy offers two kinds of benefits:

• Interface inheritance: An object of a derived class can be used wherever an object of a base class is
required. That is, the base class acts as an interface for the derived class. The Container and Shape
classes are examples. Such classes are often abstract classes.

• Implementation inheritance: A base class provides functions or data that simplifies the implementation
of derived classes. Smiley’s uses of Circle’s constructor and of Circle::draw() are examples. Such
base classes often have data members and constructors.

Concrete classes – especially classes with small representations – are much like built-in types: we define them
as local variables, access them using their names, copy them around, etc. Classes in class hierarchies are
different: we tend to allocate them on the free store using new, and we access them through pointers or
references. For example, consider a function that reads data describing shapes from an input stream and
constructs the appropriate Shape objects:

Click here to view code image

enum class Kind { circle, triangle, smiley };

Shape* read_shape(istream& is) // read shape descriptions from input stream is
{
 // ... read shape header from is and find its Kind k ...

 switch (k) {
 case Kind::circle:
 // read circle data {Point,int} into p and r
 return new Circle{p,r};
 case Kind::triangle:
 // read triangle data {Point,Point,Point} into p1, p2, and p3
 return new Triangle{p1,p2,p3};
 case Kind::smiley:
 // read smiley data {Point,int,Shape,Shape,Shape} into p, r, e1, e2, and m
 Smiley* ps = new Smiley{p,r};
 ps->add_eye(e1);
 ps->add_eye(e2);

56

 ps->set_mouth(m);
 return ps;
 }
}

A program may use that shape reader like this:

Click here to view code image

void user()
{
 std::vector<Shape*> v;
 while (cin)
 v.push_back(read_shape(cin));
 draw_all(v); // call draw() for each element
 rotate_all(v,45); // call rotate(45) for each element
 for (auto p : v) // remember to delete elements
 delete p;
}

Obviously, the example is simplified – especially with respect to error handling – but it vividly illustrates that
user() has absolutely no idea of which kinds of shapes it manipulates. The user() code can be compiled
once and later used for new Shapes added to the program. Note that there are no pointers to the shapes
outside user(), so user() is responsible for deallocating them. This is done with the delete operator and
relies critically on Shape’s virtual destructor. Because that destructor is virtual, delete invokes the destructor
for the most derived class. This is crucial because a derived class may have acquired all kinds of resources (such
as file handles, locks, and output streams) that need to be released. In this case, a Smiley deletes its eyes
and mouth objects.

4.5.3. Hierarchy Navigation

The read_shape() function returns Shape * so that we can treat all Shapes alike. However, what can
we do if we want to use a member function that is only provided by a particular derived class, such as
Smiley’s wink()? We can ask “is this Shape a kind of Smiley?” using the dynamic_cast operator:

Click here to view code image

Shape* ps {read_shape(cin)};

if (Smiley* p = dynamic_cast<Smiley*>(ps)) {
 // ... is the Smiley pointer to by p ...
}
else {
 // ... not a Smiley, try something else ...
}

If the object pointed to by the argument of dynamic_cast (here, ps) is not of the expected type (here,
Smiley) or a class derived from the expected type, dynamic_cast returns nullptr.

We use dynamic_cast to a pointer type when a pointer to an object of a different derived class is a valid
argument. We then test whether the result is nullptr. This test can often conveniently be placed in the
initialization of a variable in a condition.

When a different type is unacceptable, we can simply dynamic_cast to a reference type. If the object is
not of the expected type, bad_cast is thrown:

57

Click here to view code image

Shape* ps {read_shape(cin)};
Smiley& r {dynamic_cast<Smiley&>(*ps)}; // somewhere, catch std::bad_cast

Code is cleaner when dynamic_cast is used with restraint. If we can avoid using type information, we can
write simpler and more efficient code, but occasionally type information is lost and must be recovered. This
typically happens when we pass an object to some system that accepts an interface specified by a base class.
When that system later passes the object back to use, we might have to recover the original type. Operations
similar to dynamic_cast are known as “is kind of” and “is instance of” operations.

4.5.4. Avoiding Resource Leaks

Experienced programmers will notice that I left open two obvious opportunities for mistakes:

• A user might fail to delete the pointer returned by read_shape().

• The owner of a container of Shape pointers might not delete the objects pointed to.

In that sense, functions returning a pointer to an object allocated on the free store are dangerous.

One solution to both problems is to return a standard-library unique_ptr (§11.2.1) rather than a “naked
pointer” and store unique_ptrs in the container:

Click here to view code image

unique_ptr<Shape> read_shape(istream& is) // read shape descriptions from input
stream is
{
 // read shape header from is and find its Kind k

 switch (k) {
 case Kind::circle:
 // read circle data {Point,int} into p and r
 return unique_ptr<Shape>{new Circle{p,r}}; // §11.2.1
 // ...
}

void user()
{
 vector<unique_ptr<Shape>> v;
 while (cin)
 v.push_back(read_shape(cin));
 draw_all(v); // call draw() for each element
 rotate_all(v,45); // call rotate(45) for each element
} // all Shapes implicitly destroyed

Now the object is owned by the unique_ptr which will delete the object when it is no longer needed, that
is, when its unique_ptr goes out of scope.

For the unique_ptr version of user() to work, we need versions of draw_all() and rotate_all()
that accept vector<unique_ptr<Shape>>s. Writing many such _all() functions could become
tedious, so §5.5 shows an alternative.

4.6. Copy and Move

By default, objects can be copied. This is true for objects of user-defined types as well as for builtin types. The

58

default meaning of copy is memberwise copy: copy each member. For example, using complex from §4.2.1:

Click here to view code image

void test(complex z1)
{
 complex z2 {z1}; // copy initialization
 complex z3;
 z3 = z2; // copy assignment
 // ...
}

Now z1, z2, and z3 have the same value because both the assignment and the initialization copied both
members.

When we design a class, we must always consider if and how an object might be copied. For simple
concrete types, memberwise copy is often exactly the right semantics for copy. For some sophisticated
concrete types, such as Vector, memberwise copy is not the right semantics for copy, and for abstract types it
almost never is.

4.6.1. Copying Containers

When a class is a resource handle – that is, when the class is responsible for an object accessed through a
pointer – the default memberwise copy is typically a disaster. Memberwise copy would violate the resource
handle’s invariant (§3.4.2). For example, the default copy would leave a copy of a Vector referring to the
same elements as the original:

Click here to view code image

void bad_copy(Vector v1)
{
 Vector v2 = v1; // copy v1's representation into v2
 v1[0] = 2; // v2[0] is now also 2!
 v2[1] = 3; // v1[1] is now also 3!
}

Assuming that v1 has four elements, the result can be represented graphically like this:

Fortunately, the fact that Vector has a destructor is a strong hint that the default (memberwise) copy
semantics is wrong and the compiler should at least warn against this example. We need to define better copy
semantics.

Copying of an object of a class is defined by two members: a copy constructor and a copy assignment:

Click here to view code image

class Vector {
private:
 double* elem; // elem points to an array of sz doubles
 int sz;
public:

59

 Vector(int s); // constructor: establish invariant, acquire resources
 ~Vector() { delete[] elem; } // destructor: release resources

 Vector(const Vector& a); // copy constructor
 Vector& operator=(const Vector& a); // copy assignment

 double& operator[](int i);
 const double& operator[](int i) const;

 int size() const;
};

A suitable definition of a copy constructor for Vector allocates the space for the required number of elements
and then copies the elements into it, so that after a copy each Vector has its own copy of the elements:

Click here to view code image

Vector::Vector(const Vector& a) // copy constructor
 :elem{new double[a.sz]}, // allocate space for elements
 sz{a.sz}
{
 for (int i=0; i!=sz; ++i) // copy elements
 elem[i] = a.elem[i];
}

The result of the v2=v1 example can now be presented as:

Of course, we need a copy assignment in addition to the copy constructor:

Click here to view code image

Vector& Vector::operator=(const Vector& a) // copy assignment
{
 double* p = new double[a.sz];
 for (int i=0; i!=a.sz; ++i)
 p[i] = a.elem[i];
 delete[] elem; // delete old elements
 elem = p;
 sz = a.sz;
 return *this;
}

The name this is predefined in a member function and points to the object for which the member function is
called.

4.6.2. Moving Containers

We can control copying by defining a copy constructor and a copy assignment, but copying can be costly for
large containers. We avoid the cost of copying when we pass objects to a function by using references, but we
can’t return a reference to a local object as the result (the local object would be destroyed by the time the caller
got a chance to look at it). Consider:

Click here to view code image

60

Vector operator+(const Vector& a, const Vector& b)
{
 if (a.size()!=b.size())
 throw Vector_size_mismatch{};

 Vector res(a.size());
 for (int i=0; i!=a.size(); ++i)
 res[i]=a[i]+b[i];
 return res;
}

Returning from a + involves copying the result out of the local variable res and into some place where the
caller can access it. We might use this + like this:

Click here to view code image

void f(const Vector& x, const Vector& y, const Vector& z)
{
 Vector r;
 // ...
 r = x+y+z;
 // ...
}

That would be copying a Vector at least twice (one for each use of the + operator). If a Vector is large, say,
10,000 doubles, that could be embarrassing. The most embarrassing part is that res in operator+() is
never used again after the copy. We didn’t really want a copy; we just wanted to get the result out of a
function: we wanted to move a Vector rather than to copy it. Fortunately, we can state that intent:

Click here to view code image

class Vector {
 // ...

 Vector(const Vector& a); // copy constructor
 Vector& operator=(const Vector& a); // copy assignment

 Vector(Vector&& a); // move constructor
 Vector& operator=(Vector&& a); // move assignment
};

Given that definition, the compiler will choose the move constructor to implement the transfer of the return
value out of the function. This means that r = x+y+z will involve no copying of Vectors. Instead,
Vectors are just moved.

As is typical, Vector’s move constructor is trivial to define:

Click here to view code image

Vector::Vector(Vector&& a)
 :elem{a.elem}, // "grab the elements" from a
 sz{a.sz}
{
 a.elem = nullptr; // now a has no elements
 a.sz = 0;
}

The && means “rvalue reference” and is a reference to which we can bind an rvalue. The word “rvalue” is
intended to complement “lvalue,” which roughly means “something that can appear on the left-hand side of

61

an assignment.” So an rvalue is – to a first approximation – a value that you can’t assign to, such as an integer
returned by a function call. Thus, an rvalue reference is a reference to something that nobody else can assign to,

so that we can safely “steal” its value. The res local variable in operator+() for Vectors is an example.

A move constructor does not take a const argument: after all, a move constructor is supposed to remove
the value from its argument. A move assignment is defined similarly.

A move operation is applied when an rvalue reference is used as an initializer or as the right-hand side of
an assignment.

After a move, a moved-from object should be in a state that allows a destructor to be run. Typically, we
should also allow assignment to a moved-from object.

Where the programmer knows that a value will not be used again, but the compiler can’t be expected to be
smart enough to figure that out, the programmer can be specific:

Click here to view code image

Vector f()
{
 Vector x(1000);
 Vector y(1000);
 Vector z(1000);
 z = x; // we get a copy
 y = std::move(x); // we get a move
 return z; // we get a move
};

The standard-library function move() returns doesn’t actually move anything. Instead, it returns a reference
to its argument from which we may move – an rvalue reference.

Just before the return we have:

When z is destroyed, it too has been moved from (by the return) so that, like x, it is empty (it holds no
elements).

4.6.3. Essential Operations

Construction of objects plays a key role in many designs. This wide variety of uses is reflected in the range and
flexibility of the language features supporting initialization.

Constructors, destructors, and copy and move operations for a type are not logically separate. We must
define them as a matched set or suffer logical or performance problems. If a class X has a destructor that
performs a nontrivial task, such as free-store deallocation or lock release, the class is likely to need the full
complement of functions:

Click here to view code image

class X {
public:

62

 X(Sometype); // "ordinary constructor": create an object
 X(); // default constructor
 X(const X&); // copy constructor
 X(X&&); // move constructor
 X& operator=(const X&); // copy assignment: clean up target and copy
 X& operator=(X&&); // move assignment: clean up target and move
 ~X(); // destructor: clean up
 // ...
};

There are five situations in which an object is copied or moved:

• As the source of an assignment

• As an object initializer

• As a function argument

• As a function return value

• As an exception

In all cases, the copy or move constructor will be applied (unless it can be optimized away).

In addition to the initialization of named objects and objects on the free store, constructors are used to
initialize temporary objects and to implement explicit type conversion.

Except for the “ordinary constructor,” these special member functions will be generated by the compiler as
needed. If you want to be explicit about generating default implementations, you can:

Click here to view code image

class Y {
Public:
 Y(Sometype);
 Y(const Y&) = default; // I really do want the default copy constructor
 Y(Y&&) = default; // and the default copy constructor
 // ...
};

If you are explicit about some defaults, other default definitions will not be generated.

When a class has a pointer or a reference member, it is usually a good idea to be explicit about copy of
move operations. The reason is that a pointer or reference will point to something that the class needs to
delete, in which case the default copy would be wrong, or it points to something that the class must not
delete, in which case a reader of the code would like to know that.

A constructor taking a single argument defines a conversion from its argument type. For example,
complex (§4.2.1) provides a constructor from a double:

Click here to view code image

complex z1 = 3.14; // z1 becomes {3.14,0.0}
complex z2 = z1*2; // z2 becomes {6.28,0.0}

Obviously, this is sometimes ideal, but not always. For example, Vector (§4.2.2) provides a constructor from
an int:

Click here to view code image

63

Vector v1 = 7; // OK: v1 has 7 elements

This is typically considered unfortunate, and the standard-library vector does not allow this int-to-vector
“conversion.”

The way to avoid this problem is to say that only explicit “conversion” is allowed; that is, we can define the
constructor like this:

Click here to view code image

class Vector {
public:
 explicit Vector(int s); // no implicit conversion from int to Vector
 // ...
};

That gives us:

Click here to view code image

Vector v1(7); // OK: v1 has 7 elements
Vector v2 = 7; // error: no implicit conversion from int to Vector

When it comes to conversions, more types are like Vector than are like complex, so use explicit for
constructors that take a single argument unless there is a good reason not to.

4.6.4. Resource Management

By defining constructors, copy operations, move operations, and a destructor, a programmer can provide
complete control of the lifetime of a contained resource (such as the elements of a container). Furthermore, a
move constructor allows an object to move simply and cheaply from one scope to another. That way, objects
that we cannot or would not want to copy out of a scope can be simply and cheaply moved out instead.
Consider a standard-library thread representing a concurrent activity (§13.2) and a Vector of a million
doubles. We can’t copy the former and don’t want to copy the latter.

Click here to view code image

std::vector<thread> my_threads;

Vector init(int n)
{
 thread t {heartbeat}; // run heartbeat concurrently (on its own thread)
 my_threads.push_back(move(t)); // move t into my_threads
 // ... more initialization ...

 Vector vec(n);
 for (int i=0; i<vec.size(); ++i)
 vec[i] = 777;
 return vec; // move res out of init()
}

auto v = init(10000); // start heartbeat and initialize v

This makes resource handles, such as Vector and thread, an alternative to using pointers in many cases. In
fact, the standard-library “smart pointers,” such as unique_ptr, are themselves resource handles (§11.2.1).

I used the standard-library vector to hold the threads because we don’t get to parameterize Vector

64

with an element type until §5.2.

In very much the same way as new and delete disappear from application code, we can make pointers
disappear into resource handles. In both cases, the result is simpler and more maintainable code, without
added overhead. In particular, we can achieve strong resource safety; that is, we can eliminate resource leaks for a
general notion of a resource. Examples are vectors holding memory, threads holding system threads, and
fstreams holding file handles.

In many languages, resource management is primarily delegated to a garbage collector. C++ also offers a
garbage collection interface so that you can plug in a garbage collector. However, I consider garbage collection
the last alternative after cleaner, more general, and better localized alternatives to resource management have
been exhausted.

Garbage collection is fundamentally a global memory management scheme. Clever implementations can
compensate, but as systems are getting more distributed (think multicores, caches, and clusters), locality is
more important than ever.

Also, memory is not the only resource. A resource is anything that has to be acquired and (explicitly or
implicitly) released after use. Examples are memory, locks, sockets, file handles, and thread handles. A good
resource management system handles all kinds of resources. Leaks must be avoided in any long-running
systems, but excessive resource retention can be almost as bad as a leak. For example, if a system holds on to
memory, locks, files, etc., for twice as long, the system needs to be provisioned with potentially twice as many
resources.

Before resorting to garbage collection, systematically use resource handles: Let each resource have an owner
in some scope and by default be released at the end of its owners scope. In C++, this is known as RAII
(Resource Acquisition Is Initialization) and is integrated with error handling in the form of exceptions.
Resources can be moved from scope to scope using move semantics or “smart pointers,” and shared ownership
can be represented by “shared pointers” (§11.2.1).

In the C++ standard library, RAII is pervasive: for example, memory (string, vector, map,
unordered_map, etc.), files (ifstream, ofstream, etc.), threads (thread), locks (lock_guard,
unique_lock, etc.), and general objects (through unique_ptr and shared_ptr). The result is implicit
resource management that is invisible in common use and leads to low resource retention durations.

4.6.5. Suppressing Operations

Using the default copy or move for a class in a hierarchy is typically a disaster: given only a pointer to a base,
we simply don’t know what members the derived class has (§4.3), so we can’t know how to copy them. So, the
best thing to do is usually to delete the default copy and move operations, that is, to eliminate the default
definitions of those two operations:

Click here to view code image

class Shape {
public:
 Shape(const Shape&) =delete; // no copy operations
 Shape& operator=(const Shape&) =delete;

65

 Shape(Shape&&) =delete; // no move operations
 Shape& operator=(Shape&&) =delete;

 ~Shape();
 // ...
};

Now an attempt to copy a Shape will be caught by the compiler. If you need to copy an object in a class
hierarchy, write a virtual clone function.

In this particular case, if you forgot to delete a copy or move operation, no harm is done. A move
operation is not implicitly generated for a class where the user has explicitly declared a destructor, so you get a
compiler error if you try to move a Shape. Furthermore, the generation of copy operations is deprecated in
this case (§14.2.3), so you should expect the compiler to issue a warning if you try to copy a Shape.

A base class in a class hierarchy is just one example of an object we wouldn’t want to copy. A resource
handle generally cannot be copied just by copying its members (§4.6.1).

The =delete mechanism is general, that is, it can be used to suppress any operation.

4.7. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in
Chapters 16-22 of [Stroustrup,2013].

[2] Express ideas directly in code; §4.1.

[3] A concrete type is the simplest kind of class. Where applicable, prefer a concrete type over more
complicated classes and over plain data structures; §4.2.

[4] Use concrete classes to represent simple concepts and performance-critical components; §4.2.

[5] Define a constructor to handle initialization of objects; §4.2.1, §4.6.3.

[6] Make a function a member only if it needs direct access to the representation of a class; §4.2.1.

[7] Define operators primarily to mimic conventional usage; §4.2.1.

[8] Use nonmember functions for symmetric operators; §4.2.1.

[9] Declare a member function that does not modify the state of its object const; §4.2.1.

[10] If a constructor acquires a resource, its class needs a destructor to release the resource; §4.2.2.

[11] Avoid “naked” new and delete operations; §4.2.2.

[12] Use resource handles and RAII to manage resources; §4.2.2.

[13] If a class is a container, give it an initializer-list constructor; §4.2.3.

[14] Use abstract classes as interfaces when complete separation of interface and implementation is needed;
§4.3.

[15] Access polymorphic objects through pointers and references; §4.3.

[16] An abstract class typically doesn’t need a constructor; §4.3.

[17] Use class hierarchies to represent concepts with inherent hierarchical structure; §4.5.

[18] A class with a virtual function should have a virtual destructor; §4.5.

66

[19] Use override to make overriding explicit in large class hierarchies; §4.5.1.

[20] When designing a class hierarchy, distinguish between implementation inheritance and interface
inheritance; §4.5.2.

[21] Use dynamic_cast where class hierarchy navigation is unavoidable; §4.5.3.

[22] Use dynamic_cast to a reference type when failure to find the required class is considered a failure;
§4.5.3.

[23] Use dynamic_cast to a pointer type when failure to find the required class is considered a valid
alternative; §4.5.3.

[24] Use unique_ptr or shared_ptr to avoid forgetting to delete objects created using new; §4.5.4.

[25] Redefine or prohibit copying if the default is not appropriate for a type; §4.6.1, §4.6.5.

[26] Return containers by value (relying on move for efficiency); §4.6.2.

[27] For large operands, use const reference argument types; §4.6.2.

[28] If a class has a destructor, it probably needs user-defined or deleted copy and move operations; §4.6.5.

[29] Control construction, copy, move, and destruction of objects; §4.6.3.

[30] Design constructors, assignments, and the destructor as a matched set of operations; §4.6.3.

[31] If a default constructor, assignment, or destructor is appropriate, let the compiler generate it (don’t
rewrite it yourself); §4.6.3.

[32] By default, declare single-argument constructors explicit; §4.6.3.

[33] If a class has a pointer or reference member, it probably needs a destructor and non-default copy
operations; §4.6.3.

[34] Provide strong resource safety; that is, never leak anything that you think of as a resource; §4.6.4.

[35] If a class is a resource handle, it needs a constructor, a destructor, and non-default copy operations;
§4.6.4.

67

5. Templates

Your quote here.

– B. Stroustrup

• Introduction

• Parameterized Types

• Function Templates

• Concepts and Generic Programming

• Function Objects

• Variadic Templates

• Aliases

• Template Compilation Model

• Advice

5.1. Introduction

Someone who wants a vector is unlikely always to want a vector of doubles. A vector is a general concept,
independent of the notion of a floating-point number. Consequently, the element type of a vector ought to be
represented independently. A template is a class or a function that we parameterize with a set of types or
values. We use templates to represent concepts that are best understood as something very general from which
we can generate specific types and functions by specifying arguments, such as the element type double.

5.2. Parameterized Types

We can generalize our vector-of-doubles type to a vector-of-anything type by making it a template and
replacing the specific type double with a parameter. For example:

Click here to view code image

template<typename T>
class Vector {
private:
 T* elem; // elem points to an array of sz elements of type T
 int sz;
public:
 explicit Vector(int s); // constructor: establish invariant, acquire resources
 ~Vector() { delete[] elem; } // destructor: release resources

 // ... copy and move operations ...

 T& operator[](int i);
 const T& operator[](int i) const;
 int size() const { return sz; }
};

The template<typename T> prefix makes T a parameter of the declaration it prefixes. It is C++’s
version of the mathematical “for all T” or more precisely “for all types T.” Using class to introduce a type

68

parameter is equivalent to using typename, and in older code we often see template<class T> as the
prefix.

The member functions might be defined similarly:

Click here to view code image

template<typename T>
Vector<T>::Vector(int s)
{
 if (s<0)
 throw Negative_size{};
 elem = new T[s];
 sz = s;
}

template<typename T>
const T& Vector<T>::operator[](int i) const
{
 if (i<0 || size()<=i)
 throw out_of_range{"Vector::operator[]"};
 return elem[i];
}

Given these definitions, we can define Vectors like this:

Click here to view code image

Vector<char> vc(200); // vector of 200 characters
Vector<string> vs(17); // vector of 17 strings
Vector<list<int>> vli(45); // vector of 45 lists of integers

The >> in Vector<list<int>> terminates the nested template arguments; it is not a misplaced input
operator. It is not (as in C++98) necessary to place a space between the two >s.

We can use Vectors like this:

Click here to view code image

void write(const Vector<string>& vs) // Vector of some strings
{
 for (int i = 0; i!=vs.size(); ++i)
 cout << vs[i] << '\n';
}

To support the range-for loop for our Vector, we must define suitable begin() and end() functions:

Click here to view code image

template<typename T>
T* begin(Vector<T>& x)
{
 return x.size() ? &x[0] : nullptr; // pointer to first element or nullptr
}

template<typename T>
T* end(Vector<T>& x)
{
 return begin(x)+x.size(); // pointer to one-past-last element
}

Given those, we can write:

69

Click here to view code image

void f2(Vector<string>& vs) // Vector of some strings
{
 for (auto& s : vs)
 cout << s << '\n';
}

Similarly, we can define lists, vectors, maps (that is, associative arrays), unordered maps (that is, hash tables),
etc., as templates (Chapter 9).

Templates are a compile-time mechanism, so their use incurs no run-time overhead compared to hand-
crafted code. In fact, the code generated for Vector<double> is identical to the code generated for the
version of Vector from Chapter 4. Furthermore, the code generated for the standard-library
vector<double> is likely to be better (because more effort has gone into its implementation).

In addition to type arguments, a template can take value arguments. For example:

Click here to view code image

template<typename T, int N>
struct Buffer {
 using value_type = T;
 constexpr int size() { return N; }
 T[N];
 // ...
};

The alias (value_type) and the constexpr function are provided to allow users (read-only) access to the
template arguments.

Value arguments are useful in many contexts. For example, Buffer allows us to create arbitrarily sized
buffers with no overheads from the use of free store (dynamic memory):

Click here to view code image

Buffer<char,1024> glob; // global buffer of characters (statically allocated)

void fct()
{
 Buffer<int,10> buf; // local buffer of integers (on the stack)
 // ...
}

A template value argument must be a constant expression.

5.3. Function Templates

Templates have many more uses than simply parameterizing a container with an element type. In particular,
they are extensively used for parameterization of both types and algorithms in the standard library (§9.6,
§10.6). For example, we can write a function that calculates the sum of the element values of any container
like this:

Click here to view code image

template<typename Container, typename Value>
Value sum(const Container& c, Value v)
{

70

 for (auto x : c)
 v+=x;
 return v;
}

The Value template argument and the function argument v are there to allow the caller to specify the type
and initial value of the accumulator (the variable in which to accumulate the sum):

Click here to view code image

void user(Vector<int>& vi, std::list<double>& ld, std::vector<complex<double>>&
vc)
{
 int x = sum(vi,0); // the sum of a vector of ints (add ints)
 double d = sum(vi,0.0); // the sum of a vector of ints (add doubles)
 double dd = sum(ld,0.0); // the sum of a list of doubles
 auto z = sum(vc,complex<double>{}); // the sum of a vector of
complex<double>
 // the initial value is {0.0,0.0}
}

The point of adding ints in a double would be to gracefully handle a number larger than the largest int.
Note how the types of the template arguments for sum<T,V> are deduced from the function arguments.
Fortunately, we do not need to explicitly specify those types.

This sum() is a simplified version of the standard-library accumulate() (§12.3).

5.4. Concepts and Generic Programming

What are templates for? In other words, what programming techniques are effective when you use templates?
Templates offer:

• The ability to pass types (as well as values and templates) as arguments without loss of information.
This implies excellent opportunities for inlining, of which current implementations take great
advantage.

• Delayed type checking (done at instantiation time). This implies opportunities to weave together
information from different contexts.

• The ability to pass constant values as arguments. This implies the ability to do compile-time
computation.

In other words, templates provide a powerful mechanism for compile-time computation and type
manipulation that can lead to very compact and efficient code. Remember that types (classes) can contain both
code and values.

The first and most common use of templates is to support generic programming, that is, programming
focused on the design, implementation, and use of general algorithms. Here, “general” means that an
algorithm can be designed to accept a wide variety of types as long as they meet the algorithm’s requirements
on its arguments. The template is C++’s main support for generic programming. Templates provide (compile-
time) parametric polymorphism.

Consider the sum() from §5.3. It can be invoked for any data structure that supports begin() and
end() so that the range-for will work. Such structures include the standard-library vector, list, and map.

71

Furthermore, the element type of the data structure is limited only by its use: it must be a type that we can add
to the Value argument. Examples are ints, doubles, and Matrixes (for any reasonable definition of
Matrix). We could say that the sum() algorithm is generic in two dimensions: the type of the data structure
used to store elements (“the container”) and the type of elements.

So, sum() requires that its first template argument is some kind of container and its second template
argument is some kind of number. We call such requirements concepts. Unfortunately, concepts cannot be
expressed directly in C++11. All we can say is that the template argument for sum() must be types. There are
techniques for checking concepts and proposals for direct language support for concepts [Stroustrup,2013]
[Sutton,2012], but both are beyond the scope of this thin book.

Good, useful concepts are fundamental and are discovered more than they are designed. Examples are
integer and floating-point number (as defined even in Classic C), more general mathematical concepts such as
field and vector space, and container. They represent the fundamental concepts of a field of application.
Identifying and formalizing to the degree necessary for effective generic programming can be a challenge.

For basic use, consider the concept Regular. A type is regular when it behaves much like an int or a
vector. An object of a regular type

• can be default constructed.

• can be copied (with the usual semantics of copy yielding two objects that are independent and compare
equal) using a constructor or an assignment.

• can be compared using == and !=.

• doesn’t suffer technical problems from overly clever programming tricks.

A string is another example of a regular type. Like int, string is also Ordered. That is, two strings can be
compared using <, <=, >, and >= with the appropriate semantics. Concepts is not just a syntactic notion, it
is fundamentally about semantics. For example, don’t define + to divide; that would not match the
requirements for any reasonable number.

5.5. Function Objects

One particularly useful kind of template is the function object (sometimes called a functor), which is used to
define objects that can be called like functions. For example:

Click here to view code image

template<typename T>
class Less_than {
 const T val; // value to compare against
public:
 Less_than(const T& v) :val(v) { }
 bool operator()(const T& x) const { return x<val; } // call operator
};

The function called operator() implements the “function call,” “call,” or “application” operator ().

We can define named variables of type Less_than for some argument type:

Click here to view code image

Less_than<int> lti {42}; // lti(i) will compare i to 42 using < (i<42)

72

Less_than<string> lts {"Backus"}; // lts(s) will compare s to "Backus" using <
(s<"Backus")

We can call such an object, just as we call a function:

Click here to view code image

void fct(int n, const string & s)
{
 bool b1 = lti(n); // true if n<42
 bool b2 = lts(s); // true if s<"Backus"
 // ...
}

Such function objects are widely used as arguments to algorithms. For example, we can count the occurrences
of values for which a predicate returns true:

Click here to view code image

template<typename C, typename P>
int count(const C& c, P pred)
{
 int cnt = 0;
 for (const auto& x : c)
 if (pred(x))
 ++cnt;
 return cnt;
}

A predicate is something that we can invoke to return true or false. For example:

Click here to view code image

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{
 cout << "number of values less than " << x
 << ": " << count(vec,Less_than<int>{x})
 << '\n';
 cout << "number of values less than " << s
 << ": " << count(lst,Less_than<string>{s})
 << '\n';
}

Here, Less_than<int>{x} constructs an object for which the call operator compares to the int called x;
Less_than<string>{s} constructs an object that compares to the string called s. The beauty of these
function objects is that they carry the value to be compared against with them. We don’t have to write a
separate function for each value (and each type), and we don’t have to introduce nasty global variables to hold
values. Also, for a simple function object like Less_than inlining is simple, so that a call of Less_than is
far more efficient than an indirect function call. The ability to carry data plus their efficiency make function
objects particularly useful as arguments to algorithms.

Function objects used to specify the meaning of key operations of a general algorithm (such as Less_than
for count()) are often referred to as policy objects.

We have to define Less_than separately from its use. That could be seen as inconvenient. Consequently,
there is a notation for implicitly generating function objects:

Click here to view code image

73

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{
 cout << "number of values less than " << x
 << ": " << count(vec,[&](int a){ return a<x; })
 << '\n';
 cout << "number of values less than " << s
 << ": " << count(lst,[&](const string& a){ return a<s; })
 << '\n';
}

The notation [&](int a){ return a<x; } is called a lambda expression. It generates a function object
exactly like Less_than<int>{x}. The [&] is a capture list specifying that local names used (such as x) will
be accessed through references. Had we wanted to “capture” only x, we could have said so: [&x]. Had we
wanted to give the generated object a copy of x, we could have said so: [=x]. Capture nothing is [], capture
all local names used by reference is [&], and capture all local names used by value is [=].

Using lambdas can be convenient and terse, but also obscure. For nontrivial actions (say, more than a
simple expression), I prefer to name the operation so as to more clearly state its purpose and to make it
available for use in several places in a program.

In §4.5.4, we noted the annoyance of having to write many functions to perform operations on elements of
vectors of pointers and unique_ptrs, such as draw_all() and rotate_all(). Function objects (in
particular, lambdas) can help by allowing us to separate the traversal of the container from the specification of
what is to be done with each element.

First, we need a function that applies an operation to each object pointed to by the elements of a container
of pointers:

Click here to view code image

template<typename C, typename Oper>
void for_all(C& c, Oper op) // assume that C is a container of pointers
{
 for (auto& x : c)
 op(*x); // pass op() a reference to each element pointed to
}

Now, we can write a version of user() from §4.5 without writing a set of _all functions:

Click here to view code image

void user()
{
 vector<unique_ptr<Shape>> v;
 while (cin)
 v.push_back(read_shape(cin));
 for_all(v,[](Shape& s){ s.draw(); }); // draw_all()
 for_all(v,[](Shape& s){ s.rotate(45); }); // rotate_all(45)
}

I pass a reference to Shape to a lambda so that the lambda doesn’t have to care exactly how the objects are
stored in the container. In particular, those for_all() calls would still work if I changed v to a
vector<Shape *>.

5.6. Variadic Templates

74

A template can be defined to accept an arbitrary number of arguments of arbitrary types. Such a template is
called a variadic template. For example:

Click here to view code image

void f() { } // do nothing

template<typename T, typename... Tail>
void f(T head, Tail... tail)
{
 g(head); // do something to head
 f(tail...); // try again with tail
}

The key to implementing a variadic template is to note that when you pass a list of arguments to it, you can
separate the first argument from the rest. Here, we do something to the first argument (the head) and then
recursively call f() with the rest of the arguments (the tail). The ellipsis, ..., is used to indicate “the rest” of a
list. Eventually, of course, tail will become empty and we need a separate function to deal with that.

We can call this f() like this:

Click here to view code image

int main()
{
 cout << "first: ";
 f(1,2.2,"hello");

 cout << "\nsecond: ";
 f(0.2,'c',"yuck!",0,1,2);
 cout << "\n";
}

This would call f(1,2.2,"hello"), which will call f(2.2,"hello"), which will call f("hello"), which will
call f(). What might the call g(head) do? Obviously, in a real program it will do whatever we wanted done
to each argument. For example, we could make it write its argument (here, head) to output:

template<typename T>
void g(T x)
{
 cout << x << " ";
}

Given that, the output will be:

first: 1 2.2 hello
second: 0.2 c yuck! 0 1 2

It seems that f() is a simple variant of printf() printing arbitrary lists or values – implemented in three lines
of code plus their surrounding declarations.

The strength of variadic templates (sometimes just called variadics) is that they can accept any arguments
you care to give them. The weakness is that the type checking of the interface is a possibly elaborate template
program.

Because of their flexibility, variadic templates are widely used in the standard library.

75

5.7. Aliases

Surprisingly often, it is useful to introduce a synonym for a type or a template. For example, the standard
header <cstddef> contains a definition of the alias size_t, maybe:

using size_t = unsigned int;

The actual type named size_t is implementation-dependent, so in another implementation size_t may be
an unsigned long. Having the alias size_t allows the programmer to write portable code.

It is very common for a parameterized type to provide an alias for types related to their template arguments.
For example:

template<typename T>
class Vector {
public:
 using value_type = T;
 // ...
};

In fact, every standard-library container provides value_type as the name of its value type (Chapter 9). This
allows us to write code that will work for every container that follows this convention. For example:

Click here to view code image

template<typename C>
using Element_type = typename C::value_type; // the type of C's elements

template<typename Container>
void algo(Container& c)
{
 Vector<Element_type<Container>> vec; // keep results here
 // ...
}

The aliasing mechanism can be used to define a new template by binding some or all template arguments. For
example:

Click here to view code image

template<typename Key, typename Value>
class Map {
 // ...
};

template<typename Value>
using String_map = Map<string,Value>;

String_map<int> m; // m is a Map<string,int>

5.8. Template Compilation Model

The type checking provided for templates checks the use of arguments in the template definition rather than
against an explicit interface (in a template declaration). This provides a compile-time variant of what is often
called duck typing (“If it walks like a duck and it quacks like a duck, it’s a duck”). Or – using more technical
terminology – we operate on values, and the presence and meaning of an operation depend solely on its
operand values. This differs from the alternative view that objects have types, which determine the presence

76

and meaning of operations. Values “live” in objects. This is the way objects (e.g., variables) work in C++, and
only values that meet an object’s requirements can be put into it. What is done at compile time using
templates does not involve objects, only values.

The practical effect of this is that to use a template, its definition (not just its declaration) must be in scope.
For example, the standard header <vector> holds the definition of vector. An unfortunate side effect is
that a type error can be found uncomfortably late in the compilation process and can yield spectacularly bad
error messages because the compiler found the problem by combining information from several places in the
program.

5.9. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in
Chapters 20-29 of [Stroustrup,2013].

[2] Use templates to express algorithms that apply to many argument types; §5.1.

[3] Use templates to express containers; §5.2.

[4] Use templates to raise the level of abstraction of code; §5.2.

[5] When defining a template, first design and debug a non-template version; later generalize by adding
parameters.

[6] Templates are type-safe, but checking happens too late; §5.4.

[7] A template can pass argument types without loss of information.

[8] Use function templates to deduce class template argument types; §5.3.

[9] Templates provide a general mechanism for compile-time programming; §5.4.

[10] When designing a template, carefully consider the concepts (requirements) assumed for its template
arguments; §5.4.

[11] Use concepts as a design tool; §5.4.

[12] Use function objects as arguments to algoritms; §5.5.

[13] Use a lambda if you need a simple function object in one place only; §5.5.

[14] A virtual function member cannot be a template member function.

[15] Use template aliases to simplify notation and hide implementation details; §5.7.

[16] Use variadic templates when you need a function that takes a variable number of arguments of a variety
of types; §5.6.

[17] Don’t use variadic templates for homogeneous argument lists (prefer initializer lists for that); §5.6.

[18] To use a template, make sure its definition (not just its declaration) is in scope; §5.8.

[19] Templates offer compile-time “duck typing”; §5.8.

[20] There is no separate compilation of templates: #include template definitions in every translation unit
that uses them.

77

78

6. Library Overview

Why waste time learning
when ignorance is instantaneous?

– Hobbes

• Introduction

• Standard-Library Components

• Standard-Library Headers and Namespace

• Advice

6.1. Introduction

No significant program is written in just a bare programming language. First, a set of libraries is developed.
These then form the basis for further work. Most programs are tedious to write in the bare language, whereas
just about any task can be rendered simple by the use of good libraries.

Continuing from Chapters 1-5, Chapters 6-13 give a quick tour of key standard-library facilities.

I very briefly present useful standard-library types, such as string, ostream, vector, map,
unique_ptr, thread, regex, and complex, as well as the most common ways of using them. As in
Chapters 1-5, you are strongly encouraged not to be distracted or discouraged by an incomplete
understanding of details. The purpose of this chapter is to convey a basic understanding of the most useful
library facilities.

The specification of the standard library is almost two thirds of the ISO C++ standard. Explore it, and
prefer it to home-made alternatives. Much thought has gone into its design, more still into its
implementations, and much effort will go into its maintenance and extension.

The standard-library facilities described in this book are part of every complete C++ implementation. In
addition to the standard-library components, most implementations offer “graphical user interface” systems
(GUIs), Web interfaces, database interfaces, etc. Similarly, most application-development environments
provide “foundation libraries” for corporate or industrial “standard” development and/or execution
environments. Here, I do not describe such systems and libraries.

The intent is to provide a self-contained description of C++ as defined by the standard and to keep the
examples portable. Naturally, a programmer is encouraged to explore the more extensive facilities available on
most systems.

6.2. Standard-Library Components

The facilities provided by the standard library can be classified like this:

• Run-time language support (e.g., for allocation and run-time type information).

• The C standard library (with very minor modifications to minimize violations of the type system).

• Strings (with support for international character sets and localization); see §7.2.

79

• Support for regular expression matching; see §7.3.

• I/O streams is an extensible framework for input and output to which users can add their own types,
streams, buffering strategies, locales, and character sets.

• A framework of containers (such as vector and map) and algorithms (such as find(), sort(), and
merge()); see Chapter 9 and Chapter 10. This framework, conventionally called the STL
[Stepanov,1994], is extensible so users can add their own containers and algorithms.

• Support for numerical computation (such as standard mathematical functions, complex numbers,
vectors with arithmetic operations, and random number generators); see §4.2.1 and Chapter 12.

• Support for concurrent programming, including threads and locks; see Chapter 13. The concurrency
support is foundational so that users can add support for new models of concurrency as libraries.

• Utilities to support template metaprogramming (e.g., type traits; §11.6), STL-style generic
programming (e.g., pair; §11.3.3), and general programming (e.g., clock; §11.4).

• “Smart pointers” for resource management (e.g., unique_ptr and shared_ptr; §11.2.1) and an
interface to garbage collectors (§4.6.4).

• Special-purpose containers, such as array (§11.3.1), bitset (§11.3.2), and tuple (§11.3.3).

The main criteria for including a class in the library were that:

• it could be helpful to almost every C++ programmer (both novices and experts),

• it could be provided in a general form that did not add significant overhead compared to a simpler
version of the same facility, and

• that simple uses should be easy to learn (relative to the inherent complexity of their task).

Essentially, the C++ standard library provides the most common fundamental data structures together with
the fundamental algorithms used on them.

6.3. Standard-Library Headers and Namespace

Every standard-library facility is provided through some standard header. For example:

#include<string>
#include<list>

This makes the standard string and list available.

The standard library is defined in a namespace (§3.3) called std. To use standard library facilities, the
std:: prefix can be used:

Click here to view code image

std::string s {"Four legs Good; two legs Baaad!"};
std::list<std::string> slogans {"War is Peace", "Freedom is Slavery", "Ignorance is
Strength"};

For simplicity, I will rarely use the std:: prefix explicitly in examples. Neither will I always #include the
necessary headers explicitly. To compile and run the program fragments here, you must #include the
appropriate headers and make the names they declare accessible. For example:

Click here to view code image

80

#include<string> // make the standard string facilities accessible
using namespace std; // make std names available without std:: prefix

string s {"C++ is a general-purpose programming language"}; // OK: string is
std::string

It is generally in poor taste to dump every name from a namespace into the global namespace. However, in
this book, I use the standard library exclusively and it is good to know what it offers.

Here is a selection of standard-library headers, all supplying declarations in namespace std:

This listing is far from complete.

Headers from the C standard library, such as <stdlib.h> are provided. For each such header there is also
a version with its name prefixed by c and the .h removed. This version, such as <cstdlib> places its
declarations in the std namespace.

6.4. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in Chapter
30 of [Stroustrup,2013].

[2] Don’t reinvent the wheel; use libraries; §6.1.

[3] When you have a choice, prefer the standard library over other libraries; §6.1.

[4] Do not think that the standard library is ideal for everything; §6.1.

[5] Remember to #include the headers for the facilities you use; §6.3.

[6] Remember that standard-library facilities are defined in namespace std; §6.3.

81

82

7. Strings and Regular Expressions

Prefer the standard to the offbeat.

– Strunk & White

• Introduction

• Strings

string Implementation

• Regular Expressions

Searching; Regular Expression Notation; Iterators

• Advice

7.1. Introduction

Text manipulation is a major part of most programs. The C++ standard library offers a sting type to save
most users from C-style manipulation of arrays of characters through pointers. In addition, regular expression
matching is offered to help find patterns in text. The regular expressions are provided in a form similar to
what is common in most modern languages. Both strings and regex objects can use a variety of character
types (e.g., Unicode).

7.2. Strings

The standard library provides a string type to complement the string literals (§1.3). The string type
provides a variety of useful string operations, such as concatenation. For example:

Click here to view code image

string compose(const string& name, const string& domain)
{
 return name + '@' + domain;
}

auto addr = compose("dmr","bell-labs.com");

Here, addr is initialized to the character sequence dmr@bell-labs.com. “Addition” of strings means
concatenation. You can concatenate a string, a string literal, a C-style string, or a character to a string. The
standard string has a move constructor so returning even long strings by value is efficient (§4.6.2).

In many applications, the most common form of concatenation is adding something to the end of a
string. This is directly supported by the += operation. For example:

Click here to view code image

void m2(string& s1, string& s2)
{
 s1 = s1 + '\n'; // append newline
 s2 += '\n'; // append newline
}

The two ways of adding to the end of a string are semantically equivalent, but I prefer the latter because it is

83

mailto:dmr@bell-labs.com

more explicit about what it does, more concise, and possibly more efficient.

A string is mutable. In addition to = and +=, subscripting (using []), and substring operations are
supported. Among other useful features, it provides the ability to manipulate substrings. For example:

Click here to view code image

string name = "Niels Stroustrup";

void m3()
{
 string s = name.substr(6,10); // s = "Stroustrup"
 name.replace(0,5,"nicholas"); // name becomes "nicholas Stroustrup"
 name[0] = toupper(name[0]); // name becomes "Nicholas Stroustrup"
}

The substr() operation returns a string that is a copy of the substring indicated by its arguments. The first
argument is an index into the string (a position), and the second is the length of the desired substring. Since
indexing starts from 0, s gets the value Stroustrup.

The replace() operation replaces a substring with a value. In this case, the substring starting at 0 with
length 5 is Niels; it is replaced by nicholas. Finally, I replace the initial character with its uppercase
equivalent. Thus, the final value of name is Nicholas Stroustrup. Note that the replacement string need
not be the same size as the substring that it is replacing.

Naturally, strings can be compared against each other and against string literals. For example:

Click here to view code image

string incantation;

void respond(const string& answer)
{
 if (answer == incantation) {
 // perform magic
 }
 else if (answer == "yes") {
 // ...
 }
 // ...
}

Among the many useful string operations are assignment (using =), subscripting (using [] or at() as for
vector; §9.2.2), iteration (using iterators as for vector; §10.2), input (§8.3), streaming (§8.8).

If you need a C-style string (a zero-terminated array of char), string offers read-only access to its
contained characters. For example:

Click here to view code image

void print(const string& s)
{
 printf("For people who like printf: %s\n",s.c_str());
 cout << "For people who like streams: " << s << '\n';
}

7.2.1. string Implementation

84

Implementing a string class is a popular and useful exercise. However, for general-purpose use, our carefully
crafted first attempts rarely match the standard string in convenience or performance. These days, string is
usually implemented using the short-string optimization. That is, short string values are kept in the string
object itself and only longer strings are placed on free store. Consider:

Click here to view code image

string s1 {"Annemarie"}; // short string
string s2 {"Annemarie Stroustrup"}; // long string

The memory layout will be something like:

When a string’s value changes from a short to a long string (and vice verse) its representation adjusts
appropriately.

The actual performance of strings can depend critically on the run-time environment. In particular, in
multi-threaded implementations, memory allocation can be relatively costly. Also, when lots of strings of
differing lengths are used, memory fragmentation can result. These are the main reasons that the short-string
optimization has become ubiquitous.

To handle multipe character sets, string is really an alias for a general template basic_string with the
character type char:

Click here to view code image

template<typename Char>
class basic_string {
 // ... string of Char ...
};

using string = basic_string<char>

A user can define strings of arbitrary character types. For example, assuming we have a Japanese character type
Jchar, we can write:

Click here to view code image

using Jstring = basic_string<Jchar>;

Now we can do all the usual string operations on Jstring, a string of Japanese characters. Similarly, we can
handle Unicode string.

7.3. Regular Expressions

Regular expressions are a powerful tool for text processing. They provide a way to simply and tersely describe
patterns in text (e.g., a U.S. postal code such as TX 77845, or an ISO-style date, such as 2009-06-07) and
to efficiently find such patterns in text. In <regex>, the standard library provides support for regular
expressions in the form of the std::regex class and its supporting functions. To give a taste of the style of
the regex library, let us define and print a pattern:

Click here to view code image

85

regex pat (R"(\w{2}\s *\d{5}(-\d{4})?)"); // US postal code pattern: XXddddd-dddd
and variants

People who have used regular expressions in just about any language will find \w{2}\s *\d{5}(-
\d{4})? familiar. It specifies a pattern starting with two letters \w{2} optionally followed by some space
\s * followed by five digits \d{5} and optionally followed by a dash and four digits -\d{4}. If you are not
familiar with regular expressions, this may be a good time to learn about them ([Stroustrup,2009],
[Maddock,2009], [Friedl,1997]).

To express the pattern, I use a raw string literal starting with R"(and terminated by)". This allows
backslashes and quotes to be used directly in the string. Raw strings are particularly suitable for regular
expressions because they tend to contain a lot of backslashes. Had I used a conventional string, the pattern
definition would have been:

Click here to view code image

regex pat {"\\w{2}\\s*\\d{5}(-\\d{4})?"}; // U.S. postal code pattern

In <regex>, the standard library provides support for regular expressions:

• regex_match(): Match a regular expression against a string (of known size) (§7.3.2).

• regex_search(): Search for a string that matches a regular expression in an (arbitrarily long) stream
of data (§7.3.1).

• regex_replace(): Search for strings that match a regular expression in an (arbitrarily long) stream of
data and replace them.

• regex_iterator: Iterate over matches and submatches (§7.3.3).

• regex_token_iterator: Iterate over non-matches.

7.3.1. Searching

The simplest way of using a pattern is to search for it in a stream:

Click here to view code image

int lineno = 0;
for (string line; getline(cin,line);) { // read into line buffer
 ++lineno;
 smatch matches; // matched strings go here
 if (regex_search(line,matches,pat)) // search for pat in line
 cout << lineno << ": " << matches[0] << '\n';
}

The regex_search(line,matches,pat) searches the line for anything that matches the regular
expression stored in pat and if it finds any matches, it stores them in matches. If no match was found,
regex_search(line,matches,pat) returns false. The matches variable is of type smatch. The “s”
stands for “sub” or “string,” and an smatch is a vector of sub-matches of type string. The first element,
here matches[0], is the complete match. The result of a regex_search() is a collection of matches,
typically represented as an smatch:

Click here to view code image

void use()

86

{
 ifstream in("file.txt"); // input file
 if (!in) // check that the file was opened
 cerr << "no file\n";

 regex pat {R"(\w{2}\s*\d{5}(-\d{4})?)"}; // U.S. postal code pattern

 int lineno = 0;
 for (string line; getline(in,line);) {
 ++lineno;
 smatch matches; // matched strings go here
 if (regex_search(line, matches, pat)) {
 cout << lineno << ": " << matches[0] << '\n'; // the complete match
 if (1<matches.size() && matches[1].matched)
 cout << "\t: " << matches[1] << '\n'; // submatch
 }
 }
}

This function reads a file looking for U.S. postal codes, such as TX77845 and DC 20500-0001. An
smatch type is a container of regex results. Here, matches[0] is the whole pattern and matches[1] is
the optional four-digit subpattern.

The regular expression syntax and semantics are designed so that regular expressions can be compiled into
state machines for efficient execution [Cox,2007]. The regex type performs this compilation at run time.

7.3.2. Regular Expression Notation

The regex library can recognize several variants of the notation for regular expressions. Here, I use the
default notation used, a variant of the ECMA standard used for ECMAScript (more commonly known as
JavaScript).

The syntax of regular expressions is based on characters with special meaning:

For example, we can specify a line starting with zero or more As followed by one or more Bs followed by an
optional C like this:

^A *B+C?$

Examples that match:

Click here to view code image

AAAAAAAAAAAABBBBBBBBBC
BC
B

Examples that do not match:

87

Click here to view code image

AAAAA // no B
 AAAABC // initial space
AABBCC // too many Cs

A part of a pattern is considered a subpattern (which can be extracted separately from an smatch) if it is
enclosed in parentheses. For example:

Click here to view code image

\d+-\d+ // no subpatterns
\d+(-\d+) // one subpattern
(\d+)(-\d+) // two subpatterns

A pattern can be optional or repeated (the default is exactly once) by adding a suffix:

For example:

A{3}B{2,4}C *

Examples that match:

AAABBC
AAABBB

Example that do not match:

Click here to view code image

AABBC // too few As
AAABC // too few Bs
AAABBBBBCCC // too many Bs

A suffix ? after any of the repetition notations (?, *, ?, and { }) makes the pattern matcher “lazy” or “non-
greedy.” That is, when looking for a pattern, it will look for the shortest match rather than the longest. By
default, the pattern matcher always looks for the longest match; this is known as the Max Munch rule.
Consider:

ababab

The pattern (ab) * matches all of ababab. However, (ab) *? matches only the first ab.

The most common character classifications have names:

88

In a regular expression, a character class name must be bracketed by [: :]. For example, [:digit:] matches a
decimal digit. Furthermore, they must be used within a [] pair defining a character class.

Several character classes are supported by shorthand notation:

In addition, languages supporting regular expressions often provide:

For full portability, use the character class names rather than these abbreviations.

As an example, consider writing a pattern that describes C++ identifiers: an underscore or a letter followed
by a possibly empty sequence of letters, digits, or underscores. To illustrate the subtleties involved, I include a
few false attempts:

Click here to view code image

[:alpha:][:alnum:]* // wrong: characters from the set ":alph" followed by ...
[[:alpha:]][[:alnum:]]* // wrong: doesn't accept underscore ('_' is not alpha)
([[:alpha:]]|_)[[:alnum:]]* // wrong: underscore is not part of alnum either

([[:alpha:]]|_)([[:alnum:]]|_)* // OK, but clumsy
[[:alpha:]_][[:alnum:]_]* // OK: include the underscore in the character classes
[_[:alpha:]][_[:alnum:]]* // also OK

89

[_[:alpha:]]\w* // \w is equivalent to [_[:alnum:]]

Finally, here is a function that uses the simplest version of regex_match() (§7.3.1) to test whether a string
is an identifier:

Click here to view code image

bool is_identifier(const string& s)
{
 regex pat {"[_[:alpha:]]\\w*"}; // underscore or letter
 // followed by zero or more underscores, letters, or digits
 return regex_match(s,pat);
}

Note the doubling of the backslash to include a backslash in an ordinary string literal. Use raw string literals to
alleviate problems with special characters. For example:

Click here to view code image

bool is_identifier(const string& s)
{
 regex pat {R"([_[:alpha:]]\w*)"};
 return regex_match(s,pat);
}

Here are some examples of patterns:

Click here to view code image

Ax* // A, Ax, Axxxx
Ax+ // Ax, Axxx Not A
\d-?\d // 1-2, 12 Not 1--2
\w{2}-\d{4,5} // Ab-1234, XX-54321, 22-5432 Digits are in\w
(\d*:)?(\d+) // 12:3, 1:23, 123, :123 Not 123:
(bs|BS) // bs, BS Not bS
[aeiouy] // a, o, u An English vowel, not x
[^aeiouy] // x, k Not an English vowel, not e
[a^eiouy] // a, ^, o, u An English vowel or^

A group (a subpattern) potentially to be represented by a sub_match is delimited by parentheses. If you
need parentheses that should not define a subpattern, use (? rather than plain (. For example:

Click here to view code image

(\s|:|,)*(\d*) // spaces, colons, and/or commas followed by a number

Assuming that we were not interested in the characters before the number (presumably separators), we could
write:

Click here to view code image

(?\s|:|,)*(\d*) // spaces, colons, and/or commas followed by a number

This would save the regular expression engine from having to store the first characters: the (? variant has only
one subpattern.

90

That last pattern is useful for parsing XML. It finds tag/end-of-tag markers. Note that I used a non-greedy
match (a lazy match), . *?, for the subpattern between the tag and the end tag. Had I used plain . *, this input
would have caused a problem:

Click here to view code image

Always look for the bright side of life.

A greedy match for the first subpattern would match the first < with the last >. A greedy match on the second
subpattern would match the first with the last . Both would be correct behavior, but unlikely
what the programmer wanted.

For a more exhaustive presentation of regular expressions, see [Friedl,1997].

7.3.3. Iterators

We can define a regex_iterator for iterating over a stream finding matches for a pattern. For example, we
can output all whitespace-separated words in a string:

Click here to view code image

void test()
{
 string input = "aa as; asd ++e^asdf asdfg";
 regex pat {R"(\s+(\w+))"};
 for (sregex_iterator p(input.begin(),input.end(),pat); p!=sregex_iterator{};
++p)
 cout << (*p)[1] << '\n';
}

This outputs:

as
asd
asdfg

Note that we are missing the first word, aa, because it has no preceding whitespace. If we simplify the pattern
to R"((\ew+))", we get

aa
as
asd
e
asdf
asdfg

A regex_iterator is a bidirectional iterator, so we cannot directly iterate over an istream. Also, we cannot
write through a regex_iterator, and the default regex_iterator (regex_iterator{}) is the only

91

possible end-of-sequence.

7.4. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in
Chapters 36-37 of [Stroustrup,2013].

[2] Prefer string operations to C-style string functions; §7.1.

[3] Use string to declare variables and members rather than as a base class; §7.2.

[4] Return strings by value (rely on move semantics); §7.2, §7.2.1.

[5] Directly or indirectly, use substr() to read substrings and replace() to write substrings; §7.2.

[6] A string can grow and shrink, as needed; §7.2.

[7] Use at() rather than iterators or [] when you want range checking; §7.2.

[8] Use iterators and [] rather than at() when you want to optimize speed; §7.2.

[9] string input doesn’t overflow; §7.2, §8.3.

[10] Use c_str() to produce a C-style string representation of a string (only) when you have to; §7.2.

[11] Use a string_stream or a generic value extraction function (such as to<X>) for numeric conversion
of strings; §8.8.

[12] A basic_string can be used to make strings of characters on any type; §7.2.1.

[13] Use regex for most conventional uses of regular expressions; §7.3.

[14] Prefer raw string literals for expressing all but the simplest patterns; §7.3.

[15] Use regex_match() to match a complete input; §7.3, §7.3.2.

[16] Use regex_search() to search for a pattern in an input stream; §7.3.1.

[17] The regular expression notation can be adjusted to match various standards; §7.3.2.

[18] The default regular expression notation is that of ECMAScript; §7.3.2.

[19] Be restrained; regular expressions can easily become a write-only language; §7.3.2.

[20] Note that \i allows you to express a subpattern in terms of a previous subpattern; §7.3.2.

[21] Use ? to make patterns “lazy”; §7.3.2.

[22] Use regex_iterators for iterating over a stream looking for a pattern; §7.3.3

92

8. I/O Streams

What you see is all you get.

– Brian W. Kernighan

• Introduction

• Output

• Input

• I/O State

• I/O of User-Defined Types

• Formatting

• File Streams

• String Streams

• Advice

8.1. Introduction

The I/O stream library provides formatted and unformatted buffered I/O of text and numeric values.

An ostream converts typed objects to a stream of characters (bytes):

An istream converts a stream of characters (bytes) to typed objects:

The operations on istreams and ostreams are described in §8.3 and §8.2. The operations are type-safe,
type-sensitive, and extensible to handle user-defined types.

Other forms of user interaction, such as graphical I/O, are handled through libraries that are not part of the
ISO standard and therefore not described here.

These streams can be used for binary I/O, be used for a variety of character types, be locale specific, and use
advanced buffering strategies, but these topics are beyond the scope of this book.

8.2. Output

In <ostream>, the I/O stream library defines output for every built-in type. Further, it is easy to define

93

output of a user-defined type (§8.5). The operator << (“put to”) is used as an output operator on objects of
type ostream; cout is the standard output stream and cerr is the standard stream for reporting errors. By
default, values written to cout are converted to a sequence of characters. For example, to output the decimal
number 10, we can write:

void f()
{
 cout << 10;
}

This places the character 1 followed by the character 0 on the standard output stream.

Equivalently, we could write:

void g()
{
 int i {10};
 cout << i;
}

Output of different types can be combined in the obvious way:

void h(int i)
{
 cout << "the value of i is ";
 cout << i;
 cout << '\n';
}

For h(10), the output will be:

the value of i is 10

People soon tire of repeating the name of the output stream when outputting several related items.
Fortunately, the result of an output expression can itself be used for further output. For example:

Click here to view code image

void h2(int i)
{
 cout << "the value of i is " << i << '\n';
}

This h2() produces the same output as h().

A character constant is a character enclosed in single quotes. Note that a character is output as a character
rather than as a numerical value. For example:

Click here to view code image

void k()
{
 int b = 'b'; // note: char implicitly converted to int
 char c = 'c';
 cout << 'a' << b << c;
}

The integer value of the character 'b' is 98 (in the ASCII encoding used on the C++ implementation that I
used), so this will output a98c.

94

8.3. Input

In <istream>, the standard library offers istreams for input. Like ostreams, istreams deal with
character string representations of built-in types and can easily be extended to cope with user-defined types.

The operator >> (“get from”) is used as an input operator; cin is the standard input stream. The type of
the right-hand operand of >> determines what input is accepted and what is the target of the input
operation. For example:

Click here to view code image

void f()
{
 int i;
 cin >> i; // read an integer into i

 double d;
 cin >> d; // read a double-precision floating-point number into d
}

This reads a number, such as 1234, from the standard input into the integer variable i and a floating-point
number, such as 12.34e5, into the double-precision floating-point variable d.

Like output operations, input operations can be chained, so I could equivalently have written:

Click here to view code image

void f()
{
 int i;
 double d;
 cin >> i >> d; // read into i and d
}

In both cases, the read of the integer is terminated by any character that is not a digit. By default, >> skips
initial whitespace, so a suitable complete input sequence would be

1234
12.34e5

Often, we want to read a sequence of characters. A convenient way of doing that is to read into a string. For
example:

Click here to view code image

void hello()
{
 cout << "Please enter your name\n";
 string str;
 cin >> str;
 cout << "Hello, " << str << "!\n";
}

If you type in Eric the response is:

Hello, Eric!

By default, a whitespace character, such as a space or a newline, terminates the read, so if you enter Eric
Bloodaxe pretending to be the ill-fated king of York, the response is still:

95

Hello, Eric!

You can read a whole line (including the terminating newline character) using the getline() function. For
example:

Click here to view code image

void hello_line()
{
 cout << "Please enter your name\n";
 string str;
 getline(cin,str);
 cout << "Hello, " << str << "!\n";
}

With this program, the input Eric Bloodaxe yields the desired output:

Hello, Eric Bloodaxe!

The newline that terminated the line is discarded, so cin is ready for the next input line.

The standard strings have the nice property of expanding to hold what you put in them; you don’t have to
precalculate a maximum size. So, if you enter a couple of megabytes of semicolons, the program will echo
pages of semicolons back at you.

8.4. I/O State

An iostream has a state that we can examine to determine whether an operation succeeded. The most
common use is to read a sequence of values:

Click here to view code image

vector<int> read_ints(istream& is)
{
 vector<int> res;
 int i;
 while (is>>i)
 res.push_back(i);
 return res;
}

This reads from is until something that is not an integer is encountered. That something will typically be the
end of input. What is happening here is that the operation is>>i returns a reference to is, and testing an
iostream yields true if the stream is ready for another operation.

In general, the I/O state holds all the information needed to read or write, such as formatting information
(§8.6), error state (e.g., has end-of-input been reached?), and what kind of buffering is used. In particular, a
user can set the state to reflect that an error has occurred (§8.5) and clear the state if an error wasn’t serious.
For example, we could imagine reading a sequence of integers than might contain some form of nesting:

Click here to view code image

while (cin) {
 for (int i; cin>>i;) {
 // ... use the integer ...
 }

 if (cin.eof()) {

96

 // .. all is well we reached the end-of-file ...
 }
 else if (cin.fail()) { // a potentially recoverable error
 cin.clear(); // reset the state to good()
 char ch;
 if (cin>>ch) { // look for nesting represented by { ... }
 switch (ch) {
 case '{':
 // ... start nested structure ...
 break;
 case '}':
 // ... end nested structure ...
 break;
 default:
 cin.setstate(ios_base::failbit); // add fail() to cin's state
 }
 }
 }
 // ...
}

8.5. I/O of User-Defined Types

In addition to the I/O of built-in types and standard strings, the iostream library allows programmers to
define I/O for their own types. For example, consider a simple type Entry that we might use to represent
entries in a telephone book:

struct Entry {
 string name;
 int number;
};

We can define a simple output operator to write an Entry using a {"name",number} format similar to the one
we use for initialization in code:

Click here to view code image

ostream& operator<<(ostream& os, const Entry& e)
{
 return os << "{\"" << e.name << "\", " << e.number << "}";
}

A user-defined output operator takes its output stream (by reference) as its first argument and returns it as its
result.

The corresponding input operator is more complicated because it has to check for correct formatting and
deal with errors:

Click here to view code image

istream& operator>>(istream& is, Entry& e)
 // read { "name", number } pair. Note: formatted with { " " , and }
{
 char c, c2;
 if (is>>c && c=='{' && is>>c2 && c2=='"') { // start with a { "
 string name; // the default value of a string is the empty string: ""
 while (is.get(c) && c!='"') // anything before a " is part of the name
 name+=c;

 if (is>>c && c==',') {

97

 int number = 0;
 if (is>>number>>c && c=='}') { // read the number and a }
 e = {name,number}; // assign to the entry
 return is;
 }
 }
 }
 is.state_base::failbit); // register the failure in the stream
 return is;
}

An input operation returns a reference to its istream which can be used to test if the operation succeeded.
For example, when used as a condition, is>>c means “Did we succeed at reading from is into c?”

The is>>c skips whitespace by default, but is.get(c) does not, so that this Entry-input operator
ignores (skips) whitespace outside the name string, but not within it. For example:

Click here to view code image

{"John Marwood Cleese", 123456 }
{"Michael Edward Palin", 987654}

We can read such a pair of values from input into an Entry like this:

Click here to view code image

for (Entry ee; cin>>ee;) // read from cin into ee
 cout << ee << '\n'; // write ee to cout

The output is:

Click here to view code image

{"John Marwood Cleese" , 123456}
{"Michael Edward Palin", 987654}

See §7.3 for a more systematic technique for recognizing patterns in streams of characters (regular expression
matching).

8.6. Formatting

The iostream library provides a large set of operations for controlling the format of input and output. The
simplest formatting controls are called manipulators and are found in <ios>, <istream>, <ostream>,
and <iomanip> (for manipulators that take arguments): For example, we can output integers as decimal
(the default), octal, or hexadecimal numbers:

Click here to view code image

cout << 1234 << ',' << hex << 1234 << ',' << oct << 1234 << '\n'; // print
1234,4d2,2322

We can explicitly set the output format for floating-point numbers:

Click here to view code image

constexpr double d = 123.456;

cout << d << "; " // use the default format for d
 << scientific << d << "; " // use 1.123e2 style format for d
 << hexfloat << d << "; " // use hexadecimal notation for d

98

 << fixed << d << "; " // use 123.456 style format for f
 << defaultfloat << d << '\n'; // use the default format for d

This produces:

Click here to view code image

123.456; 1.234560e+002; 0x1.edd2f2p+6; 123.456000; 123.456

Precision is an integer that determines the number of digits used to display a floating-point number:

• The general format (defaultfloat) lets the implementation choose a format that presents a value in
the style that best preserves the value in the space available. The precision specifies the maximum
number of digits.

• The scientific format (scientific) presents a value with one digit before a decimal point and an
exponent. The precision specifies the maximum number of digits after the decimal point.

• The fixed format (fixed) presents a value as an integer part followed by a decimal point and a
fractional part. The precision specifies the maximum number of digits after the decimal point.

Floating-point values are rounded rather than just truncated, and precision() doesn’t affect integer output.
For example:

Click here to view code image

cout.precision(8);
cout << 1234.56789 << ' ' << 1234.56789 << ' ' << 123456 << '\n';

cout.precision(4);
cout << 1234.56789 << ' ' << 1234.56789 << ' ' << 123456 << '\n';

This produces:

1234.5679 1234.5679 123456
1235 1235 123456

These manipulators as “sticky”; that is, it persists for subsequent floating-point operations.

8.7. File Streams

In <fstream>, the standard library provides streams to and from a file:

• ifstreams for reading from a file

• ofstreams for writing to a file

• fstreams for reading from and writing to a file

For example:

Click here to view code image

ofstream ofs("target"); // "o"for "output"
if (!ofs)
 error("couldn't open 'target' for writing");

Testing that a file stream has been properly opened is usually done by checking its state.

Click here to view code image

fstream ifs; // "i"for "input"

99

if (!ifs)
 error("couldn't open 'source' for reading");

Assuming that the tests succeeded, ofs can be used as an ordinary ostream (just like cout) and ifs can be
used as an ordinary istream (just like cin).

File positioning and more detailed control of the way a file is opened is possible, but beyond the scope of
this book.

8.8. String Streams

In <sstream>, the standard library provides streams to and from a string:

• istringstreams for reading from a string

• ostringstreams for writing to a string

• stringstreams for reading from and writing to a string.

For example:

Click here to view code image

void test()
{
 ostringstream oss;
 oss << "{temperature," << scientific << 123.4567890 << "}";
 cout << oss.str() << '\n';
}

The result from an istringstream can be read using str(). One common use of an ostringstream is to
format before giving the resulting string to a GUI. Similarly, a string received from a GUI can be read using
formatted input operations (§8.3) by putting it into an istringstream.

A stringstream can be used for both reading and writing. For example, we can define an operation that
can convert any type with a string representation to another that also has a string representation:

Click here to view code image

template<typename Target =string, typename Source =string>
Target to(Source arg) // convert Source to Target
{
 stringstream interpreter;
 Target result;

 if (!(interpreter << arg) // write arg into stream
 || !(interpreter >> result) // read result from stream
 || !(interpreter >> std::ws).eof()) // stuff left in stream?
 throw runtime_error{"to<>() failed"};

 return result;
}

A function template argument needs to be explicitly mentioned only if it cannot be deduced or if there is no
default, so we can write:

Click here to view code image

auto x1 = to<string,double>(1.2); // very explicit (and verbose)
auto x2 = to<string>(1.2); // Source is deduced to double

100

auto x3 = to<>(1.2); // Target is defaulted to string; Source is deduced to double
auto x4 = to(1.2); // the <> is redundant;
 // Target is defaulted to string; Source is deduced to double

If all function template arguments are defaulted, the <> can be left out.

I consider this a good example of the generality and ease of use that can be achieved by a combination of
language features and standard-library facilities.

8.9. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in Chapter
38 of [Stroustrup,2013].

[2] iostreams are type-safe, type-sensitive, and extensible; §8.1.

[3] Define << and >> for user-defined types with values that have meaningful textual representations;
§8.1, §8.2, §8.3.

[4] Use cout for normal output and cerr for errors; §8.1.

[5] There are iostreams for ordinary characters and wide characters, and you can define an iostream
for any kind of character; §8.1.

[6] Binary I/O is supported; §8.1.

[7] There are standard iostreams for standard I/O streams, files, and strings; §8.2, §8.3, §8.7, §8.8.

[8] Chain << operations for a terser notation; §8.2.

[9] Chain >> operations for a terser notation; §8.3.

[10] Input into strings does not overflow; §8.3.

[11] By default >> skips initial whitespace; §8.3.

[12] Use the stream state fail to handle potentially recoverable I/O errors; §8.4.

[13] You can define << and >> operators for your own types; §8.5.

[14] You don’t need to modify istream or ostream to add new << and >> operators; §8.5.

[15] Use manipulators to control formatting; §8.6.

[16] precision() specifications apply to all following floating-point output operations; §8.6.

[17] Floating-point format specifications (e.g., scientific) apply to all following floating-point output
operations; §8.6.

[18] #include <ios> when using standard manipulators; §8.6.

[19] #include <iomanip> when using standard manipulators taking arguments; §8.6.

[20] Don’t try to copy a file stream.

[21] Remember to check that a file stream is attached to a file before using it; §8.7.

[22] Use stringstreams for in-memory formatting; §8.8.

[23] You can define conversions between any two types that both have string representation; §8.8.

101

102

9. Containers

It was new.
It was singular.

It was simple.
It must succeed!

– H. Nelson

• Introduction

• vector

Elements; Range Checking

• list

• map

• unordered_map

• Container Overview

• Advice

9.1. Introduction

Most computing involves creating collections of values and then manipulating such collections. Reading
characters into a string and printing out the string is a simple example. A class with the main purpose of
holding objects is commonly called a container. Providing suitable containers for a given task and supporting
them with useful fundamental operations are important steps in the construction of any program.

To illustrate the standard-library containers, consider a simple program for keeping names and telephone
numbers. This is the kind of program for which different approaches appear “simple and obvious” to people of
different backgrounds. The Entry class from §8.5 can be used to hold a simple phone book entry. Here, we
deliberately ignore many real-world complexities, such as the fact that many phone numbers do not have a
simple representation as a 32-bit int.

9.2. vector

The most useful standard-library container is vector. A vector is a sequence of elements of a given type.
The elements are stored contiguously in memory. A typical implementation of vector (§4.2.2, §4.6) will
consist of a handle holding pointers to the first element, one-past-the-last element, and one-past-the-last
allocated space (§10.1) (or the equivalent information represented as a pointer plus offsets):

In addition, it holds an allocator (here, alloc), from which the vector can acquire memory for its elements.

103

The default allocator uses new and delete to acquire and release memory.

We can initialize a vector with a set of values of its element type:

Click here to view code image

vector<Entry>phone_book = {
 {"David Hume",123456},
 {"Karl Popper",234567},
 {"Bertrand Arthur William Russell",345678}
};

Elements can be accessed through subscripting:

Click here to view code image

void print_book(const vector<Entry>& book)
{
 for (int i = 0; i!=book.size(); ++i)
 cout << book[i] << '\n';
}

As usual, indexing starts at 0 so that book[0] holds the entry for David Hume. The vector member
function size() gives the number of elements.

The elements of a vector constitute a range, so we can use a range-for loop (§1.8):

Click here to view code image

void print_book(const vector<Entry>& book)
{
 for (const auto& x : book) // for "auto" see §1.5
 cout << x << '\n';
}

When we define a vector, we give it an initial size (initial number of elements):

Click here to view code image

vector<int> v1 = {1, 2, 3, 4}; // size is 4
vector<string> v2; // size is 0
vector<Shape*> v3(23); // size is 23; initial element value: nullptr
vector<double> v4(32,9.9); // size is 32; initial element value: 9.9

An explicit size is enclosed in ordinary parentheses, for example, (23), and by default the elements are
initialized to the element type’s default value (e.g., nullptr for pointers and 0 for numbers). If you don’t want
the default value, you can specify one as a second argument (e.g., 9.9 for the 32 elements of v4).

The initial size can be changed. One of the most useful operations on a vector is push_back(), which
adds a new element at the end of a vector, increasing its size by one. For example:

Click here to view code image

void input()
{
 for (Entry e; cin>>e;)
 phone_book.push_back(e);
}

This reads Entrys from the standard input into phone_book until either the end-of-input (e.g., the end of
a file) is reached or the input operation encounters a format error.

104

The standard-library vector is implemented so that growing a vector by repeated push_back()s is
efficient. To show how, consider an elaboration of the simple Vector from (Chapter 4 and Chapter 5) using
the representation indicated in the diagram above:

Click here to view code image

template<typename T>
class Vector {
 T* elem; // pointer to first element
 T* space; // pointer to first unused (and uninitialized) slot
 T* last; // pointer to last slot
public:
 // ...
 int size(); // number of elements (space-elem)
 int capacity(); // number of slots available for elements (last-elem)
 // ...
 void reserve(int newsz); // increase capacity() to newsz
 // ...
 void push_back(const T& t); // copy t into Vector
 void push_back(T&& t); // move t into Vector
};

The standard-libray vector has members capacity(), reserve(), and push_back(). The reserve() is
used by users of vector and other vector members to make room for more elements. It may have to allocate
new memory and when it does it moves the elements to the new allocation.

Given capacity() and reserve(), implementing push_back() is trivial:

Click here to view code image

template<typename T>
void Vector<T>::push_back(const T& t)
{
 if (capacity()<size()+1) // make sure we have space for t
 reserve(size()==0?8:2*size()); // double the capacity
 new(space){t}; // initialize *space to t
 ++space;
}

Now allocation and relocation of elements happens only infrequently. I used to use reserve() to try to
improve performance, but that turned out to be a waste of effort: The heuristic used by vector is better than
my guesses, so now I only use reserve() to avoid rellocation of elements when I want to use pointers to
elements.

A vector can be copied in assignments and initializations. For example:

Click here to view code image

vector<Entry> book2 = phone_book;

Copying and moving of vectors are implemented by constructors and assignment operators as described in
§4.6. Assigning a vector involves copying its elements. Thus, after the initialization of book2, book2 and
phone_book hold separate copies of every Entry in the phone book. When a vector holds many
elements, such innocent-looking assignments and initializations can be expensive. Where copying is
undesirable, references or pointers (§1.8) or move operations (§4.6.2) should be used.

The standard-library vector is very flexible and efficient. Use it as your default container; that is, use it

105

unless you have a solid reason to use some other container. If your reason is “efficiency,” measure. Our
intuition is most fallible in matters of the performance of container uses.

9.2.1. Elements

Like all standard-library containers, vector is a container of elements of some type T, that is, a vector<T>.
Just about any type qualifies as an element type: built-in numeric types (such as char, int, and double),
user-defined types (such as string, Entry, list<int>, and Matrix<double, 2>), and pointers (such as
const char *, Shape *, and double *). When you insert a new element, its value is copied into the
container. For example, when you put an integer with the value 7 into a container, the resulting element really
has the value 7. The element is not a reference or a pointer to some object containing 7. This makes for nice,
compact containers with fast access. For people who care about memory sizes and run-time performance this
is critical.

If you have a class hierachy (§4.5) that relies on virtual functions to get polymorphic behavior, do not
store objects directly in a container. Instead store a pointer (or a smart pointer; §11.2.1). For example:

Click here to view code image

vector<Shape> vs; // No, don't - there is no room for a Circle or a Smiley
vector<Shape*>vps; // better, but see §4.5.4
vector<unique_ptr<Shape>> vups; // OK

9.2.2. Range Checking

The standard-library vector does not guarantee range checking. For example:

Click here to view code image

void silly(vector<Entry>& book)
{
 int i = book[book.size()].number; // book.size() is out of range
 // ...
}

That initialization is likely to place some random value in i rather than giving an error. This is undesirable,
and out-of-range errors are a common problem. Consequently, I often use a simple range-checking
adaptation of vector:

Click here to view code image

template<typename T>
class Vec : public std::vector<T> {
public:
 using vector<T>::vector; // use the constructors from vector (under the name
Vec)

 T& operator[](int i) // range check
 { return vector<T>::at(i); }

 const T& operator[](int i) const // range check const objects; §4.2.1
 { return vector<T>::at(i); }
};

Vec inherits everything from vector except for the subscript operations that it redefines to do range
checking. The at() operation is a vector subscript operation that throws an exception of type

106

out_of_range if its argument is out of the vector’s range (§3.4.1).

For Vec, an out-of-range access will throw an exception that the user can catch. For example:

Click here to view code image

void checked(Vec<Entry>& book)
{
 try {
 book[book.size()] = {"Joe",999999}; // will throw an exception
 // ...
 }
 catch (out_of_range) {
 cout << "range error\n";
 }
}

The exception will be thrown, and then caught (§3.4.1). If the user doesn’t catch an exception, the program
will terminate in a well-defined manner rather than proceeding or failing in an undefined manner. One way to
minimize surprises from uncaught exceptions is to use a main() with a try-block as its body. For example:

Click here to view code image

int main()
try {
 // your code
}
catch (out_of_range) {
 cerr << "range error\n";
}
catch (...) {
 cerr << "unknown exception thrown\n";
}

This provides default exception handlers so that if we fail to catch some exception, an error message is printed
on the standard error-diagnostic output stream cerr (§8.2).

Some implementations save you the bother of defining Vec (or equivalent) by providing a range-checked
version of vector (e.g., as a compiler option).

9.3. list

The standard library offers a doubly-linked list called list:

We use a list for sequences where we want to insert and delete elements without moving other elements.
Insertion and deletion of phone book entries could be common, so a list could be appropriate for representing
a simple phone book. For example:

Click here to view code image

list<Entry> phone_book = {
 {"David Hume",123456},
 {"Karl Popper",234567},
 {"Bertrand Arthur William Russell",345678}

107

};

When we use a linked list, we tend not to access elements using subscripting the way we commonly do for
vectors. Instead, we might search the list looking for an element with a given value. To do this, we take
advantage of the fact that a list is a sequence as described in Chapter 10:

Click here to view code image

int get_number(const string& s)
{
 for (const auto& x : phone_book)
 if (x.name==s)
 return x.number;
 return 0; // use 0 to represent "number not found"
}

The search for s starts at the beginning of the list and proceeds until s is found or the end of phone_book
is reached.

Sometimes, we need to identify an element in a list. For example, we may want to delete it or insert a new
entry before it. To do that we use an iterator: a list iterator identifies an element of a list and can be used to
iterate through a list (hence its name). Every standard-library container provides the functions begin() and
end(), which return an iterator to the first and to one-past-the-last element, respectively (Chapter 10). Using
iterators explicitly, we can – less elegantly – write the get_number() function like this:

Click here to view code image

int get_number(const string& s)
{
 for (auto p = phone_book.begin(); p!=phone_book.end(); ++p)
 if (p->name==s)
 return p->number;
 return 0; // use 0 to represent "number not found"
}

In fact, this is roughly the way the terser and less error-prone range-for loop is implemented by the compiler.
Given an iterator p, *p is the element to which it refers, ++p advances p to refer to the next element, and
when p refers to a class with a member m, then p->m is equivalent to (*p).m.

Adding elements to a list and removing elements from a list is easy:

Click here to view code image

void f(const Entry& ee, list<Entry>::iterator p, list<Entry>::iterator q)
{
 phone_book.insert(p,ee); // add ee before the element referred to by p
 phone_book.erase(q); // remove the element referred to by q
}

For a list, insert(p,elem) inserts an element with a copy of the value elem before the element pointed to
by p. Similarly, erase(p) removes the element pointed to by p and destroys it. In both cases, p may be an
iterator pointing one-beyond-the-end of the List.

These list examples could be written identically using vector and (surprisingly, unless you understand
machine architecture) perform better with a small vector than with a small list. When all we want is a
sequence of elements, we have a choice between using a vector and a list. Unless you have a reason not to,

108

use a vector. A vector performs better for traversal (e.g., find() and count()) and for sorting and
searching (e.g., sort() and binary_search()).

9.4. map

Writing code to look up a name in a list of (name,number) pairs is quite tedious. In addition, a linear search is
inefficient for all but the shortest lists. The standard library offers a search tree (a red-black tree) called map:

In other contexts, a map is known as an associative array or a dictionary. It is implemented as a balanced
binary tree.

The standard-library map is a container of pairs of values optimized for lookup. We can use the same
initializer as for vector and list (§9.2, §9.3):

Click here to view code image

map<string,int> phone_book {
 {"David Hume",123456},
 {"Karl Popper",234567},
 {"Bertrand Arthur William Russell",345678}
};

When indexed by a value of its first type (called the key), a map returns the corresponding value of the second
type (called the value or the mapped type). For example:

Click here to view code image

int get_number(const string& s)
{
 return phone_book[s];
}

In other words, subscripting a map is essentially the lookup we called get_number(). If a key isn’t found,
it is entered into the map with a default value for its value. The default value for an integer type is 0; the
value I just happened to choose represents an invalid telephone number.

If we wanted to avoid entering invalid numbers into our phone book, we could use find() and insert()
instead of [].

9.5. unordered_map

The cost of a map lookup is O(log(n)) where n is the number of elements in the map. That’s pretty good.
For example, for a map with 1,000,000 elements, we perform only about 20 comparisons and indirections to
find an element. However, in many cases, we can do better by using a hashed lookup rather than comparison

109

using an ordering function, such as <. The standard-library hashed containers are referred to as “unordered”
because they don’t require an ordering function:

For example, we can use an unordered_map from <unordered_map> for our phone book:

Click here to view code image

unordered_map<string,int> phone_book {
 {"David Hume",123456},
 {"Karl Popper",234567},
 {"Bertrand Arthur William Russell",345678}
};

As for a map, we can subscript an unordered_map:

Click here to view code image

int get_number(const string& s)
{
 return phone_book[s];
}

The standard-library provides a default hash function for strings as well as for other built-in and standard-
library types. If necessary, you can provide your own. Possibly, the most common need for a “custom” hash
function comes when we want an unordered container of one of our own types. A hash function is often
provided as a function object (§5.5). For example:

Click here to view code image

struct Record {
 string name;
 int product_code;
 // ...
};

struct Rhash { // a hash function for Record
 size_t operator()(const Record& r) const
 {
 return hash<string>()(r.name) ^ hash<int>()(r.product_code);
 }
};

unordered_set<Record,Rhash> my_set; // set of Recoreds using Rhash for lookup

Creaing a new hash function by combining existing hash functions using exclusive or (^) is simple and often
very effective.

9.6. Container Overview

The standard library provides some of the most general and useful container types to allow the programmer to
select a container that best serves the needs of an application:

110

The unordered containers are optimized for lookup with a key (often a string); in other words, they are
implemented using hash tables.

The containers are defined in namespace std and presented in headers <vector>, <list>, <map>,
etc. (§6.3). In addition, the standard library provides container adaptors queue<T>, stack<T>, and
priority_queue<T>. Look them up if you need them. The standard library also provides more specialized
container-like types, such as a fixed-size array array<T,N> (§11.3.1) and bitset<N> (§11.3.2).

The standard containers and their basic operations are designed to be similar from a notational point of
view. Furthermore, the meanings of the operations are equivalent for the various containers. Basic operations
apply to every kind of container for which they make sense and can be efficiently implemented. For example:

• begin() and end() give iterators to the first and one-beyond-the-last elements, respectively.

• push_back() can be used (efficiently) to add elements to the end of a vector, list, and other
containers.

• size() returns the number of elements.

This notational and semantic uniformity enables programmers to provide new container types that can be
used in a very similar manner to the standard ones. The range-checked vector, Vector (§3.4.2, Chapter 4), is
an example of that. The uniformity of container interfaces allows us to specify algorithms independently of
individual container types. However, each has strengths and weaknesses. For example, subscripting and
traversing a vector is cheap and easy. On the other hand, vector elements are moved when we insert or
remove elements; list has exactly the opposite properties. Please note that a vector is usually more efficient
than a list for short sequences of small elements (even for insert() and erase()). I recommend the
standard-library vector as the default type for sequences of elements: you need a reason to choose another.

Consider the singly-linked list, forward_list, a container optimized for the empty sequence (which
occupies just one word) because the number of elements are zero or very low; such sequences are surprisingly
useful.

9.7. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in Chapter
31 of [Stroustrup,2013].

111

[2] An STL container defines a sequence; §9.2.

[3] STL containers are resource handles; §9.2, §9.3, §9.4, §9.5.

[4] Use vector as your default container; §9.2, §9.6.

[5] For simple traversals of a container, use a range-for loop or a begin/end pair of iterators; §9.2, §9.3.

[6] Use reserve() to avoid invalidating pointers and iterators to elements; §9.2.

[7] Don’t assume performance benefits from reserve() without measurement; §9.2.

[8] Use push_back() or resize() on a container rather than realloc() on an array; §9.2.

[9] Don’t use iterators into a resized vector; §9.2.

[10] Do not assume that [] range checks; §9.2.

[11] Use at() when you need guaranteed range checks; §9.2.

[12] Elements are copied into a container; §9.2.1.

[13] To preserve polymorphic behavior of elements, store pointers; §9.2.1.

[14] Insertion operators, such as insert() and push_back() are often surprisingly efficient on a

vector; §9.3.

[15] Use forward_list for sequences that are usually empty; §9.6.

[16] When it comes to performance, don’t trust your intuition: measure; §9.2.

[17] A map is usually implemented as a red-black tree; §9.4.

[18] An unordered_map is a hash table; §9.5.

[19] Pass a container by reference and return a container by value; §9.2.

[20] For a container, use the ()-initializer syntax for sizes and the {}-initializer syntax for lists of elements;
§4.2.3, §9.2.

[21] Prefer compact and contiguous data structures; §9.3.

[22] A list is relatively expensive to traverse; §9.3.

[23] Use unordered containers if you need fast lookup for large amounts of data; §9.5.

[24] Use ordered associative containers (e.g., map and set) if you need to iterate over their elements in
order; §9.4.

[25] Use unordered containers for element types with no natural order (e.g., no reasonable <); §9.4.

[26] Experiment to check that you have an acceptable hash function; §9.5.

[27] Hash function obtained by combining standard hash functions for elements using exclusive or are often
good; §9.5.

[28] Know your standard-library containers and prefer them to hand-crafted data structures; §9.6.

112

113

10. Algorithms

Do not multiply entities beyond necessity.

– William Occam

• Introduction

• Use of Iterators

• Iterator Types

• Stream Iterators

• Predicates

• Algorithm Overview

• Container Algorithms

• Advice

10.1. Introduction

A data structure, such as a list or a vector, is not very useful on its own. To use one, we need operations for
basic access such as adding and removing elements (as is provided for list and vector). Furthermore, we
rarely just store objects in a container. We sort them, print them, extract subsets, remove elements, search for
objects, etc. Consequently, the standard library provides the most common algorithms for containers in
addition to providing the most common container types. For example, the we can simply and efficiently sort a
vector of Entrys and place a copy of each unique vector element on a list:

Click here to view code image

void f(vector<Entry>& vec, list<Entry>& lst)
{
 sort(vec.begin(),vec.end()); // use < for order
 unique_copy(vec.begin(),vec.end(),lst.begin()); // don't copy adjacent equal
elements
}

For this to work, less than (<) must be defined for Entrys. For example:

Click here to view code image

bool operator<(const Entry& x, const Entry& y) // less than
{
 return x.name<y.name; // order Entrys by their names
}

A standard algorithm is expressed in terms of (half-open) sequences of elements. A sequence is represented by
a pair of iterators specifying the first element and the one-beyond-the-last element:

In the example, sort() sorts the sequence defined by the pair of iterators vec.begin() and vec.end() –

114

which just happens to be all the elements of a vector. For writing (output), you need only to specify the first
element to be written. If more than one element is written, the elements following that initial element will be
overwritten. Thus, to avoid errors, lst must have at least as many elements as there are unique values in vec.

If we wanted to place the unique elements in a new container, we could have written:

Click here to view code image

list<Entry> f(vector<Entry>& vec)
{
 list<Entry> res;
 sort(vec.begin(),vec.end());
 unique_copy(vec.begin(),vec.end(),back_inserter(res)); // append to res
 return res;
}

The call back_inserter(res) constructs an iterator for res that adds elements at the end of a container,
extending the container to make room for them. This saves us from first having to allocate a fixed amount of
space and then filling it. Thus, the standard containers plus back_inserter()s eliminate the need to use
error-prone, explicit C-style memory management using realloc(). The standard-library list has a move
constructor (§4.6.2) that makes returning res by value efficient (even for lists of thousands of elements).

If you find the pair-of-iterators style of code, such as sort(vec.begin(),vec.end()), tedious, you can
define container versions of the algorithms and write sort(vec) (§10.7).

10.2. Use of Iterators

When you first encounter a container, a few iterators referring to useful elements can be obtained; begin()
and end() are the best examples of this. In addition, many algorithms return iterators. For example, the
standard algorithm find looks for a value in a sequence and returns an iterator to the element found:

Click here to view code image

bool has_c(const string& s, char c) // does s contain the character c?
{
 auto p = find(s.begin(),s.end(),c);
 if (p!=s.end())
 return true;
 else
 return false;
}

Like many standard-library search algorithms, find returns end() to indicate “not found.” An equivalent,
shorter, definition of has_c() is:

Click here to view code image

bool has_c(const string& s, char c) // does s contain the character c?
{
 return find(s.begin(),s.end(),c)!=s.end();
}

A more interesting exercise would be to find the location of all occurrences of a character in a string. We can
return the set of occurrences as a vector of string iterators. Returning a vector is efficient because vector
provides move semantics (§4.6.1). Assuming that we would like to modify the locations found, we pass a non-

115

const string:

Click here to view code image

vector<string::iterator> find_all(string& s, char c) // find all occurrences of c in s
{
 vector<string::iterator> res;
 for (auto p = s.begin(); p!=s.end(); ++p)
 if (*p==c)
 res.push_back(p);
 return res;
}

We iterate through the string using a conventional loop, moving the iterator p forward one element at a time
using ++ and looking at the elements using the dereference operator *. We could test find_all() like this:

Click here to view code image

void test()
{
 string m {"Mary had a little lamb"};
 for (auto p : find_all(m,'a'))
 if (*p!='a')
 cerr << "a bug!\n";
}

That call of find_all() could be graphically represented like this:

Iterators and standard algorithms work equivalently on every standard container for which their use makes
sense. Consequently, we could generalize find_all():

Click here to view code image

template<typename C, typename V>
vector<typename C::iterator> find_all(C& c, V v) // find all occurrences of v in c
{
 vector<typename C::iterator> res;
 for (auto p = c.begin(); p!=c.end(); ++p)
 if (*p==v)
 res.push_back(p);
 return res;
}

The typename is needed to inform the compiler that C’s iterator is supposed to be a type and not a value
of some type, say, the integer 7. We can hide this implementation detail by introducing a type alias (§5.7) for
Iterator:

Click here to view code image

template<typename T>
using Iterator = typename T::iterator; // T's iterator

template<typename C, typename V>
vector<Iterator<C>> find_all(C& c, V v) // find all occurrences of v in c
{

116

 vector<Iterator<C>> res;
 for (auto p = c.begin(); p!=c.end(); ++p)
 if (*p==v)
 res.push_back(p);
 return res;
}

We can now write:

Click here to view code image

void test()
{
 string m {"Mary had a little lamb"};

 for (auto p : find_all(m,'a')) // p is a string::iterator
 if (*p!='a')
 cerr << "string bug!\n";

 list<double> ld {1.1, 2.2, 3.3, 1.1};
 for (auto p : find_all(ld,1.1))
 if (*p!=1.1)
 cerr << "list bug!\n";

 vector<string> vs { "red", "blue", "green", "green", "orange", "green" };
 for (auto p : find_all(vs,"red"))
 if (*p!="red")
 cerr << "vector bug!\n";
 for (auto p : find_all(vs,"green"))
 *p = "vert";
}

Iterators are used to separate algorithms and containers. An algorithm operates on its data through iterators
and knows nothing about the container in which the elements are stored. Conversely, a container knows
nothing about the algorithms operating on its elements; all it does is to supply iterators upon request (e.g.,
begin() and end()). This model of separation between data storage and algorithm delivers very general and
flexible software.

10.3. Iterator Types

What are iterators really? Any particular iterator is an object of some type. There are, however, many different
iterator types, because an iterator needs to hold the information necessary for doing its job for a particular
container type. These iterator types can be as different as the containers and the specialized needs they serve.
For example, a vector’s iterator could be an ordinary pointer, because a pointer is quite a reasonable way of
referring to an element of a vector:

Alternatively, a vector iterator could be implemented as a pointer to the vector plus an index:

117

Using such an iterator would allow range checking.

A list iterator must be something more complicated than a simple pointer to an element because an
element of a list in general does not know where the next element of that list is. Thus, a list iterator might
be a pointer to a link:

What is common for all iterators is their semantics and the naming of their operations. For example, applying
++ to any iterator yields an iterator that refers to the next element. Similarly, * yields the element to which
the iterator refers. In fact, any object that obeys a few simple rules like these is an iterator – Iterator is a
concept (§5.4). Furthermore, users rarely need to know the type of a specific iterator; each container “knows”
its iterator types and makes them available under the conventional names iterator and const_iterator.
For example, list<Entry>::iterator is the general iterator type for list<Entry>. We rarely have to worry
about the details of how that type is defined.

10.4. Stream Iterators

Iterators are a general and useful concept for dealing with sequences of elements in containers. However,
containers are not the only place where we find sequences of elements. For example, an input stream produces
a sequence of values, and we write a sequence of values to an output stream. Consequently, the notion of
iterators can be usefully applied to input and output.

To make an ostream_iterator, we need to specify which stream will be used and the type of objects
written to it. For example:

Click here to view code image

ostream_iterator<string> oo {cout}; // write strings to cout

The effect of assigning to *oo is to write the assigned value to cout. For example:

Click here to view code image

int main()
{
 *oo = "Hello, "; // meaning cout<<"Hello,"
 ++oo;
 *oo = "world!\n"; // meaning cout<<"world!\n"
}

This is yet another way of writing the canonical message to standard output. The ++oo is done to mimic
writing into an array through a pointer.

Similarly, an istream_iterator is something that allows us to treat an input stream as a read-only
container. Again, we must specify the stream to be used and the type of values expected:

Click here to view code image

istream_iterator<string> ii {cin};

118

Input iterators are used in pairs representing a sequence, so we must provide an istream_iterator to
indicate the end of input. This is the default istream_iterator:

Click here to view code image

istream_iterator<string> eos {};

Typically, istream_iterators and ostream_iterators are not used directly. Instead, they are provided as
arguments to algorithms. For example, we can write a simple program to read a file, sort the words read,
eliminate duplicates, and write the result to another file:

Click here to view code image

int main()
{
 string from, to;
 cin >> from >> to; // get source and target file names

 ifstream is {from}; // input stream for file "from"
 istream_iterator<string> ii {is}; // input iterator for stream
 istream_iterator<string> eos {}; // input sentinel

 ofstream os {to}; // output stream for file "to"
 ostream_iterator<string> oo {os,"\n"}; // output iterator for stream

 vector<string> b {ii,eos}; // b is a vector initialized from input
 sort(b.begin(),b.end()); // sort the buffer

 unique_copy(b.begin(),b.end(),oo); // copy buffer to output, discard replicated
values

 return !is.eof() || !os; // return error state (§1.3, §8.4)
}

An ifstream is an istream that can be attached to a file, and an ofstream is an ostream that can be
attached to a file (§8.7). The ostream_iterator’s second argument is used to delimit output values.

Actually, this program is longer than it needs to be. We read the strings into a vector, then we sort()
them, and then we write them out, eliminating duplicates. A more elegant solution is not to store duplicates at
all. This can be done by keeping the strings in a set, which does not keep duplicates and keeps its elements
in order (§9.4). That way, we could replace the two lines using a vector with one using a set and replace
unique_copy() with the simpler copy():

Click here to view code image

set<string> b {ii,eos}; // collect strings from input
copy(b.begin(),b.end(),oo); // copy buffer to output

We used the names ii, eos, and oo only once, so we could further reduce the size of the program:

Click here to view code image

int main()
{
 string from, to;
 cin >> from >> to; // get source and target file names

 ifstream is {from}; // input stream for file "from"

119

 ofstream os {to}; // output stream for file "to"

 set<string> b {istream_iterator<string>{is},istream_iterator<string>{}}; //
read input
 copy(b.begin(),b.end(),ostream_iterator<string>{os,"\n"}); // copy to
output

 return !is.eof() || !os; // return error state (§1.3, §8.4)
}

It is a matter of taste and experience whether or not this last simplification improves readability.

10.5. Predicates

In the examples above, the algorithms have simply “built in” the action to be done for each element of a
sequence. However, we often want to make that action a parameter to the algorithm. For example, the find
algorithm (§10.2, §10.6) provides a convenient way of looking for a specific value. A more general variant
looks for an element that fulfills a specified requirement, a predicate. For example, we might want to search a
map for the first value larger than 42. A map allows us to access its elements as a sequence of (key,value)
pairs, so we can search a map<string,int>’s sequence for a pair<const string,int> where the int is
greater than 42:

Click here to view code image

void f(map<string,int>& m)
{
 auto p = find_if(m.begin(),m.end(),Greater_than{42});
 // ...
}

Here, Greater_than is a function object (§5.5) holding the value (42) to be compared against:

Click here to view code image

struct Greater_than {
 int val;
 Greater_than(int v) : val{v} { }
 bool operator()(const pair<string,int>& r) { return r.second>val; }
};

Alternatively, we could use a lambda expression (§5.5):

Click here to view code image

auto p = find_if(m.begin(), m.end(), [](const pair<string,int>& r) { return
r.second>42; });

A predicate should not modify the elements to which it is applied.

10.6. Algorithm Overview

A general definition of an algorithm is “a finite set of rules which gives a sequence of operations for solving a
specific set of problems [and] has five important features: Finiteness ... Definiteness ... Input ... Output ...
Effectiveness” [Knuth,1968,§1.1]. In the context of the C++ standard library, an algorithm is a function
template operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namespace std and

120

presented in the <algorithm> header. These standard-library algorithms all take sequences as inputs. A
half-open sequence from b to e is referred to as [b:e). Here are a few examples:

These algorithms, and many more (e.g., §12.3), can be applied to elements of containers, strings, and built-
in arrays.

Some algorithms, such as replace() and sort(), modify element values, but no algorithm add or subtract
elements of a container. The reason is that a sequence does not identify the container that holds the elements
of the sequence. If you want to add elements, you need something, such as an back_inserter that knows
about the container (§10.1), or directly refer to the container itself, such as push_back() or erase()
(§9.2).

The standard-library algorithms tend to be more carefully designed, specified, and implemented than the
average hand-crafted loop, so know them and use them in preference to code written in the bare language.

10.7. Container Algorithms

A sequence is defined by a pair of iterators [begin:end). This is general and flexible, but most often, we
apply an algorithm to a sequence that is the contents of a container. For example:

sort(v.begin(),v.end());

Why don’t we just say sort(v)? We can easily provide that shorthand:

Click here to view code image

namespace Estd {
 using namespace std;

 template<typename C>
 void sort(C& c)
 {
 sort(c.begin(),c.end());
 }

 template<typename C, typename Pred>
 void sort(C& c, Pred p)

121

 {
 sort(c.begin(),c.end(),p);
 }

 // ...
}

I put the container versions of sort() (and other algorithms) into their own namespace Estd (“extended
std”) to avoid interfering with other programmers’ uses of namespace std.

10.8. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in Chapter
32 of [Stroustrup,2013].

[2] An STL algorithm operates on one or more sequences; §10.1.

[3] An input sequence is half-open and defined by a pair of iterators; §10.1.

[4] When searching, an algorithm usually returns the end of the input sequence to indicate “not found”;
§10.2.

[5] Algorithms do not directly add or subtract elements from their argument sequences; §10.2, §10.6.

[6] When writing a loop, consider whether it could be expressed as a general algorithm; §10.2.

[7] Use predicates and other function objects to give standard algorithms a wider range of meanings;
§10.5, §10.6.

[8] A predicate must not modify its argument; §10.5.

[9] Know your standard-library algorithms and prefer them to hand-crafted loops; §10.6.

[10] When the pair-of-iterators style becomes tedious, introduce a container/range algorithm; §10.7.

122

11. Utilities

The time you enjoy wasting is not wasted time.

– Bertrand Russell

• Introduction

• Resource Management

unique_ptr and shared_ptr

• Specialized Containers

array; bitset; pair and tuple

• Time

• Function Adaptors

bind(); mem_fn(); function

• Type Functions

iterator_traits; Type Predicates

• Advice

11.1. Introduction

Not all standard-library components come as part of obviously labeled facilities, such as “containers” or “I/O.”
This section gives a few examples of small, widely useful components. The point here is that a function or a
type need not be complicated or closely tied to a mass of other functions and types to be useful. Such library
components mostly act as building blocks for more powerful library facilities, including other components of
the standard library.

11.2. Resource Management

One of the key tasks of any nontrivial program is to manage resources. A resource is something that must be
acquired and later (explicitly or implicitly) released. Examples are memory, locks, sockets, thread handles, and
file handles. For a long-running program, failing to release a resource in a timely manner (“a leak”) can cause
serious performance degradation and possibly even a miserable crash. Even for short programs, a leak can
become an embarrassment, say by a resource shortage increasing the run time by orders of magnitude.

The standard library components are designed not to leak resources. To do this, they rely on the basic
language support for resource management using constructor/destructor pairs to ensure that a resource doesn’t
outlive an object responsible for it. The use of a constructor/destructor pair in Vector to manage the lifetime
of its elements is an example (§4.2.2) and all standard-library containers are implemented in similar ways.
Importantly, this approach interacts correctly with error handling using exceptions. For example, the
technique is used for the standard-library lock classes:

Click here to view code image

mutex m; // used to protect access to shared data
// ...

123

void f()
{
 unique_lock<mutex> lck {m}; // acquire the mutex m
 // ... manipulate shared data ...
}

A thread will not proceed until lck’s constructor has acquired its mutex, m (§13.5). The corresponding
destructor releases the resource. So, in this example, unique_lock’s destructor releases the mutex when the
thread of control leaves f() (through a return, by “falling off the end of the function,” or through an
exception throw).

This is an application of the “Resource Acquisition Is Initialization” technique (RAII; §4.2.2). RAII is
fundamental to the idiomatic handling of resources in C++. Containers (such as vector and map), string,
and iostream manage their resources (such as file handles and buffers) similarly.

11.2.1. unique_ptr and shared_ptr

The examples so far take care of objects defined in a scope, releasing the resources they acquire at the exit
from the scope, but what about objects allocated on the free store? In <memory>, the standard library
provides two “smart pointers” to help manage objects on the free store:

[1] unique_ptr to represent unique ownership

[2] shared_ptr to represent shared ownership

The most basic use of these “smart pointers” is to prevent memory leaks caused by careless programming. For
example:

Click here to view code image

void f(int i, int j) // X* vs. unique_ptr<X>
{
 X* p = new X; // allocate a new X
 unique_ptr<X> sp {new X}; // allocate a new X and give its pointer to
unique_ptr
 // ...
 if (i<99) throw Z{}; // may throw an exception
 if (j<77) return; // may return "early"
 // ...
 p->do_something(); // may throw an exception
 sp->do_something(); // may throw an exception
 // ...
 delete p; // destroy *p
}

Here, we “forgot” to delete p if i<99 or if j<77. On the other hand, unique_ptr ensures that its object is
properly destroyed whichever way we exit f() (by throwing an exception, by executing return, or by “falling
off the end”). Ironically, we could have solved the problem simply by not using a pointer and not using new:

Click here to view code image

void f(int i, int j) // use a local variable
{
 X x;
 // ...
}

124

Unfortunately, overuse of new (and of pointers and references) seems to be an increasing problem.

However, when you really need the semantics of pointers, unique_ptr is a very lightweight mechanism
with no space or time overhead compared to correct use of a built-in pointer. Its further uses include passing
free-store allocated objects in and out of functions:

Click here to view code image

unique_ptr<X> make_X(int i)
 // make an X and immediately give it to a unique_ptr
{
 // ... check i, etc. ...
 return unique_ptr<X>{new X{i}};
}

A unique_ptr is a handle to an individual object (or an array) in much the same way that a vector is a
handle to a sequence of objects. Both control the lifetime of other objects (using RAII) and both rely on move
semantics to make return simple and efficient.

The shared_ptr is similar to unique_ptr except that shared_ptrs are copied rather than moved.
The shared_ptrs for an object share ownership of an object and that object is destroyed when the last of its
shared_ptrs is destroyed. For example:

Click here to view code image

void f(shared_ptr<fstream>);
void g(shared_ptr<fstream>);

void user(const string& name, ios_base::openmode mode)
{
 shared_ptr<fstream> fp {new fstream(name,mode)};
 if (!*fp) // make sure the file was properly opened
 throw No_file{};

 f(fp);
 g(fp);
 // ...
}

Now, the file opened by fp’s constructor will be closed by the last function to (explicitly or implicitly) destroy
a copy of fp. Note that f() or g() may spawn a task holding a copy of fp or in some other way store a copy
that outlives user(). Thus, shared_ptr provides a form of garbage collection that respects the destructor-
based resource management of the memory-managed objects. This is neither cost free nor exorbitantly
expensive, but it does make the lifetime of the shared object hard to predict. Use shared_ptr only if you
actually need shared ownership.

Creating an object on the free store and then passing a pointer to it to a smart pointer is logically a bit odd
and can be verbose. To compensate, the standard library (in <memory>) provides a function
make_shared(). For example:

Click here to view code image

struct S {
 int i;
 string s;
 double d;

125

 // ...
};

shared_ptr<S> p1 {new S {1,"Ankh Morpork",4.65}};

auto p2 = make_shared<S>(2,"Oz",7.62);

Now, p2 is a shared_ptr<S> pointing to an object of type S allocated on the free store, containing
{1,string{"Ankh Morpork"},4.65}.

Currently, there is no standard-library make_unique() similar to make_shared() and
make_pair() (§11.3.3). However, it is easily defined:

Click here to view code image

template<typename T, typename... Args>
unique_ptr<T> make_unique(Args&&... args)
{
 return std::unique_ptr<T>{new T{std::forward<Args>(args)...}};
}

No, I don’t claim that this definition is trivial to understand, but it is efficient and quite general. The elipses,
..., indicate the use of a variadic template (§5.6). We can now write:

Click here to view code image

auto p2 = make_unique<S>(3,"Atlantis",11.3);

Given unique_ptr and shared_ptr, we can implement a complete “no naked new” policy (§4.2.2) for
many programs. However, these “smart pointers” are still conceptually pointers and therefore only my second
choice for resource management – after containers and other types that manage their resources at a higher
conceptual level. In particular, shared_ptrs do not in themselves provide any rules for which of their owners
can read and/or write the shared object. Data races (§13.7) and other forms of confusion are not addressed
simply by eliminating the resource management issues.

Where do we use “smart pointers” (such as unique_ptr) rather than resource handles with operations
designed specifically for the resource (such as vector or thread)? Unsurprisingly, the answer is “when we
need pointer semantics.”

• When we share an object, we need pointers (or references) to refer to the shared object, so a
shared_ptr becomes the obvious choice (unless there is an obvious single owner).

• When we refer to a polymorphic object, we need a pointer (or a reference) because we don’t know the
exact type of the object referred to (or even its size), so a unique_ptr becomes the obvious choice.

• A shared polymorphic object typically requires shared_ptrs.

We do not need to use a pointer to return a collection of objects from a function; a container that is a resource
handle will do that simply and efficiently (§4.6.2).

11.3. Specialized Containers

The standard library provides several containers that don’t fit perfectly into the STL framework (Chapter 9,
Chapter 10). Examples are built-in arrays, array, and string. I sometimes refer to those as “almost
containers,” but that is not quite fair: they hold elements, so they are containers, but each has restrictions or

126

added facilities that make them awkward in the context of the STL. Describing them separately also
simplifies the description of the STL.

Why does the standard library provide so many containers? They serve common but different (often
overlapping) needs. If the standard library didn’t provide them, many people would have to design and
implement their own. For example:

• pair and tuple are heterogeneous; all other containers are homogeneous (all elements are of the same
type).

• array, vector, and tuple elements are contiguously allocated; forward_list and map are linked
structures.

• bitset and vector<bool> hold bits and access them through proxy objects; all other standard-
library containers can hold a variety of types and access elements directly.

• basic_string requires its elements to be some form of character and to provide string manipulation,
such as concatenation and locale-sensitive operations

• valarray requires its elements to be numbers and to provide numerical operations.

All of these containers can be seen as providing specialized services needed by large communities of
programmers. No single container could serve all of these needs because some needs are contradictory, for
example, “ability to grow” vs. “guaranteed to be allocated in a fixed location,” and “elements do not move
when elements are added” vs. “contiguously allocated.” Furthermore, a very general container would imply
overhead deemed unacceptable for individual containers.

11.3.1. array

An array, defined in <array>, is a fixed-size sequence of elements of a given type where the number of
elements is specified at compile time. Thus, an array can be allocated with its elements on the stack, in an
object, or in static storage. The elements are allocated in the scope where the array is defined. An array is
best understood as a built-in array with its size firmly attached, without implicit, potentially surprising
conversions to pointer types, and with a few convenience functions provided. There is no overhead (time or
space) involved in using an array compared to using a built-in array. An array does not follow the “handle
to elements” model of STL containers. Instead, an array directly contains its elements.

An array can be initialized by an initializer list:

127

array<int,3> a1 = {1,2,3};

The number of elements in the initializer must be equal to or less than the number of elements specified for
the array.

The element count is not optional:

Click here to view code image

array<int> ax = {1,2,3}; // error size not specified

The element count must be a constant expression:

Click here to view code image

void f(int n)
{
 array<string,n> aa = {"John's", "Queens' "}; // error: size not a constant
expression
 //
}

If you need the element count to be a variable, use vector.

When necessary, an array can be explicitly passed to a C-style function that expects a pointer.

For example:

Click here to view code image

void f(int* p, int sz); // C-style interface

void g()
{
 array<int,10> a;

 f(a,a.size()); // error: no conversion
 f(&a[0],a.size()); // C-style use
 f(a.data(),a.size()); // C-style use

 auto p = find(a.begin(),a.end(),777); // C++/STL-style use
 // ...
}

Why would we use an array when vector is so much more flexible? Because an array is less flexible, it is
simpler. Occasionally, there is a significant performance advantage to be had by directly accessing elements
allocated on the stack rather than allocating elements on the free store, accessing them indirectly through the
vector (a handle), and then deallocating them. On the other hand, the stack is a limited resource (especially
on some embedded systems), and stack overflow is nasty.

Why would we use an array when we could use a built-in array? An array knows its size, so it is easy to
use with standard-library algorithms, and it can be copied (using = or initialization). However, my main
reason to prefer array is that it saves me from surprising nasty conversions to pointers. Consider:

Click here to view code image

void h()
{
 Circle a1[10];
 array<Circle,10> a2;

128

 // ...
 Shape* p1 = a1; // OK: disaster waiting to happen
 Shape* p2 = a2; // error: no conversion of array<Circle,10> to Shape*
 p1[3].draw(); // disaster
}

The “disaster” comment assumes that sizeof(Shape)<sizeof(Circle), so that subscripting a Circle[]
through a Shape * gives a wrong offset. All standard containers provide this advantage over built-in arrays.

11.3.2. bitset

Aspects of a system, such as the state of an input stream, are often represented as a set of flags indicating
binary conditions such as good/bad, true/false, and on/off. C++ supports the notion of small sets of flags
efficiently through bitwise operations on integers (§1.5). Class bitset<N> generalizes this notion and offers
greater convenience by providing operations on a sequence of N bits [0:N), where N is known at compile
time. For sets of bits that don’t fit into a long long int, using a bitset is much more convenient than using
integers directly. For smaller sets, bitset is usually optimized. If you want to name the bits, rather than
numbering them, you can use a set (§9.4) or an enumeration (§2.5).

A bitset can be initialized with an integer or a string:

bitset<9> bs1 {"110001111"};
bitset<9> bs2 {399};

The usual bitwise operations (§1.5) can be applied, as can left- and right-shift operations (<< and >>):

Click here to view code image

bitset<9> bs3 = ~bs1; // complement: bs3=="001110000"
bitset<9> bs4 = bs1&bs3; // all zeros
bitset<9> bs5 = bs1<<2; // shift left: bs5 = "111000000"

The shift operators (here, <<) “shifts in” zeros.

The operations to_ullong() and to_string() provide the inverse operations to the constructors. For
example, we could write out the binary representation of an int:

Click here to view code image

void binary(int i)
{
 bitset<8*sizeof(int)> b = i; // assume 8-bit byte (see also §12.7)
 cout << b.to_string() << '\n'; // write out the bits of i
}

This prints the bits represented as 1s and 0s from left to right, with the most significant bit leftmost, so that
argument 123 would give the output

Click here to view code image

00000000000000000000000001111011

For this example, it is simpler to directly use the bitset output operator:

Click here to view code image

void binary2(int i)
{

129

 bitset<8*sizeof(int)> b = i; // assume 8-bit byte (see also §12.7)
 cout << b << '\n'; // write out the bits of i
}

11.3.3. pair and tuple

Often, we need some data that is just data; that is, a collection of values, rather than an object of a class with a
well-defined semantics and an invariant for its value (§3.4.2). In such cases, we could define a simple struct
with an appropriate set of appropriately named members. Alternatively, we could let the standard library write
the definition for us. For example, the standard-library algorithm equal_range returns a pair of iterators
specifying a subsequence meeting a predicate:

Click here to view code image

template<typename Forward_iterator, typename T, typename Compare>
 pair<Forward_iterator,Forward_iterator>
 equal_range(Forward_iterator first, Forward_iterator last, const T& val, Compare
cmp);

Given a sorted sequence [first:last), equal_range() will return the pair representing the subsequence
that matches the predicate cmp. We can use that to search in a sorted sequence of Records:

Click here to view code image

auto rec_eq = [](const Record& r1, const Record& r2) { return
r1.name<r2.name;}; // compare names

void f(const vector<Record>& v) // assume that v is sorted on its "name" field
{
 auto er = equal_range(v.begin(),v.end(),Record{"Reg"},rec_eq);

 for (auto p = er.first; p!=er.second; ++p) // print all equal records
 cout << *p; // assume that << is defined for Record
}

The first member of a pair is called first and the second member is called second. This naming is not
particularly creative and may look a bit odd at first, but such consistent naming is a boon when we want to
write generic code.

The standard-library pair (from <utility>) is quite frequently used in the standard library and elsewhere.
A pair provides operators, such as =, ==, and <, if its elements do. The make_pair() function makes it
easy to create a pair without explicitly mentioning its type. For example:

Click here to view code image

void f(vector<string>& v)
{
 auto pp = make_pair(v.begin(),2); // pp is a pair<vector<string>::iterator,int>
 // ...
}

If you need more than two elements (or less), you can use tuple (from <utility>). A tuple is a
heterogeneous sequence of elements; for example:

Click here to view code image

tuple<string,int,double> t2{"Sild",123, 3.14}; // the type is explicitly specified

130

auto t = make_tuple(string{"Herring"},10, 1.23); // the type is deduced to
tuple<string,int,double>

string s = get<0>(t); // get first element of tuple: "Herring"
int x = get<1>(t); // 10
double d = get<2>(t); // 1.23

The elements of a tuple are numbered (starting with zero), rather than named the way elements of pairs are
(first and second). To get compile-time selection of elements, I must unfortunately use the ugly get<1>
(t), rather than get(t,1) or t[1].

Like pairs, tuples can be assigned and compared if their elements can be.

A pair is common in interfaces because often we want to return more than one value, such as a result and
an indicator of the quality of that result. It is less common to need three or more parts to a result, so tuples
are more often found in the implementations of generic algorithms.

11.4. Time

The standard library provides facilities for dealing with time. For example, here is the basic way of timing
something:

Click here to view code image

using namespace std::chrono; // see §3.3

auto t0 = high_resolution_clock::now();
do_work();
auto t1 = high_resolution_clock::now();
cout << duration_cast<milliseconds>(t1-t0).count() << "msec\n";

The clock returns a time_point (a point in time). Subtracting two time_points gives a duration (a
period of time). Various clocks give their results in various units of time (the clock I used measures
nanoseconds), so it is usually a good idea to convert a duration into a known unit. That’s what
duration_cast does.

The standard-library facilities for dealing with time are found in the subnamespace std::chrono in
<chrono>.

Don’t make statements about “efficiency” of code without first doing time measurements. Guesses about
performance are most unreliable.

11.5. Function Adaptors

A function adaptor takes a function as argument and returns a function object that can be used to invoke the
original function. The standard library provides bind() and mem_fn() adaptors to do argument binding,
also called Currying or partial evaluation. Binders were heavily used in the past, but most uses seem to be more
easily expressed using lambdas (§5.5).

11.5.1. bind()

Given a function and a set of arguments, bind() produces a function object that can be called with “the
remaining” arguments, if any, of the function. For example:

double cube(double);

131

auto cube2 = bind(cube,2);

A call cube2() will invoke cube with the argument 2, that is, cube(2). We don’t have to bind every
argument of a function. For example:

Click here to view code image

using namespace placeholders;

void f(int,const string&);
auto g = bind(f,2,_1); // bind f()'s first argument to 2
f(2,"hello");
g("hello"); // also calls f(2,"hello");

The curious _1 argument to the binder is a placeholder telling bind() where arguments to the resulting
function object should go. In this case, g()’s (first) argument is used as f()’s second argument.

The placeholders are found in the (sub)namespace std::placeholders that is part of <functional>.

To bind arguments for an overloaded function, we have to explicitly state which version of the function we
want to bind:

Click here to view code image

int pow(int,int);
double pow(double,double); // pow() is overloaded

auto pow2 = bind(pow,_1,2); // error: which pow()?
auto pow2 = bind((double(*)(double,double))pow,_1,2); // OK (but ugly)

I assigned the result of bind() to a variable declared using auto. This saves me the bother of specifying the
return type of a call of bind(). That can be useful because the return type of bind() varies with the type of
function to be called and the argument values stored. In particular, the returned function object is larger when
it has to hold values of bound parameters. When we want to be specific about the types of the arguments
required and the type of result returned, we can use a function (§11.5.3).

11.5.2. mem_fn()

The function adaptor mem_fn(mf) produces a function object that can be called as a nonmember function.
For example:

Click here to view code image

void user(Shape* p)
{
 p->draw();
 auto draw = mem_fn(&Shape::draw);
 draw(p);
}

The major use of mem_fn() is when an algorithm requires an operation to be called as a nonmember
function. For example:

Click here to view code image

void draw_all(vector<Shape*>& v)
{

132

 for_each(v.begin(),v.end(),mem_fn(&Shape::draw));
}

Thus, mem_fn() can be seen as a mapping from the object-oriented calling style to the functional one.

Often, lambdas provide a simple and general alternative to binders. For example:

Click here to view code image

void draw_all(vector<Shape*>& v)
{
 for_each(v.begin(),v.end(),[](Shape* p) { p->draw(); });
}

11.5.3. function

A bind() can be used directly, and it can be used to initialize an auto variable. In that, bind() resembles a
lambda.

If we want to assign the result of bind() to a variable with a specific type, we can use the standard-library
type function. A function is specified with a specific return type and a specific argument type. For
example:

Click here to view code image

int f1(double);
function<int(double)> fct {f1}; // initialize to f1
int f2(int);

void user()
{
 fct = [](double d) { return round(d); }; // assign lambda to fct
 fct = f1; // assign function to fct
 fct = f2; // error: incorrect argument type
}

The standard-library function is a type that can hold any object you can invoke using the call operator ().
That is, an object of type function is a function object (§5.5). For example:

Click here to view code image

int round(double x) { return static_cast<int>(floor(x+0.5)); } // conventional 4/5
rounding

function<int(double)> f; // f can hold anything that can be called with a double and
return an int

enum class Round_style { truncate, round };

struct Round { // function object carrying a state
 Round_style s;
 Round(Round_style ss) :s(ss) { }
 int operator()(double x) const { return static_cast<int>
((s==Round_style::round) ? (x+0.5) : x); };
};

I use static_cast (§14.2.3) to make it explicit that I want to return an int.

Click here to view code image

void t1()

133

{
 f = round;
 cout << f(7.6) << '\n'; // call through f to the function round

 f = Round(Round_style::truncate);
 cout << f(7.6) << '\n'; // call the function object

 Round_style style = Round_style::round;
 f = [style] (double x){ return static_cast<int>((style==Round_style::round) ?
x+0.5 : x); };

 cout << f(7.6) << '\n'; // call the lambda

 vector<double> v {7.6};
 f = Round(Round_style::round);
 std::transform(v.begin(),v.end(),v.begin(),f); // pass to algorithm

 cout << v[0] << '\n'; // transformed by the lambda
}

We get 8, 7, 8, and 8.

Obviously, functions are useful for callbacks, for passing operations as arguments, etc.

11.6. Type Functions

A type function is a function that is evaluated at compile-time given a type as its argument or returning a type.
The standard library provides a variety of type functions to help library implementers and programmers in
general to write code that take advantage of aspects of the language, the standard library, and code in general.

For numerical types, numeric_limits from <limits> presents a variety of useful information (§12.7).
For example:

Click here to view code image

constexpr float min = numeric_limits<float>::min(); // smallest positive float

Similarly, object sizes can be found by the built-in sizeof operator (§1.5). For example:

Click here to view code image

constexpr int szi = sizeof(int); // the number of bytes in an int

Such type functions are part of C++’s mechanisms for compile-time computation that allow tighter type
checking and better performance than would otherwise have been possible. Use of such features is often called
metaprogramming or (when templates are involved) template metaprogramming. Here, I just present two
facilities provided by the standard library: iterator_traits (§11.6.1) and type predicates (§11.6.2).

11.6.1. iterator_traits

The standard-library sort() takes a pair of iterators supposed to define a sequence (Chapter 10).
Furthermore, those iterators must offer random access to that sequence, that is, they must be random-access
iterators. Some containers, such as forward_list, do not offer that. In particular, a forward_list is a
singly-linked list so subscripting would be expensive and there is no reasonable way to refer back to a previous
element. However, like most containers, forward_list offers forward iterators that can be used to traverse
the sequence by algorithms and for-statements (§5.2).

134

The standard library provides a mechanism, iterator_traits that allows us to check which kind of
iterator is supported. Given that, we can improve the range sort() from §10.7 to accept either a vector or a
forward_list. For example:

Click here to view code image

void test(vector<string>& v, forward_list<int>& lst)
{
 sort(v); // sort the vector
 sort(lst); // sort the singly-linked list
}

The techniques needed to make that work are generally useful.

First, I write two helper functions that take an extra argument indicating whether they are to be used for
random-access iterators or forward iterators. The version taking random-access iterator arguments is trivial:

Click here to view code image

template<typename Ran> // for random-access iterators
void sort_helper(Ran beg, Ran end, random_access_iterator_tag) // we can subscript
into [beg:end)
{
 sort(beg,end); // just sort it
}

The version for forward iterators simply copies the list into a vector, sorts, and copies back:

Click here to view code image

template<typename For> // for forward iterators
void sort_helper(For beg, For end, forward_iterator_tag) // we can traverse
[beg:end)
{
 vector<Value_type<For>> v {beg,end}; // initialize a vector from [beg:end)
 sort(v.begin(),v.end());
 copy(v.begin(),v.end(),beg); // copy the elements back
}

Value_type<For>> is the type of For’s elements, called it’s value type. Every standard-library iterator has
a member value_type. I get the Value_type<For>> notation by defining a type alias (§5.7):

Click here to view code image

template<typename C>
 using Value_type = typename C::value_type; // C's value type

Thus, v is a vector<X> where X is the element type of the input sequence.

The real “type magic” is in the selection of helper functions:

Click here to view code image

template<typename C>
void sort(C& c)
{
 using Iter = Iterator_type<C>;
 sort_helper(c.begin(),c.end(),Iterator_categor y<Iter>{});
}

Here, I use two type functions: Iterator_type<C> returns the iterator type of C (that is, C::iterator)

135

and then Iterator_categor y<Iter>{} constructs a “tag” value indicating the kind of iterator provided:

• std::random_access_iterator_tag if C’s iterator supports random access.

• std::forward_iterator_tag if C’s iterator supports forward iteration.

Given that, we can select between the two sorting algorithms at compile time. This technique, called tag
dispatch is one of several used in the standard library and elsewhere to improve flexibility and performance.

The standard-library support for techniques for using iterators, such as tag dispatch, comes in the form of a
simple class template iterator_traits from <iterator>. This allows simple definitions of the type
functions used in sort():

Click here to view code image

template<typename C>
 using Iterator_type = typename C::iterator; // C's iterator type

template<typename Iter>
 using Iterator_category = typename
std::iterator_traits<Iter>::iterator_category; // Iter's category

If you don’t want to know what kind of “compile-time type magic” is used to provide the standard-library
features, you are free to ignore facilities such as iterator_traits. But then you can’t use the techniques they
support to improve your own code.

11.6.2. Type Predicates

A standard-library type predicate is a simple type function that answers a fundamental question about types.
For example:

Click here to view code image

bool b1 = Is_arithmetic<int>(); // yes, int is an arithmetic type
bool b2 = Is_arithmetic<string>(); // no, std::string is not an arithmetic type

These predicates are found in <type_traits>. Other examples are is_class, is_pod, is_literal_type,
has_virtual_destructor, and is_base_of. They are most useful when we write templates. For example:

Click here to view code image

template<typename Scalar>
class complex {
 Scalar re, im;
public:
 static_assert(Is_arithmetic<Scalar>(), "Sorry, I only support complex of
arithmetic types");
 // ...
};

To improve readability compared to using the standard library directly, I defined a type function:

Click here to view code image

template<typename T>
constexpr bool Is_arithmetic()
{
 return std::is_arithmetic<T>::value ;
}

136

Older programs use ::value directly instead of (), but I consider that quite ugly and it exposes
implementation details.

11.7. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in
Chapters 33-35 of [Stroustrup,2013].

[2] A library doesn’t have to be large or complicated to be useful; §11.1.

[3] A resource is anything that has to be acquired and (explicitly or implicitly) released; §11.2.

[4] Use resource handles to manage resources (RAII); §11.2.

[5] Use unique_ptr to refer to objects of polymorphic type; §11.2.1.

[6] Use shared_ptr to refer to shared objects; §11.2.1.

[7] Prefer resource handles with specific semantics to smart pointers; §11.2.1.

[8] Prefer unique_ptr to shared_ptr; §4.6.4, §11.2.1.

[9] Prefer smart pointers to garbage collection; §4.6.4, §11.2.1.

[10] Use array where you need a sequence with a constexpr size; §11.3.1.

[11] Prefer array over built-in arrays; §11.3.1.

[12] Use bitset if you need N bits and N is not necessarily the number of bits in a built-in integer type;
§11.3.2.

[13] When using pair, consider make_pair() for type deduction; §11.3.3.

[14] When using tuple, consider make_tuple() for type deduction; §11.3.3.

[15] Time your programs before making claims about efficiency; §11.4.

[16] Use duration_cast to report time measurements with proper units; §11.4.

[17] Often, a lambda is an alternative to using bind() or mem_fn(); §11.5.

[18] Use bind() to create variants of functions and function objects; §11.5.1.

[19] Use mem_fn() to create function objects that can invoke a member function when called using the
traditional function call notation; §11.5.2.

[20] Use function when you need to store something that can be called; §11.5.3.

[21] You can write code to explicitly depend on properties of types; §11.6.

137

12. Numerics

The purpose of computing is insight, not numbers.

– R. W. Hamming

... but for the student,
numbers are often the best road to insight.

– A. Ralston

• Introduction

• Mathematical Functions

• Numerical Algorithms

• Complex Numbers

• Random Numbers

• Vector Arithmetic

• Numeric Limits

• Advice

12.1. Introduction

C++ was not designed primarily with numeric computation in mind. However, numeric computation typically
occurs in the context of other work – such as database access, networking, instrument control, graphics,
simulation, and financial analysis – so C++ becomes an attractive vehicle for computations that are part of a
larger system. Furthermore, numeric methods have come a long way from being simple loops over vectors of
floating-point numbers. Where more complex data structures are needed as part of a computation, C++’s
strengths become relevant. The net effect is that C++ is widely used for scientific, engineering, financial, and
other computation involving sophisticated numerics. Consequently, facilities and techniques supporting such
computation have emerged. This chapter describes the parts of the standard library that support numerics.

12.2. Mathematical Functions

In <cmath>, we find the standard mathematical functions, such as sqrt(), log(), and sin() for arguments
of type float, double, and long double:

138

The versions for complex (§12.4) are found in <complex>. For each function, the return type is the same
as the argument type.

Errors are reported by setting errno from <cerrno> to EDOM for a domain error and to ERANGE for
a range error. For example:

Click here to view code image

void f()
{
 errno = 0; // clear old error state
 sqrt(-1);
 if (errno==EDOM)
 cerr << "sqrt() not defined for negative argument";

 errno = 0; // clear old error state
 pow(numeric_limits<double>::max(),2);
 if (errno == ERANGE)
 cerr << "result of pow() too large to represent as a double";
}

A few more mathematical functions are found in <cstdlib> and there is a separate ISO standard for special
mathematical functions [C++Math,2010].

12.3. Numerical Algorithms

In <numeric>, we find a small set of generalized numerical algorithms, such as accumulate().

139

These algorithms generalize common operations such as computing a sum by letting them apply to all kinds
of sequences and by making the operation applied to elements of those sequences a parameter. For each
algorithm, the general version is supplemented by a version applying the most common operator for that
algorithm. For example:

Click here to view code image

void f()
{
 list<double> lst {1, 2, 3, 4, 5, 9999.99999};
 auto s = accumulate(lst.begin(),lst.end(),0.0); // calculate the sum
 cout << s << '\n'; // print 10014.9999
}

These algorithms work for every standard-library sequence and can have operations supplied as arguments
(§12.3).

12.4. Complex Numbers

The standard library supports a family of complex number types along the lines of the complex class
described in §4.2.1. To support complex numbers where the scalars are single-precision floating-point
numbers (floats), double-precision floating-point numbers (doubles), etc., the standard library complex is
a template:

Click here to view code image

template<typename Scalar>
class complex {
public:
 complex(const Scalar& re ={}, const Scalar& im ={});
 // ...
};

The usual arithmetic operations and the most common mathematical functions are supported for complex
numbers. For example:

Click here to view code image

void f(complex<float> fl, complex<double> db)
{

140

 complex<long double> ld {fl+sqrt(db)};
 db += fl*3;
 fl = pow(1/fl,2);
 // ...
}

The sqrt() and pow() (exponentiation) functions are among the usual mathematical functions defined in
<complex> (§12.2).

12.5. Random Numbers

Random numbers are useful in many contexts, such as testing, games, simulation, and security. The diversity
of application areas is reflected in the wide selection of random number generators provided by the standard
library in <random>. A random number generator consists of two parts:

[1] an engine that produces a sequence of random or pseudo-random values.

[2] a distribution that maps those values into a mathematical distribution in a range.

Examples of distributions are uniform_int_distribution (where all integers produced are equally likely),
normal_distribution (“the bell curve”), and exponential_distribution (exponential growth); each for
some specified range. For example:

Click here to view code image

using my_engine = default_random_engine; // type of engine
using my_distribution = uniform_int_distribution<>; // type of distribution

my_engine re {}; // the default engine
my_distribution one_to_six {1,6}; // distribution that maps to the ints
1..6
auto die = bind(one_to_six,re); // make a generator

int x = die(); // roll the die: x becomes a value in [1:6]

The standard-library function bind() makes a function object that will invoke its first argument (here,
one_to_six) given its second argument (here, re) as its argument (§11.5.1). Thus a call die() is equivalent
to a call one_to_six(re).

Thanks to its uncompromising attention to generality and performance one expert has deemed the
standard-library random number component “what every random number library wants to be when it grows
up.” However, it can hardly be deemed “novice friendly.” The using statements makes what is being done a
bit more obvious. Instead, I could just have written:

Click here to view code image

auto die = bind(uniform_int_distribution<>{1,6}, default_random_engine{});

Which version is the more readable depends entirely on the context and the reader.

For novices (of any background) the fully general interface to the random number library can be a serious
obstacle. A simple uniform random number generator is often sufficient to get started. For example:

Click here to view code image

Rand_int rnd {1,10}; // make a random number generator for [1:10]
int x = rnd(); // x is a number in [1:10]

141

So, how could we get that? We have to get something like die() inside a class Rand_int:

Click here to view code image

class Rand_int {
public:
 Rand_int(int low, int high) :dist{low,high} { }
 int operator()() { return dist(re); } // draw an int
private:
 default_random_engine re;
 uniform_int_distribution<> dist;
};

That definition is still “expert level,” but the use of Rand_int() is manageable in the first week of a C++
course for novices. For example:

Click here to view code image

int main()
{
 constexpr int max = 8;
 Rand_int rnd {0,max}; // make a uniform random number generator

 vector<int> histogram(max+1); // make a vector of appropriate size
 for (int i=0; i!=200; ++i)
 ++histogram[rnd()]; // fill histogram with the frequencies of numbers
[0:max]

 for (int i = 0; i!=histogram.size(); ++i) { // write out a bar graph
 cout << i << '\t';
 for (int j=0; j!=histogram[i]; ++j) cout << '*';
 cout << endl;
 }
}

The output is a (reassuringly boring) uniform distribution (with reasonable statistical variation):

Click here to view code image

0 *********************
1 ****************
2 *******************
3 ********************
4 ****************
5 ***********************
6 **************************
7 ***********
8 **********************
9 *************************

There is no standard graphics library for C++, so I use “ASCII graphics.” Obviously, there are lots of open
source and commercial graphics and GUI libraries for C++, but in this book I restrict myself to ISO standard
facilities.

12.6. Vector Arithmetic

The vector described in §9.2 was designed to be a general mechanism for holding values, to be flexible, and
to fit into the architecture of containers, iterators, and algorithms. However, it does not support mathematical
vector operations. Adding such operations to vector would be easy, but its generality and flexibility precludes

142

optimizations that are often considered essential for serious numerical work. Consequently, the standard
library provides (in <valarray>) a vector-like template, called valarray, that is less general and more
amenable to optimization for numerical computation:

template<typename T>
class valarray {
 // ...
};

The usual arithmetic operations and the most common mathematical functions are supported for valarrays.
For example:

Click here to view code image

void f(valarray<double>& a1, valarray<double>& a2)
{
 valarray<double> a = a1*3.14+a2/a1; // numeric array operators *, +, /, and =
 a2 += a1*3.14;
 a = abs(a);
 double d = a2[7];
 // ...
}

For more details, see §12.6. In particular, valarray offers stride access to help implement multidimensional
computations.

12.7. Numeric Limits

In <limits>, the standard library provides classes that describe the properties of built-in types – such as the
maximum exponent of a float or the number of bytes in an int; see §12.7. For example, we can assert that a
char is signed:

Click here to view code image

static_assert(numeric_limits<char>::is_signed,"unsigned characters!");
static_assert(100000<numeric_limits<int>::max(),"small ints!");

Note that the second assert (only) works because numeric_limits<int>::max() is a constexpr
function (§1.7).

12.8. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in Chapter
40 of [Stroustrup,2013].

[2] Numerical problems are often subtle. If you are not 100% certain about the mathematical aspects of a
numerical problem, either take expert advice, experiment, or do both; §12.1.

[3] Don’t try to do serious numeric computation using only the bare language; use libraries; §12.1.

[4] Consider accumulate(), inner_product(), partial_sum(), and adjacent_difference()
before you write a loop to compute a value from a sequence; §12.3.

[5] Use std::complex for complex arithmetic; §12.4.

[6] Bind an engine to a distribution to get a random number generator; §12.5.

143

[7] Be careful that your random numbers are sufficiently random; §12.5.

[8] Use valarray for numeric computation when run-time efficiency is more important than flexibility
with respect to operations and element types; §12.6.

[9] Properties of numeric types are accessible through numeric_limits; §12.7.

[10] Use numeric_limits to check that the numeric types are adequate for their use; §12.7.

144

13. Concurrency

Keep it simple:
as simple as possible,

but no simpler.

– A. Einstein

• Introduction

• Tasks and threads

• Passing Arguments

• Returning Results

• Sharing Data

• Waiting for Events

• Communicating Tasks

future and promise; packaged_task; async()

• Advice

13.1. Introduction

Concurrency – the execution of several tasks simultaneously – is widely used to improve throughput (by using
several processors for a single computation) or to improve responsiveness (by allowing one part of a program
to progress while another is waiting for a response). All modern programming languages provide support for
this. The support provided by the C++ standard library is a portable and type-safe variant of what has been
used in C++ for more than 20 years and is almost universally supported by modern hardware. The standard-
library support is primarily aimed at supporting systems-level concurrency rather than directly providing
sophisticated higher-level concurrency models; those can be supplied as libraries built using the standard-
library facilities.

The standard library directly supports concurrent execution of multiple threads in a single address space.
To allow that, C++ provides a suitable memory model and a set of atomic operations. The atomic operations
allows lock-free programming [Dechev,2012]. The memory model ensures that as long as a programmer
avoids data races (uncontrolled concurrent access to mutable data), everything works as one would naively
expect. However, most users will see concurrency only in terms of the standard library and libraries built on
top of that. This section briefly gives examples of the main standard-library concurrency support facilities:
threads, mutexes, lock() operations, packaged_tasks, and futures. These features are built directly
upon what operating systems offer and do not incur performance penalties compared with those. Neither do
they guarantee significant performance improvements compared to what the operating system offers.

Do not consider concurrency a panacea. If a task can be done sequentially, it is often simpler and faster to
do so.

13.2. Tasks and threads

145

We call a computation that can potentially be executed concurrently with other computations a task. A thread
is the system-level representation of a task in a program. A task to be executed concurrently with other tasks is
launched by constructing a std::thread (found in <thread>) with the task as its argument. A task is a
function or a function object:

Click here to view code image

void f(); // function

struct F { // function object
 void operator()(); // F's call operator (§5.5)
};

void user()
{
 thread t1 {f}; // f() executes in separate thread
 thread t2 {F()}; // F()() executes in separate thread

 t1.join(); // wait for t1
 t2.join(); // wait for t2
}

The join()s ensure that we don’t exit user() until the threads have completed. To “join” a thread means to
“wait for the thread to terminate.”

Threads of a program share a single address space. In this, threads differ from processes, which generally
do not directly share data. Since threads share an address space, they can communicate through shared objects
(§13.5). Such communication is typically controlled by locks or other mechanisms to prevent data races
(uncontrolled concurrent access to a variable).

Programming concurrent tasks can be very tricky. Consider possible implementations of the tasks f (a
function) and F (a function object):

Click here to view code image

void f() { cout << "Hello "; }

struct F {
 void operator()() { cout << "Parallel World!\n"; }
};

This is an example of a bad error: Here, f and F() each use the object cout without any form of
synchronization. The resulting output would be unpredictable and could vary between different executions of
the program because the order of execution of the individual operations in the two tasks is not defined. The
program may produce “odd” output, such as

PaHerallllel o World!

When defining tasks of a concurrent program, our aim is to keep tasks completely separate except where they
communicate in simple and obvious ways. The simplest way of thinking of a concurrent task is as a function
that happens to run concurrently with its caller. For that to work, we just have to pass arguments, get a result
back, and make sure that there is no use of shared data in between (no data races).

13.3. Passing Arguments

146

Typically, a task needs data to work upon. We can easily pass data (or pointers or references to the data) as
arguments. Consider:

Click here to view code image

void f(vector<double>& v); // function do something with v

struct F { // function object: do something with v
 vector<double>& v;
 F(vector<double>& vv) :v{vv} { }
 void operator()(); // application operator; §5.5
};

int main()
{
 vector<double> some_vec {1,2,3,4,5,6,7,8,9};
 vector<double> vec2 {10,11,12,13,14};

 thread t1 {f,ref(some_vec)}; // f(some_vec) executes in a separate thread
 thread t2 {F{vec2}}; // F(vec2)() executes in a separate thread

 t1.join();
 t2.join();
}

Obviously, F{vec2} saves a reference to the argument vector in F. F can now use that vector and hopefully
no other task accesses vec2 while F is executing. Passing vec2 by value would eliminate that risk.

The initialization with {f,ref(some_vec)} uses a thread variadic template constructor that can accept
an arbitrary sequence of arguments (§5.6). The ref() is a type function from <functional> that
unfortunately is needed to tell the variadic template to treat some_vec as a reference, rather than as an
object. The compiler checks that the first argument can be invoked given the following arguments and builds
the necessary function object to pass to the thread. Thus, if F::operator()() and f() perform the same
algorithm, the handling of the two tasks are roughly equivalent: in both cases, a function object is constructed
for the thread to execute.

13.4. Returning Results

In the example in §13.3, I pass the arguments by non-const reference. I only do that if I expect the task to
modify the value of the data referred to (§1.8). That’s a somewhat sneaky, but not uncommon, way of
returning a result. A less obscure technique is to pass the input data by const reference and to pass the
location of a place to deposit the result as a separate argument:

Click here to view code image

void f(const vector<double>& v, double* res); // take input from v; place result in
*res
class F {
public:
 F(const vector<double>& vv, double* p) :v{vv}, res{p} { }
 void operator()(); // place result in *res
private:
 const vector<double>& v; // source of input
 double* res; // target for output
};

147

int main()
{
 vector<double> some_vec;
 vector<double> vec2;
 // ...

 double res1;
 double res2;

 thread t1 {f,cref(some_vec),&res1}; // f(some_vec,&res1) executes in a separate
thread
 thread t2 {F{vec2,&res2}}; // F{vec2,&res2}() executes in a separate thread

 t1.join();
 t2.join();

 cout << res1 << ' ' << res2 << '\n';
}

This works and the technique is very common, but I don’t consider returning results through arguments
particularly elegant, so I return to this topic in §13.7.1.

13.5. Sharing Data

Sometimes tasks need to share data. In that case, the access has to be synchronized so that at most one task at
a time has access. Experienced programmers will recognize this as a simplification (e.g., there is no problem
with many tasks simultaneously reading immutable data), but consider how to ensure that at most one task at
a time has access to a given set of objects.

The fundamental element of the solution is a mutex, a “mutual exclusion object.” A thread acquires a
mutex using a lock() operation:

Click here to view code image

mutex m; // controlling mutex
int sh; // shared data

void f()
{
 unique_lock<mutex> lck {m}; // acquire mutex
 sh += 7; // manipulate shared data
} // release mutex implicitly

The unique_lock’s constructor acquires the mutex (through a call m.lock()). If another thread has already
acquired the mutex, the thread waits (“blocks”) until the other thread completes its access. Once a thread has
completed its access to the shared data, the unique_lock releases the mutex (with a call m.unlock()).
When a mutex is released, threads waiting for it resume executing (“are woken up”). The mutual exclusion
and locking facilities are found in <mutex>.

The correspondence between the shared data and a mutex is conventional: the programmer simply has to
know which mutex is supposed to correspond to which data. Obviously, this is error-prone, and equally
obviously we try to make the correspondence clear through various language means. For example:

class Record {
public:
 mutex rm;

148

 // ...
};

It doesn’t take a genius to guess that for a Record called rec, rec.rm is a mutex that you are supposed to
acquire before accessing the other data of rec, though a comment or a better name might have helped a
reader.

It is not uncommon to need to simultaneously access several resources to perform some action. This can
lead to deadlock. For example, if thread1 acquires mutex1 and then tries to acquire mutex2 while
thread2 acquires mutex2 and then tries to acquire mutex1, then neither task will ever proceed further.
The standard library offers help in the form of an operation for acquiring several locks simultaneously:

Click here to view code image

void f()
{
 // ...
 unique_lock<mutex> lck1 {m1,defer_lock}; // defer_lock: don't yet try to acquire
the mutex
 unique_lock<mutex> lck2 {m2,defer_lock};
 unique_lock<mutex> lck3 {m3,defer_lock};
 // ...
 lock(lck1,lck2,lck3); // acquire all three locks
 // ... manipulate shared data ...
} // implicitly release all mutexes

This lock() will proceed only after acquiring all its mutex arguments and will never block (“go to sleep”)
while holding a mutex. The destructors for the individual unique_locks ensure that the

mutexes are released when a thread leaves the scope.

Communicating through shared data is pretty low level. In particular, the programmer has to devise ways
of knowing what work has and has not been done by various tasks. In that regard, use of shared data is inferior
to the notion of call and return. On the other hand, some people are convinced that sharing must be more
efficient than copying arguments and returns. That can indeed be so when large amounts of data are involved,
but locking and unlocking are relatively expensive operations. On the other hand, modern machines are very
good at copying data, especially compact data, such as vector elements. So don’t choose shared data for
communication because of “efficiency” without thought and preferably not without measurement.

13.6. Waiting for Events

Sometimes, a thread needs to wait for some kind of external event, such as another thread completing a
task or a certain amount of time having passed. The simplest “event” is simply time passing. Using the time
facilities found in <chrono> I can write:

Click here to view code image

using namespace std::chrono; // see §11.4

auto t0 = high_resolution_clock::now();
this_thread::sleep_for(milliseconds{20});
auto t1 = high_resolution_clock::now();

cout << duration_cast<nanoseconds>(t1-t0).count() << " nanoseconds passed\n";

149

Note that I didn’t even have to launch a thread; by default, this_thread refers to the one and only thread.

I used duration_cast to adjust the clock’s units to the nanoseconds I wanted.

The basic support for communicating using external events is provided by condition_variables found
in <condition_variable>. A condition_variable is a mechanism allowing one thread to wait for
another. In particular, it allows a thread to wait for some condition (often called an event) to occur as the
result of work done by other threads.

Using condition_variables supports many forms of elegant and efficient sharing, but can be rather
tricky. Consider the classical example of two threads communicating by passing messages through a queue.
For simplicity, I declare the queue and the mechanism for avoiding race conditions on that queue global to
the producer and consumer:

Click here to view code image

class Message { // object to be communicated
 // ...
};

queue<Message> mqueue; // the queue of messages
condition_variable mcond; // the variable communicating events
mutex mmutex; // the locking mechanism

The types queue, condition_variable, and mutex are provided by the standard library.

The consumer() reads and processes Messages:

Click here to view code image

void consumer()
{
 while(true) {
 unique_lock<mutex> lck{mmutex}; // acquire mmutex
 while (mcond.wait(lck)) /* do nothing */; // release lck and wait;
 // re-acquire lck upon wakeup
 auto m = mqueue.front(); // get the message
 mqueue.pop();
 lck.unlock(); // release lck
 // ... process m ...
 }
}

Here, I explicitly protect the operations on the queue and on the condition_variable with a

unique_lock on the mutex. Waiting on condition_variable releases its lock argument until the
wait is over (so that the queue is non-empty) and then reacquires it.

The corresponding producer looks like this:

Click here to view code image

void producer()
{
 while(true) {
 Message m;
 // ... fill the message ...
 unique_lock<mutex> lck {mmutex}; // protect operations
 mqueue.push(m);

150

 mcond.notify_one(); // notify
 } // release lock (at end of scope)
}

13.7. Communicating Tasks

The standard library provides a few facilities to allow programmers to operate at the conceptual level of tasks
(work to potentially be done concurrently) rather than directly at the lower level of threads and locks:

[1] future and promise for returning a value from a task spawned on a separate thread

[2] packaged_task to help launch tasks and connect up the mechanisms for returning a result

[3] async() for launching of a task in a manner very similar to calling a function. These facilities are
found in <future>.

13.7.1. future and promise

The important point about future and promise is that they enable a transfer of a value between two tasks
without explicit use of a lock; “the system” implements the transfer efficiently. The basic idea is simple: When
a task wants to pass a value to another, it puts the value into a promise. Somehow, the implementation
makes that value appear in the corresponding future, from which it can be read (typically by the launcher of
the task). We can represent this graphically:

If we have a future<X> called fx, we can get() a value of type X from it:

Click here to view code image

X v = fx.get(); // if necessary, wait for the value to get computed

If the value isn’t there yet, our thread is blocked until it arrives. If the value couldn’t be computed,

get() might throw an exception (from the system or transmitted from the task from which we were trying
to get() the value).

The main purpose of a promise is to provide simple “put” operations (called set_value() and
set_exception()) to match future’s get(). The names “future” and “promise” are historical; please don’t
blame or credit me. They are yet another fertile source of puns.

If you have a promise and need to send a result of type X to a future, you can do one of two things: pass
a value or pass an exception. For example:

Click here to view code image

void f(promise<X>& px) // a task: place the result in px
{
 // ...
 try {
 X res;
 // ... compute a value for res ...
 px.set_value(res);

151

 }
 catch (...) { // oops: couldn't compute res
 px.set_exception(current_exception()); // pass the exception to the future's
thread
 }
}

The current_exception() refers to the caught exception.

To deal with an exception transmitted through a future, the caller of get() must be prepared to catch it
somewhere. For example:

Click here to view code image

void g(future<X>& fx) // a task: get the result from fx
{
 // ...
 try {
 X v = fx.get(); // if necessary, wait for the value to get computed
 // ... use v ...
 }
 catch (...) { // oops: someone couldn't compute v
 // ... handle error ...
 }
}

If the error doesn’t need to be handled by g() itself, the code reduces to the minimal:

Click here to view code image

void g(future<X>& fx) // a task: get the result from fx
{
 // ...
 X v = fx.get(); // if necessary, wait for the value to get computed
 // ... use v ...
}

13.7.2. packaged_task

How do we get a future into the task that needs a result and the corresponding promise into the thread
that should produce that result? The packaged_task type is provided to simplify setting up tasks
connected with futures and promises to be run on thread futures. A packaged_task provides wrapper
code to put the return value or exception from the task into a promise (like the code shown in §13.7.1). If
you ask it by calling get_future, a packaged_task will give you the future corresponding to its
promise. For example, we can set up two tasks to each add half of the elements of a vector<double>
using the standard-library accumulate() (§12.3):

Click here to view code image

double accum(double* beg, double* end, double init)
 // compute the sum of [beg:end) starting with the initial value init
{
 return accumulate(beg,end,init);
}

double comp2(vector<double>& v)
{
 using Task_type = double(double*,double*,double); // type of task
 packaged_task<Task_type> pt0 {accum}; // package the task

152

(i.e., accum)
 packaged_task<Task_type> pt1 {accum};

 future<double> f0 {pt0.get_future()}; // get hold of pt0's future
 future<double> f1 {pt1.get_future()}; // get hold of pt1's future

 double* first = &v[0];
 thread t1 {move(pt0),first,first+v.size()/2,0}; // start a thread for pt0
 thread t2 {move(pt1),first+v.size()/2,first+v.size(),0}; // start athread for
pt1

 // ...

 return f0.get()+f1.get(); // get the results
}

The packaged_task template takes the type of the task as its template argument (here Task_type, an
alias for double(double *, double *,double)) and the task as its constructor argument (here, accum).
The move() operations are needed because a packaged_task cannot be copied. The reason that a
packaged_task cannot be copied is that it is a resource handle: it owns its promise and is (indirectly)
responsible for whatever resoures its task may own.

Please note the absence of explicit mention of locks in this code: we are able to concentrate on tasks to be
done, rather than on the mechanisms used to manage their communication. The two tasks will be run on
separate threads and thus potentially in parallel.

13.7.3. async()

The line of thinking I have pursued in this chapter is the one I believe to be the simplest yet still among the
most powerful: Treat a task as a function that may happen to run concurrently with other tasks. It is far from
the only model supported by the C++ standard library, but it serves well for a wide range of needs. More
subtle and tricky models, e.g., styles of programming relying on shared memory, can be used as needed.

To launch tasks to potentially run asynchronously, we can use async():

Click here to view code image

double comp4(vector<double>& v)
 // spawn many tasks if v is large enough
{
 if (v.size()<10000) // is it worth using concurrency?
 return accum(v.begin(),v.end(),0.0);

 auto v0 = &v[0];
 auto sz = v.size();

 auto f0 = async(accum,v0,v0+sz/4,0.0); // first quarter
 auto f1 = async(accum,v0+sz/4,v0+sz/2,0.0); // second quarter
 auto f2 = async(accum,v0+sz/2,v0+sz*3/4,0.0); // third quarter
 auto f3 = async(accum,v0+sz*3/4,v0+sz,0.0); // fourth quarter

 return f0.get()+f1.get()+f2.get()+f3.get(); // collect and combine the results
}

Basically, async() separates the “call part” of a function call from the “get the result part,” and separates both
from the actual execution of the task. Using async(), you don’t have to think about threads and locks.

153

Instead, you think just in terms of tasks that potentially compute their results asynchronously. There is an
obvious limitation: Don’t even think of using async() for tasks that share resources needing locking – with
async() you don’t even know how many threads will be used because that’s up to async() to decide based
on what it knows about the system resources available at the time of a call. For example, async() may check
whether any idle cores (processors) are available before deciding how many threads to use.

Using a guess about the cost of computation relative to the cost of launching a thread, such as

v.size()<10000, is very primitive and prone to gross mistakes about performance. However, this is not
the place for a proper disussion about how to manage threads. Don’t take this estimate as more than a
simple and probably poor guess.

Please note that async() is not just a mechanism specialized for parallel computation for increased
performance. For example, it can also be used to spawn a task for getting information from a user, leaving the
“main program” active with something else (§13.7.3).

13.8. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in
Chapters 41-42 of [Stroustrup,2013].

[2] Use concurrency to improve responsiveness or to improve throughput; §13.1.

[3] Work at the highest level of abstraction that you can afford; §13.1.

[4] Consider processes as an alternative to threads; §13.1.

[5] The standard-library concurrency facilities are type safe; §13.1.

[6] The memory model exists to save most programmers from having to think about the machine
architecture level of computers; §13.1.

[7] The memory model makes memory appear roughly as naively expected; §13.1.

[8] Atomics allow for lock-free programming; §13.1.

[9] Leave lock-free programming to experts; §13.1.

[10] Sometimes, a sequential solution is simpler and faster than a concurrent solution; §13.1.

[11] Avoid data races; §13.1, §13.2.

[12] A thread is a type-safe interface to a system thread; §13.2.

[13] Use join() to wait for a thread to complete; §13.2.

[14] Avoid explicitly shared data whenever you can; §13.2.

[15] Use unique_lock to manage mutexes; §13.5.

[16] Use lock() to acquire multiple locks; §13.5.

[17] Use condition_variables to manage communication among threads; §13.6.

[18] Think in terms of tasks that can be executed concurrently, rather than directly in terms of

threads; §13.7.

[19] Value simplicity; §13.7.

154

[20] Prefer packaged_task and futures over direct use of threads and mutexes; §13.7.

[21] Return a result using a promise and get a result from a future; §13.7.1.

[22] Use packaged_tasks to handle exceptions thrown by tasks and to arrange for value return; §13.7.2.

[23] Use a packaged_task and a future to express a request to an external service and wait for its
response; §13.7.2.

[24] Use async() to launch simple tasks; §13.7.3.

155

14. History and Compatibility

Hurry Slowly
(festina lente).

– Octavius, Caesar Augustus

• History

Timeline; The Early Years; The ISO C++ Standards

• C++11 Extensions

Language Features; Standard-Library Components; Deprecated Features; Casts

• C/C++ Compatibility

C and C++ Are Siblings; Compatibility Problems

• Bibliography

• Advice

14.1. History

I invented C++, wrote its early definitions, and produced its first implementation. I chose and formulated the
design criteria for C++, designed its major language features, developed or helped to develop many of the early
libraries, and was responsible for the processing of extension proposals in the C++ standards committee.

C++ was designed to provide Simula’s facilities for program organization [Dahl,1970] together with C’s
efficiency and flexibility for systems programming [Kernighan,1978]. Simula is the initial source of C++’s
abstraction mechanisms. The class concept (with derived classes and virtual functions) was borrowed from it.
However, templates and exceptions came to C++ later with different sources of inspiration.

The evolution of C++ was always in the context of its use. I spent a lot of time listening to users and
seeking out the opinions of experienced programmers. In particular, my colleagues at AT&T Bell
Laboratories were essential for the growth of C++ during its first decade.

This section is a brief overview; it does not try to mention every language feature and library component.
Furthermore, it does not go into details. For more information, and in particular for more names of people
who contributed, see [Stroustrup,1993], [Stroustrup,2007], and [Stroustrup,1994]. My two papers from the
ACM History of Programming Languages conference and my Design and Evolution of C++ book (known as
“D&E”) describe the design and evolution of C++ in detail and document influences from other programming
languages.

Most of the documents produced as part of the ISO C++ standards effort are available online [WG21]. In
my FAQ, I try to maintain a connection between the standard facilities and the people who proposed and
refined those facilities [Stroustrup,2010]. C++ is not the work of a faceless, anonymous committee or of a
supposedly omnipotent “dictator for life”; it is the work of many dedicated, experienced, hard-working
individuals.

14.1.1. Timeline

156

The work that led to C++ started in the fall of 1979 under the name “C with Classes.” Here is a simplified
timeline:

1979 Work on “C with Classes” started. The initial feature set included classes and derived classes,
public/private access control, constructors and destructors, and function declarations with argument
checking. The first library supported non-preemptive concurrent tasks and random number generators.

1984 “C with Classes” was renamed to C++. By then, C++ had acquired virtual functions, function and
operator overloading, references, and the I/O stream and complex number libraries.

1985 First commercial release of C++ (October 14). The library included I/O streams, complex numbers,
and tasks (non-preemptive scheduling).

1985 The C++ Programming Language (“TC++PL,” October 14) [Stroustrup,1986].

1989 The Annotated C++ Reference Manual (“the ARM”) [Ellis,1989].

1991 The C++ Programming Language, Second Edition [Stroustrup,1991], presenting generic
programming using templates and error handling based on exceptions (including the “Resource
Acquisition Is Initialization” general resource management idiom).

1997 The C++ Programming Language, Third Edition [Stroustrup,1997] introduced ISO C++, including
namespaces, dynamic_cast, and many refinements of templates. The standard library added the STL
framework of generic containers and algorithms.

1998 ISO C++ standard [C++,1998].

2002 Work on a revised standard, colloquially named C++0x, started.

2003 A “bug fix” revision of the ISO C++ standard was issued. A C++ Technical Report introduced new
standard-library components, such as regular expressions, unordered containers (hash tables), and
resource management pointers, which later became part of C++0x.

2006 An ISO C++ Technical Report on Performance was issued to answer questions of cost,
predictability, and techniques, mostly related to embedded systems programming [C++,2004].

2009 C++0x was feature complete. It provided uniform initialization, move semantics, variadic template
arguments, lambda expressions, type aliases, a memory model suitable for concurrency, and much more.
The standard library added several components, including threads, locks, and most of the components
from the 2003 Technical Report.

2011 ISO C++11 standard was formally approved [C++,2011].

2012 Work on future ISO C++ standards (referred to as C++14 and C++17) started.

2013 The first complete C++11 implementations emerged.

2013 The C++ Programming Language, Fourth Edition introduced C++11.

During development, C++11 was known as C++0x. As is not uncommon in large projects, we were overly
optimistic about the completion date.

14.1.2. The Early Years

I originally designed and implemented the language because I wanted to distribute the services of a UNIX

157

kernel across multiprocessors and local-area networks (what are now known as multicores and clusters). For
that, I needed some event-driven simulations for which Simula would have been ideal, except for performance
considerations. I also needed to deal directly with hardware and provide high-performance concurrent
programming mechanisms for which C would have been ideal, except for its weak support for modularity and
type checking. The result of adding Simula-style classes to C (Classic C; §14.3.1), “C with Classes,” was used
for major projects in which its facilities for writing programs that use minimal time and space were severely
tested. It lacked operator overloading, references, virtual functions, templates, exceptions, and many, many
details [Stroustrup,1982]. The first use of C++ outside a research organization started in July 1983.

The name C++ (pronounced “see plus plus”) was coined by Rick Mascitti in the summer of 1983 and
chosen as the replacement for “C with Classes” by me. The name signifies the evolutionary nature of the
changes from C; “++” is the C increment operator. The slightly shorter name “C+” is a syntax error; it had also
been used as the name of an unrelated language. Connoisseurs of C semantics find C++ inferior to ++C. The
language was not called D, because it was an extension of C, because it did not attempt to remedy problems
by removing features, and because there already existed several would-be C successors named D. For yet
another interpretation of the name C++, see the appendix of [Orwell,1949].

C++ was designed primarily so that my friends and I would not have to program in assembler, C, or various
then-fashionable high-level languages. Its main purpose was to make writing good programs easier and more
pleasant for the individual programmer. In the early years, there was no C++ paper design; design,
documentation, and implementation went on simultaneously. There was no “C++ project” either, or a “C++
design committee.” Throughout, C++ evolved to cope with problems encountered by users and as a result of
discussions among my friends, my colleagues, and me.

The very first design of C++ (then called “C with Classes”) included function declarations with argument
type checking and implicit conversions, classes with the public/private distinction between the interface
and the implementation, derived classes, and constructors and destructors. I used macros to provide primitive
parameterization. This was in non-experimental use by mid-1980. Late that year, I was able to present a set of
language facilities supporting a coherent set of programming styles. In retrospect, I consider the introduction
of constructors and destructors most significant. In the terminology of the time, “a constructor creates the
execution environment for the member functions and the destructor reverses that.” Here is the root of C++’s
strategies for resource management (causing a demand for exceptions) and the key to many techniques for
making user code short and clear. If there were other languages at the time that supported multiple
constructors capable of executing general code, I didn’t (and don’t) know of them. Destructors were new in
C++.

C++ was released commercially in October 1985. By then, I had added inlining (§1.4, §4.2.1), consts
(§1.7), function overloading (§1.4), references (§1.8), operator overloading (§4.2.1), and virtual functions
(§4.4). Of these features, support for run-time polymorphism in the form of virtual functions was by far the
most controversial. I knew its worth from Simula but found it impossible to convince most people in the
systems programming world of its value. Systems programmers tended to view indirect function calls with
suspicion, and people acquainted with other languages supporting object-oriented programming had a hard
time believing that virtual functions could be fast enough to be useful in systems code. Conversely, many

158

programmers with an object-oriented background had (and many still have) a hard time getting used to the

idea that you use virtual function calls only to express a choice that must be made at run time. The resistance
to virtual functions may be related to a resistance to the idea that you can get better systems through more
regular structure of code supported by a programming language. Many C programmers seem convinced that
what really matters is complete flexibility and careful individual crafting of every detail of a program. My view
was (and is) that we need every bit of help we can get from languages and tools: the inherent complexity of the
systems we are trying to build is always at the edge of what we can express.

Much of the design of C++ was done on the blackboards of my colleagues. In the early years, the feedback
from Stu Feldman, Alexander Fraser, Steve Johnson, Brian Kernighan, Doug McIlroy, and Dennis Ritchie
was invaluable.

In the second half of the 1980s, I continued to add language features in response to user comments. The
most important of those were templates [Stroustrup,1988] and exception handling [Koenig,1990], which were
considered experimental at the time the standards effort started. In the design of templates, I was forced to
decide among flexibility, efficiency, and early type checking. At the time, nobody knew how to simultaneously
get all three. To compete with C-style code for demanding systems applications, I felt that I had to choose the
first two properties. In retrospect, I think the choice was the correct one, and the search for better type
checking of templates continues [DosReis,2006] [Gregor,2006] [Sutton,2011] [Stroustrup,2012a]. The
design of exceptions focused on multilevel propagation of exceptions, the passing of arbitrary information to
an error handler, and the integration between exceptions and resource management by using local objects with
destructors to represent and release resources (what I clumsily called Resource Acquisition Is Initialization;
§4.2.2).

I generalized C++’s inheritance mechanisms to support multiple base classes [Stroustrup,1987a]. This was
called multiple inheritance and was considered difficult and controversial. I considered it far less important than
templates or exceptions. Multiple inheritance of abstract classes (often called interfaces) is now universal in
languages supporting static type checking and object-oriented programming.

The C++ language evolved hand in hand with some of the key library facilities presented in this book. For
example, I designed the complex [Stroustrup,1984], vector, stack, and (I/O) stream [Stroustrup,1985] classes
together with the operator overloading mechanisms. The first string and list classes were developed by
Jonathan Shopiro and me as part of the same effort. Jonathan’s string and list classes were the first to see
extensive use as part of a library. The string class from the standard C++ library has its roots in these early
efforts. The task library described in [Stroustrup,1987b] was part of the first “C with Classes” program ever
written in 1980. I wrote it and its associated classes to support Simula-style simulations. Unfortunately, we
had to wait until 2011 (30 years!) to get concurrency support standardized and universally available (Chapter
13). The development of the template facility was influenced by a variety of vector, map, list, and sort
templates devised by Andrew Koenig, Alex Stepanov, me, and others.

The most important innovation in the 1998 standard library was the inclusion of the STL, a framework of
algorithms and containers, in the standard library (Chapter 9, Chapter 10). It was the work of Alex Stepanov
(with Dave Musser, Meng Lee, and others) based on more than a decade’s work on generic programming.
The STL has been massively influential within the C++ community and beyond.

159

C++ grew up in an environment with a multitude of established and experimental programming languages
(e.g., Ada [Ichbiah,1979], Algol 68 [Woodward,1974], and ML [Paulson,1996]). At the time, I was
comfortable in about 25 languages, and their influences on C++ are documented in [Stroustrup,1994] and
[Stroustrup,2007]. However, the determining influences always came from the applications I encountered.
That was a deliberate policy to have the development of C++ “problem driven” rather than imitative.

14.1.3. The ISO C++ Standards

The explosive growth of C++ use caused some changes. Sometime during 1987, it became clear that formal
standardization of C++ was inevitable and that we needed to start preparing the ground for a standardization
effort [Stroustrup,1994]. The result was a conscious effort to maintain contact between implementers of C++
compilers and major users. This was done through paper and electronic mail and through face-to-face
meetings at C++ conferences and elsewhere.

AT&T Bell Labs made a major contribution to C++ and its wider community by allowing me to share
drafts of revised versions of the C++ reference manual with implementers and users. Because many of those
people worked for companies that could be seen as competing with AT&T, the significance of this
contribution should not be underestimated. A less enlightened company could have caused major problems of
language fragmentation simply by doing nothing. As it happened, about a hundred individuals from dozens of
organizations read and commented on what became the generally accepted reference manual and the base
document for the ANSI C++ standardization effort. Their names can be found in The Annotated C++ Reference
Manual (“the ARM”) [Ellis,1989]. The X3J16 committee of ANSI was convened in December 1989 at the
initiative of Hewlett-Packard. In June 1991, this ANSI (American national) standardization of C++ became
part of an ISO (international) standardization effort for C++ and named WG21. From 1990, these joint C++
standards committees have been the main forum for the evolution of C++ and the refinement of its definition.
I served on these committees throughout. In particular, as the chairman of the working group for extensions
(later called the evolution group), I was directly responsible for handling proposals for major changes to C++
and the addition of new language features. An initial draft standard for public review was produced in April
1995. The first ISO C++ standard (ISO/IEC 14882-1998) [C++,1998] was ratified by a 22-0 national vote in
1998. A “bug fix release” of this standard was issued in 2003, so you sometimes hear people refer to C++03,
but that is essentially the same language as C++98.

The current C++, C++11, known for years as C++0x, is the work of the members of WG21. The
committee worked under increasingly onerous self-imposed processes and procedures. These processes
probably led to a better (and more rigorous) specification, but they also limited innovation [Stroustrup,2007].
An initial draft standard for public review was produced in 2009. The second ISO C++ standard (ISO/IEC
14882-2011) [C++,2011] was ratified by a 21-0 national vote in August 2011.

One reason for the long gap between the two standards is that most members of the committee (including
me) were under the mistaken impression that the ISO rules required a “waiting period” after a standard was
issued before starting work on new features. Consequently, serious work on new language features did not
start until 2002. Other reasons included the increased size of modern languages and their foundation libraries.
In terms of pages of standards text, the language grew by about 30% and the standard library by about 100%.

160

Much of the increase was due to more detailed specification, rather than new functionality. Also, the work on
a new C++ standard obviously had to take great care not to compromise older code through incompatible
changes. There are billions of lines of C++ code in use that the committee must not break.

C++11 added massively to the standard library and pushed to complete the feature set needed for a
programming style that is a synthesis of the “paradigms” and idioms that have proven successful with C++98.
The overall aims for the C++11 effort were:

• Make C++ a better language for systems programming and library building.

• Make C++ easier to teach and learn.

The aims are documented and detailed in [Stroustrup,2007].

A major effort was made to make concurrent systems programming type-safe and portable. This involved a
memory model (§13.1) and a set of facilities for lock-free programming, which is primarily the work of Hans
Boehm, Brian McKnight, and others. On top of that, we added the threads library.

14.2. C++11 Extensions

Here, I list the language features and standard-library components that have been added to C++ for the
C++11 standard.

14.2.1. Language Features

Looking at a list of language features can be quite bewildering. Remember that a language feature is not
meant to be used in isolation. In particular, most features that are new in C++11 make no sense in isolation
from the framework provided by older features.

[1] Uniform and general initialization using {}-lists (§1.5, §4.2.3)

[2] Type deduction from initializer: auto (§1.5)

[3] Prevention of narrowing (§1.5)

[4] Generalized and guaranteed constant expressions: constexpr (§1.7)

[5] Range-for-statement (§1.8)

[6] Null pointer keyword: nullptr (§1.8)

[7] Scoped and strongly typed enums: enum class (§2.5)

[8] Compile-time assertions: static_assert (§3.4.3)

[9] Language mapping of {}-list to std::initializer_list (§4.2.3)

[10] Rvalue references (enabling move semantics; §4.6.2)

[11] Nested template arguments ending with >> (no space between the >s)

[12] Lambdas (§5.5)

[13] Variadic templates (§5.6)

[14] Type and template aliases (§5.7)

[15] Unicode characters

[16] long long integer type

161

[17] Alignment controls: alignas and alignof

[18] The ability to use the type of an expression as a type in a declaration: decltype

[19] Raw string literals (§7.3)

[20] Generalized POD (“Plain Old Data”)

[21] Generalized unions

[22] Local classes as template arguments

[23] Suffix return type syntax

[24] A syntax for attributes and two standard attributes: [[carries_dependency]] and [[noreturn]]

[25] Preventing exception propagation: the noexcept specifier (§3.4.1)

[26] Testing for the possibility of a throw in an expression: the noexcept operator.

[27] C99 features: extended integral types (i.e., rules for optional longer integer types); concatenation of
narrow/wide strings; __STDC_HOSTED__; _Pragma(X); vararg macros and empty macro
arguments

[28] __func__ as the name of a string holding the name of the current function

[29] inline namespaces

[30] Delegating constructors

[31] In-class member initializers

[32] Control of defaults: default and delete (§4.6.5)

[33] Explicit conversion operators

[34] User-defined literals

[35] More explicit control of template instantiation: extern templates

[36] Default template arguments for function templates

[37] Inheriting constructors

[38] Override controls: override and final (§4.5.1)

[39] Simpler and more general SFINAE rule

[40] Memory model (§13.1)

[41] Thread-local storage: thread_local

For a more complete description of the changes to C++98 in C++11, see [Stroustrup,2013].

14.2.2. Standard-Library Components

The C++11 additions to the standard library come in two forms: new components (such as the regular
expression matching library) and improvements to C++98 components (such as move constructors for
containers).

[1] initializer_list constructors for containers (§4.2.3)

[2] Move semantics for containers (§4.6.2, §9.2)

162

[3] A singly-linked list: forward_list (§9.6)

[4] Hash containers: unordered_map, unordered_multimap, unordered_set, and
unordered_multiset (§9.6, §9.5)

[5] Resource management pointers: unique_ptr, shared_ptr, and weak_ptr (§11.2.1)

[6] Concurrency support: thread (§13.2), mutexes (§13.5), locks (§13.5), and condition variables (§13.6)

[7] Higher-level concurrency support: packaged_thread, future, promise, and async() (§13.7)

[8] tuples (§11.3.3)

[9] Regular expressions: regex (§7.3)

[10] Random numbers: uniform_int_distribution, normal_distribution, random_engine, etc.
(§12.5)

[11] Integer type names, such as int16_t, uint32_t, and int_fast64_t

[12] A fixed-sized contiguous sequence container: array (§11.3.1)

[13] Copying and rethrowing exceptions (§13.7.1)

[14] Error reporting using error codes: system_error

[15] emplace() operations for containers

[16] Wide use of constexpr functions

[17] Systematic use of noexcept functions

[18] Improved function adaptors: function and bind() (§11.5)

[19] string to numeric value conversions

[20] Scoped allocators

[21] Type traits, such as is_integral and is_base_of (§11.6.2)

[22] Time utilities: duration and time_point (§11.4)

[23] Compile-time rational arithmetic: ratio

[24] Abandoning a process: quick_exit

[25] More algorithms, such as move(), copy_if(), and is_sorted() (Chapter 10)

[26] Garbage collection ABI (§4.6.4)

[27] Low-level concurrency support: atomics

14.2.3. Deprecated Features

By deprecating a feature, the standards committee expresses the wish that the feature will go away. However,
the committee does not have a mandate to immediately remove a heavily used feature – however redundant or
dangerous it may be. Thus, a deprecation is a strong hint to avoid the feature. It may disappear in the future.
Compilers are likely to issue warnings for uses of deprecated features. However, deprecated features are part of
the standard and history shows that unfortunately they tend to remain supported “forever” for reasons of
compatibility.

163

• Generation of the copy constructor and the copy assignment is deprecated for a class with a destructor.

• It is no longer allowed to assign a string literal to a char *. Instead of char * as a target for
assignment and initializations with string literals, use const char * or auto.

• C++98 exception specifications are deprecated:

Click here to view code image

void f() throw(X,Y); // C++98; now deprecated

The support facilities for exception specifications, unexcepted_handler, set_unexpected(),
get_unexpected(), and unexpected(), are similarly deprecated. Instead, use noexcept
(§3.4.1).

• Some C++ standard-library function objects and associated functions are deprecated. Most relate to
argument binding. Instead use lambdas, bind, and function (§11.5).

• The auto_ptr is deprecated. Instead, use unique_ptr (§11.2.1).

• The use of the storage specifier register is deprecated.

• The use of ++ on a bool is deprecated.

In addition, the committee did remove the essentially unused export feature, because it was complex and not
shipped by the major vendors.

14.2.4. Casts

C-style casts should have been deprecated in favor of named casts. The named casts are:

• static_cast: for reasonably well-behaved conversions, such as from a pointer to a base to its derived
class.

• reinterpret_cast: For really nasty, non-portable conversions, such as conversion of an int to a
pointer type.

• const_cast: For casting away const.

For example:

Click here to view code image

Widget* pw = static_cast<Widget*>(pv); // pv is a void* supposed to point to
a Widget
auto dd = reintrepret_cast<Device_driver*>(0xFF00); // 0xFF is supposed to point to
a device driver
char* pc = const_cast<char*>("Casts are inherently dangerous");

A literal starting with 0x is a hexadecimal (base 16) integer.

Programmers should seriously consider banning C-style casts from their own programs. Where explicit
type conversion is necessary, a combination of named casts can do what a C-style cast can. The named casts
should be preferred because they are more explicit and more visible.

Expricit type conversion can be completely avoided in most high-level code, so consider every cast
(however expressed) a blemish on your design. Consider defining a function narrow_cast<T>(v) that
checks if the value v can be represented as a T without loss of information (without narrowing) and throws an

164

exception if it cannot For class hierachy navigation, prefer the checked dynamic_cast (§4.5.3).

14.3. C/C++ Compatibility

With minor exceptions, C++ is a superset of C (meaning C11; [C11]). Most differences stem from C++’s
greater emphasis on type checking. Well-written C programs tend to be C++ programs as well. A compiler
can diagnose every difference between C++ and C. The C99/C++11 incompatibilities are listed in §iso.C. At
the time of writing, C11 is still very new and most C code is Classic C or C99 [C99].

14.3.1. C and C++ Are Siblings

Classic C has two main descendants: ISO C and ISO C++. Over the years, these languages have evolved at
different paces and in different directions. One result of this is that each language provides support for
traditional C-style programming in slightly different ways. The resulting incompatibilities can make life
miserable for people who use both C and C++, for people who write in one language using libraries
implemented in the other, and for implementers of libraries and tools for C and C++.

How can I call C and C++ siblings? Clearly, C++ is a descendant of C. However, look at a simplified
family tree:

A solid line means a massive inheritance of features, a dashed line a borrowing of major features, and a dotted
line a borrowing of minor features. From this, ISO C and ISO C++ emerge as the two major descendants of
K&R C [Kernighan,1978], and as siblings. Each carries with it the key aspects of Classic C, and neither is
100% compatible with Classic C. I picked the term “Classic C” from a sticker that used to be affixed to
Dennis Ritchie’s terminal. It is K&R C plus enumerations and struct assignment. BCPL is defined by
[Richards,1980] and C89 by [C90].

165

Incompatibilities are nasty for programmers in part because they create a combinatorial explosion of
alternatives. Consider a simple Venn diagram:

The areas are not to scale. Both C++11 and C11 have most of K&R C as a subset. C++11 has most of C11 as
a subset. There are features belonging to most of the distinct areas. For example:

Note that differences between C and C++ are not necessarily the result of changes to C made in C++. In
several cases, the incompatibilities arise from features adopted incompatibly into C long after they were
common in C++. Examples are the ability to assign a T * to a void * and the linkage of global consts
[Stroustrup,2002]. Sometimes, a feature was even incompatibly adopted into C after it was part of the ISO
C++ standard, such as details of the meaning of inline.

14.3.2. Compatibility Problems

There are many minor incompatibilities between C and C++. All can cause problems for a programmer, but
all can be coped with in the context of C++. If nothing else, C code fragments can be compiled as C and
linked to using the extern "C" mechanism.

The major problems for converting a C program to C++ are likely to be:

• Suboptimal design and programming style.

• A void * implicitly converted to a T * (that is, converted without a cast).

• C++ keywords used as identifiers in C code.

• Incomparible linkage between code fragments compiled as C and code fragments compiled as C++.

14.3.2.1. Style Problems

166

Natually, a C program is written in a C style, such as the style used in K&R [Kernighan,1988]. This implies
widespread use of pointers and arrays, and probably many macros. These facilities are hard to use reliably in a
large program. Resource management and error handling are often ad hoc, documented (rather than language
and tool supported), and often incompletely documented and adhered to. A simple line-for-line conversion of
a C program into a C++ program yields a program that is often a bit better checked. In fact, I have never
converted a C program into C++ without finding some bug. However, the fundamental structure is
unchanged, and so are the fundamental sources of errors. If you had incomplete error handling, resource leaks,
or buffer overflows in the original C program, they will still be there in the C++ version. To obtain major
benefits, you must make changes to the fundamental structure of the code:

[1] Don’t think of C++ as C with a few features added. C++ can be used that way, but only suboptimally.
To get really major advantages from C++ as compared to C, you need to apply different design and
implementation styles.

[2] Use the C++ standard library as a teacher of new techniques and programming styles. Note the
difference from the C standard library (e.g., = rather than strcpy() for copying and == rather than
strcmp() for comparing).

[3] Macro substitution is almost never necessary in C++. Use const (§1.7), constexpr (§1.7), enum
or enum class (§2.5) to define manifest constants, inline (§4.2.1) to avoid function-calling overhead,
templates (Chapter 5) to specify families of functions and types, and namespaces (§3.3) to avoid
name clashes.

[4] Don’t declare a variable before you need it, and initialize it immediately. A declaration can occur
anywhere a statement can (§1.9), in for-statement initializers (§1.8), and in conditions (§4.5.3).

[5] Don’t use malloc(). The new operator (§4.2.2) does the same job better, and instead of
realloc(), try a vector (§4.2.3, §10.1). Don’t just replace malloc() and free() with “naked” new
and delete (§4.2.2).

[6] Avoid void *, unions, and casts, except deep within the implementation of some function or class.
Their use limits the support you can get from the type system and can harm performance. In most cases,
a cast is an indication of a design error.

[7] If you must use an explicit type conversion, use an appropriate named cast (e.g., static_cast;
§14.2.3) for a more precise statement of what you are trying to do.

[8] Minimize the use of arrays and C-style strings. C++ standard-library strings (§7.2), arrays
(§11.3.1), and vectors (§9.2) can often be used to write simpler and more maintainable code compared
to the traditional C style. In general, try not to build yourself what has already been provided by the
standard library.

[9] Avoid pointer arithmetic except in very specialized code (such as a memory manager) and for simple
array traversal (e.g., ++p).

[10] Do not assume that something laboriously written in C style (avoiding C++ features such as classes,
templates, and exceptions) is more efficient than a shorter alternative (e.g., using standard-library
facilities). Often (but of course not always), the opposite is true.

167

14.3.2.2. void *

In C, a void * may be used as the right-hand operand of an assignment to or initialization of a variable of any
pointer type; in C++ it may not. For example:

Click here to view code image

void f(int n)
{
 int* p = malloc(n*sizeof(int)); /* not C++; in C++, allocate using "new" */
 // ...
}

This is probably the single most difficult incompatibility to deal with. Note that the implicit conversion of a
void * to a different pointer type is not in general harmless:

Click here to view code image

char ch;
void* pv = &ch;
int* pi = pv; // not C++
*pi = 666; // overwrite ch and other bytes near ch

If you use both languages, cast the result of malloc() to the right type. If you use only C++, avoid malloc().

14.3.2.3. C++ Keywords

C++ provides many more keywords than C does. If one of these appears as an identifier in a C program, that
program must be modified to make it a C++ program:

In addition, the word export is reserved for future use. C99 adopted inline.

In C, some of the C++ keywords are macros defined in standard headers:

This implies that in C they can be tested using #ifdef, redefined, etc.

14.3.2.4. Linkage

C and C++ can (and often is) implemented to use different linkage conventions. The most basic reason for
that is C++’s greater emphasis on type checking. A practical reason is that C++ supports overloading, so that
there can be two global functions called open(). This has to be reflected in the way the linker works.

168

To give a C++ function C linkage (so that it can be called from a C program fragment) or to allow a C
function to be called from a C++ program fragment, declare it extern "C". For example:

Click here to view code image

extern "C" double sqrt(double);

Now sqrt(double) can be called from a C or a C++ code fragment. The definition of sqrt(double) can
also be compiled as a C function or as a C++ function.

Only one function of a given name in a scope can have C linkage (because C doesn’t allow function
overloading). A linkage specification does not affect type checking, so the C++ rules for function calls and
argument checking still apply to a function declared extern"C".

14.4. Bibliography

[C,1990]

X3 Secretariat: Standard – The C Language. X3J11/90-013. ISO Standard ISO/IEC 9899-1990.
Computer and Business Equipment Manufacturers Association. Washington, DC.

[C,1999]

ISO/IEC 9899. Standard – The C Language. X3J11/90-013-1999.

[C,2011]

ISO/IEC 9899. Standard – The C Language. X3J11/90-013-2011.

[C++,1998]

ISO/IEC JTC1/SC22/WG21 (editor: Andrew Koenig): International Standard – The C++ Language.
ISO/IEC 14882:1998.

[C++,2004]

ISO/IEC JTC1/SC22/WG21 (editor: Lois Goldtwaite): Technical Report on C++ Performance. ISO/IEC
TR 18015:2004(E) [C++Math,2010] International Standard – Extensions to the C++ Library to Support
Mathematical Special Functions. ISO/IEC 29124:2010.

[C++,2011]

ISO/IEC JTC1/SC22/WG21 (editor: Pete Pecker): International Standard – The C++ Language.
ISO/IEC 14882:2011.

[Cox,2007]

Russ Cox: Regular Expression Matching Can Be Simple And Fast. January 2007.
swtch.com/~rsc/regexp/regexp1.html.

[Dahl,1970]

O-J. Dahl, B. Myrhaug, and K. Nygaard: SIMULA Common Base Language. Norwegian Computing
Center S-22. Oslo, Norway. 1970.

[Dechev,2010]

D. Dechev, P. Pirkelbauer, and B. Stroustrup: Understanding and Effectively Preventing the ABA Problem in

169

http://swtch.com/~rsc/regexp/regexp1.html

Descriptor-based Lock-free Designs. 13th IEEE Computer Society ISORC 2010 Symposium. May 2010.

[DosReis,2006]

Gabriel Dos Reis and Bjarne Stroustrup: Specifying C++ Concepts. POPL06. January 2006.

[Ellis,1989]

Margaret A. Ellis and Bjarne Stroustrup: The Annotated C++ Reference Manual. Addison-Wesley.
Reading, Mass. 1990. ISBN 0-201-51459-1.

[Friedl,1997]:

Jeffrey E. F. Friedl: Mastering Regular Expressions. O’Reilly Media. Sebastopol, California. 1997. ISBN
978-1565922570.

[Gregor,2006]

Douglas Gregor et al.: Concepts: Linguistic Support for Generic Programming in C++. OOPSLA’06.

[Ichbiah,1979]

Jean D. Ichbiah et al.: Rationale for the Design of the ADA Programming Language. SIGPLAN Notices.
Vol. 14, No. 6. June 1979.

[Kernighan,1978]

Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language. Prentice Hall. Englewood
Cliffs, New Jersey. 1978.

[Kernighan,1988]

Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language, Second Edition. Prentice-
Hall. Englewood Cliffs, New Jersey. 1988. ISBN 0-13-110362-8.

[Knuth,1968]

Donald E. Knuth: The Art of Computer Programming. Addison-Wesley. Reading, Massachusetts. 1968.

[Koenig,1990]

A. R. Koenig and B. Stroustrup: Exception Handling for C++ (revised). Proc USENIX C++ Conference.
April 1990.

[Maddock,2009]

John Maddock: Boost.Regex. www.boost.org. 2009.

[Orwell,1949]

George Orwell: 1984. Secker and Warburg. London. 1949.

[Paulson,1996]

Larry C. Paulson: ML for the Working Programmer. Cambridge University Press. Cambridge. 1996. ISBN
0-521-56543-X.

[Richards,1980]

Martin Richards and Colin Whitby-Strevens: BCPL – The Language and Its Compiler. Cambridge
University Press. Cambridge. 1980. ISBN 0-521-21965-5.

170

http://www.boost.org

[Stepanov,1994]

Alexander Stepanov and Meng Lee: The Standard Template Library. HP Labs Technical Report HPL-94-
34 (R. 1). 1994.

[Stroustrup,1982]

B. Stroustrup: Classes: An Abstract Data Type Facility for the C Language. Sigplan Notices. January 1982.
The first public description of “C with Classes.”

[Stroustrup,1984] B. Stroustrup: Operator Overloading in C++. Proc. IFIP WG2.4 Conference on System
Implementation Languages: Experience & Assessment. September 1984.

[Stroustrup,1985]

B. Stroustrup: An Extensible I/O Facility for C++. Proc. Summer 1985 USENIX Conference.

[Stroustrup,1986]

B. Stroustrup: The C++ Programming Language. Addison-Wesley. Reading, Massachusetts. 1986. ISBN
0-201-12078-X.

[Stroustrup,1987]

B. Stroustrup: Multiple Inheritance for C++. Proc. EUUG Spring Conference. May 1987.

[Stroustrup,1987b]

B. Stroustrup and J. Shopiro: A Set of C Classes for Co-Routine Style Programming. Proc. USENIX C++
Conference. Santa Fe, New Mexico. November 1987.

[Stroustrup,1988]

B. Stroustrup: Parameterized Types for C++. Proc. USENIX C++ Conference, Denver. 1988.

[Stroustrup,1991]

B. Stroustrup: The C++ Programming Language (Second Edition). Addison-Wesley. Reading,
Massachusetts. 1991. ISBN 0-201-53992-6.

[Stroustrup,1993]

B. Stroustrup: A History of C++: 1979-1991. Proc. ACM History of Programming Languages conference
(HOPL-2). ACM Sigplan Notices. Vol 28, No 3. 1993.

[Stroustrup,1994]

B. Stroustrup: The Design and Evolution of C++. Addison-Wesley. Reading, Mass. 1994. ISBN 0-201-
54330-3.

[Stroustrup,1997]

B. Stroustrup: The C++ Programming Language, Third Edition. Addison-Wesley. Reading, Massachusetts.
1997. ISBN 0-201-88954-4. Hardcover (“Special”) Edition. 2000. ISBN 0-201-70073-5.

[Stroustrup,2002]

B. Stroustrup: C and C++: Siblings, C and C++: A Case for Compatibility, and C and C++: Case Studies in
Compatibility. The C/C++ Users Journal. July-September 2002. www.stroustrup.com/papers.html.

171

http://www.stroustrup.com/papers.html

[Stroustrup,2007]

B. Stroustrup: Evolving a language in and for the real world: C++ 1991-2006. ACM HOPL-III. June 2007.

[Stroustrup,2009]

B. Stroustrup: Programming – Principles and Practice Using C++. Addison-Wesley. 2009. ISBN 0-321-
54372-6.

[Stroustrup,2010]

B. Stroustrup: The C++11 FAQ. www.stroustrup.com/C++11FAQ.html.

[Stroustrup,2012a]

B. Stroustrup and A. Sutton: A Concept Design for the STL. WG21 Technical Report N3351==12-0041.
January 2012.

[Stroustrup,2012b]

B. Stroustrup: Software Development for Infrastructure. Computer. January 2012.
doi:10.1109/MC.2011.353.

[Stroustrup,2013]

B. Stroustrup: The C++ Programming Language (Fourth Edition). Addison-Wesley. 2013. ISBN 0-321-
56384-0.

[Sutton,2011]

A. Sutton and B. Stroustrup: Design of Concept Libraries for C++. Proc. SLE 2011 (International
Conference on Software Language Engineering). July 2011.

[WG21]

ISO SC22/WG21 The C++ Programming Language Standards Committee: Document Archive.
www.open-std.org/jtc1/sc22/wg21.

[Williams,2012]

Anthony Williams: C++ Concurrency in Action – Practical Multithreading. Manning Publications Co. ISBN
978-1933988771.

[Woodward,1974]

P. M. Woodward and S. G. Bond: Algol 68-R Users Guide. Her Majesty’s Stationery Office. London.
1974.

14.5. Advice

[1] The material in this chapter roughly corresponds to what is described in much greater detail in
Chapters 1 and 44 of [Stroustrup,2013].

[2] The ISO C++ standard [C++,2011] defines C++.

[3] When learning C++, don’t focus on language features in isolation; §14.2.1.

[4] By now, many people have been using C++ for a decade or two. Many more are using C++ in a single
environment and have learned to live with the restrictions imposed by early compilers and first-

172

http://www.stroustrup.com/C++11FAQ.html
http://www.open-std.org/jtc1/sc22/wg21

generation libraries. Often, what an experienced C++ programmer has failed to notice over the years is
not the introduction of new features as such, but rather the changes in relationships between features
that make fundamental new programming techniques feasible. In other words, what you didn’t think of
when first learning C++ or found impractical just might be a superior approach today. You find out
only by reexamining the basics. Take the opportunity offered by the new C++11 facilities to modernize
your design and programming techniques:

[1] Use constructors to establish invariants (§3.4.2).

[2] Use constructor/destructor pairs to simplify resource management (RAII; §4.2.2).

[3] Avoid “naked” new and delete (§4.2.2).

[4] Use containers and algorithms rather than built-in arrays and ad hoc code (Chapter 9, Chapter
10).

[5] Prefer standard-library facilities to locally developed code (Chapter 6).

[6] Use exceptions, rather than error codes, to report errors that cannot be handled locally (§3.4).

[7] Use move semantics to avoid copying large objects (§4.6).

[8] Use unique_ptr to reference objects of polymorphic type (§11.2.1).

[9] Use shared_ptr to reference shared objects, that is, objects without a single owner that is
responsible for their destruction (§11.2.1).

[10] Use templates to maintain static type safety (eliminate casts) and avoid unnecessary use of class
hierarchies (Chapter 5).

[5] Before using a new feature in production code, try it out by writing small programs to test the standards
conformance and performance of the implementations you plan to use.

[6] For learning C++, use the most up-to-date and complete implementation of Standard C++ that you can
get access to.

[7] The common subset of C and C++ is not the best initial subset of C++ to learn; §14.3.2.1.

[8] Prefer named casts, such as static_cast over C-style casts; §14.2.3.

[9] When converting a C program to C++, first make sure that function declarations (prototypes) and
standard headers are used consistently; §14.3.2.

[10] When converting a C program to C++, rename variables that are C++ keywords; §14.3.2.3.

[11] For portability and type safety, if you must use C, write in the common subset of C and C++;
§14.3.2.1.

[12] When converting a C program to C++, cast the result of malloc() to the proper type or change all
uses of malloc() to uses of new; §14.3.2.2.

[13] When converting from malloc() and free() to new and delete, consider using vector,
push_back(), and reserve() instead of realloc(); §14.3.2.1.

[14] In C++, there are no implicit conversions from ints to enumerations; use explicit type conversion where
necessary.

173

[15] Use <string> to get std::string (<string.h> holds the C-style string functions).

[16] For each standard C header <X.h> that places names in the global namespace, the header <cX>
places the names in namespace std.

[17] Use extern "C" when declaring C functions; §14.3.2.4.

[18] Prefer string over C-style strings (direct manipulation of zero-terminated arrays of char).

[19] Prefer iostreams over stdio.

[20] Prefer containers (e.g., vector) over built-in arrays.

174

Index

Knowledge is of two kinds.
We know a subject ourselves, or we know where we can find information on it.

– Samuel Johnson

Token

!=, not-equal operator 6

", string literal 3

$, regex 79
%

modulus operator 6

remainder operator 6

%=, operator 7
&

address-of operator 10

reference to 10

&&, rvalue reference 51

(, regex 79

(), call operator 64

(? pattern 82

), regex 79
*

contents-of operator 10

multiply operator 6

pointer to 9

regex 79

*=, scaling operator 7

*? lazy 80
+

plus operator 6

regex 79

string concatenation 75

++, increment operator 7
+=

operator 7

string append 76

+? lazy 80

175

-, minus operator 6

--, decrement operator 7

., regex 79

/, divide operator 6

// comment 2

/=, scaling operator 7

: public 40

<<, output operator 2

<=, less-than-or-equal operator 6

<, less-than operator 6
=

0 39

and == 6

auto 7

initializer 6

string assignment 77
==

= and 6

equal operator 6

string 76

>, greater-than operator 6

>=, greater-than-or-equal operator 6

>> template arguments 159

?, regex 79

?? lazy 80

[, regex 79
[]

array 122

array of 9

string 76

\, backslash 3

], regex 79

^, regex 79

_1, placeholders 126

_2, placeholders 126

{, regex 79
{}

grouping 2

176

initializer 6

{}? lazy 80

|, regex 79

}, regex 79

~, destructor 37
0

= 39

nullptr NULL 12

0x hexadecimal literal 161

A

abs() 134

abstract

class 40

type 39

accumulate() 135

acquisition RAII, resource 118

adaptor, function 125

address-of operator & 10

adjacent_difference() 135

aims, C++11 158

algorithm 107

container 108, 115

numerical 135

standard library 114

<algorithm> 73, 114

alias, using 67

alignas 159

alignof 159

allocation 37

almost container 121

alnum, regex 81

alpha, regex 81

[[:alpha:]] letter 81

ANSI C++ 157

append +=, string 76

argument

177

passing, function 52

type 61

value 61

arithmetic

conversions, usual 6

operator 6

vector 138

ARM 157

array

array vs. 123

of [] 9

array 122

[] 122

data() 122

initialize 122

size() 122

vs. array 123

vs. vector 122

<array> 73

asin() 134

assembler 155

assertion static_assert 30

assignment

=, string 77

copy 49, 52

move 51–52

associative array – see map

async() launch 150

at() 98

atan() 134

atan2() 134

AT&T Bell Laboratories 157

auto = 7

auto_ptr, deprecated 161

B

back_inserter() 108

178

backslash \ 3

base and derived class 40

basic_string 77

BCPL 162

begin() 100, 108

beginner, book for 1

Bell Laboratories, AT&T 157

bibliography 166

binary search 114

bind() 126

and overloading 126

binder 125

bit-field, bitset and 123

bitset 123

and bit-field 123

and enum 123

blank, regex 81

block

as function body, try 99

try 28

body, function 2

book for beginner 1

bool 5

break 13

C

C 155

and C++ compatibility 161

Classic 162

difference from 161

K&R 162

macro, difference from 165

programmer 168

void * assignment, difference from 165

with Classes 154

with Classes language features 155

with Classes standard library 156

179

C++

ANSI 157

compatibility, C and 161

core language 2

history 153

ISO 157

meaning 155

programmer 168

pronunciation 155

standard, ISO 2

standard library 2

standardization 157

timeline 154

C++03 157

C++0x, C++11 155, 158

C++11

aims 158

C++0x 155, 158

language features 158

library components 159

C++98 157

standard library 157

C11 161

C89 and C99 161

C99, C89 and 161

call operator () 64

callback 128

capacity() 97

capture list 65

carries_dependency 159

cast 39

deprecated C-style 161

named 161
catch

clause 28

every exception 99

catch(...) 99

180

ceil() 134

char 5

character sets, multiple 77

chrono 125

<chrono> 73, 125, 146

class 34

concrete 34

scope 8

template 59
class

abstract 40

base and derived 40

hierarchy 42

Classic C 162

C-library header 73

clock timing 146

<cmath> 73, 134

cntrl, regex 81

code complexity, function and 4

comment, // 2

communication, task 147

comparison operator 6

compatibility, C and C++ 161

compilation

model, template 68

separate 24

compiler 2

compile-time

computation 128

evaluation 9

complete encapsulation 52

complex 35, 135

<complex> 73, 134–135

complexity, function and code 4

components, C++11 library 159

computation, compile-time 128

concatenation +, string 75

181

concept 63

concrete

class 34

type 34

concurrency 141

condition, declaration in 47

condition_variable 146

notify_one() 147

wait() 146

<condition_variable> 146

const, immutability 8

constant expression 9

const_cast 161
constexpr

function 9

immutability 8

const_iterator 112

constructor

and destructor 155

copy 49, 52

default 35

delegating 159

explicit 53

inheriting 159

initializer-list 38

invariant and 29

move 51–52

container 36, 59, 95

algorithm 108, 115

almost 121

object in 98

overview 103

return 109

sort() 129

specialized 121

standard library 103

contents-of operator * 10

182

conversion

explicit type 39, 161

narrowing 7

conversions, usual arithmetic 6

copy 48

and hierarchy 55

assignment 49, 52

constructor 49, 52

cost of 50

memberwise 52

copy() 114

copyif() 114

core language, C++ 2

cos() 134

cosh() 134

cost of copy 50

count() 114

count_if() 113–114

cout, output 2

<cstdlib> 73

C-style

cast, deprecated 161

error handling 134

string 12

Currying 125

D

\d, regex 81

\D, regex 81

d, regex 81

data race 142

data(), array 122

D&E 154

deadlock 145

deallocation 37

declaration 5

function 3

183

in condition 47

interface 23

declarator operator 11

decltype 159

decrement operator -- 7

default

constructor 35

operations 52

=default 53

definition implementation 24

delegating constructor 159

=delete 55
delete

an operation 55

naked 38

operator 37

deprecated

auto_ptr 161

C-style cast 161

exception specification 161

feature 160

deque 103

derived class, base and 40

destructor 37, 52
~ 37

constructor and 155

virtual 44

dictionary – see map

difference

from C 161

from C macro 165

from C void * assignment 165

digit, [[:digit:]] 81

digit, regex 81

[[:digit:]] digit 81

dispatch, tag 129

distribution, random 136

184

divide operator / 6

domain error 134

double 5

duck typing 68

duration 125

duration_cast 125

dynamic store 37

dynamic_cast 47

is instance of 47

is kind of 47

E

EDOM 134

element requirements 98

encapsulation, complete 52

end() 100, 108

engine, random 136

enum, bitset and 123

equal operator == 6

equal_range() 114, 124

ERANGE 134

erase() 101

errno 134

error

domain 134

handling 27

handling, C-style 134

range 134

run-time 27

essential operations 52

evaluation

compile-time 9

partial 125

example

find_all() 109

Hello, World! 2

Rand_int 137

185

Vec 98

exception 27

and main() 99

catch every 99

specification, deprecated 161

explicit type conversion 39, 161

explicit constructor 53

exponential_distribution 136

export removed 161

expr() 134

expression

constant 9

lambda 65

extern template 159

F

fabs() 134

facilities, standard library 72

feature, deprecated 160

features

C with Classes language 155

C++11 language 158

file, header 25

final 159

find() 108, 114

find_all() example 109

find_if() 113–114

first, pair member 124

floor() 134

fmod() 134
for

statement 10

statement, range 10

forward_list 103

<forward_list> 73

free store 37

frexp() 134

186

<fstream> 73

__func__ 159

function 2

adaptor 125

and code complexity 4

argument passing 52

body 2

body, try block as 99

constexpr 9

declaration 3

implementation of virtual 42

mathematical 134

object 64

overloading 4

template 62

type 128

value return 52

function 127

and nullptr 127

fundamental type 5
future

and promise 147

member get() 147

<future> 73, 147

G

garbage collection 54

generic programming 62

get<>() 125

get(), future member 147

graph, regex 81

greater-than operator > 6

greater-than-or-equal operator >= 6

greedy match 80, 83

grouping, {} 2

H

half-open sequence 114

187

handle 38

resource 49, 119

hash table 102

header

C-library 73

file 25

standard library 73

heap 37

Hello, World! example 2

hexadecimal literal, 0x 161

hierarchy

class 42

copy and 55

navigation 47

history, C++ 153

HOPL 154

I

if statement 12

immutability

const 8

constexpr 8

implementation

definition 24

inheritance 46

iterator 111

of virtual function 42

string 77

in-class member initialization 159

#include 25

increment operator ++ 7

inheritance 40

implementation 46

interface 46

multiple 156

inheriting constructor 159

initialization, in-class member 159

188

initialize 38

array 122

initializer

= 6

{} 6

initializer-list constructor 38

initializer_list 38

inline 35

namespace 159

inlining 35

inner_product() 135

insert() 101

int 5

output bits of 123

interface

declaration 23

inheritance 46

invariant 29

and constructor 29

I/O, iterator and 112

<ios> 73

<iostream> 2, 73

iota() 135

is

instance of, dynamic_cast 47

kind of, dynamic_cast 47

ISO

C++ 157

C++ standard 2

ISO-14882 157

istream_iterator 112

iterator 108

and I/O 112

implementation 111

iterator 100, 112

<iterator> 130

189

iterator_categor y 129

iterator_traits 128, 130

iterator_type 129

J

join(), thread 142

K

key and value 101

K&R C 162

L

\L, regex 81

\l, regex 81

lambda expression 65

language

and library 71

features, C with Classes 155

features, C++11 158

launch, async() 150

lazy

*? 80

+? 80

?? 80

{}? 80

match 80, 83

ldexp() 134

leak, resource 47, 54, 118

less-than operator < 6

less-than-or-equal operator <= 6

letter, [[:alpha:]] 81

library

algorithm, standard 114

C with Classes standard 156

C++98 standard 157

components, C++11 159

container, standard 103

facilities, standard 72

190

language and 71

non-standard 71

standard 71

lifetime, scope and 8

<limits> 128, 138

linker 2

list, capture 65

list 100, 103

literal

", string 3

0x hexadecimal 161

raw string 78

user-defined 159

local scope 8

lock() 145

and RAII 145

log() 134

log10() 134

long long 159

lower, regex 81

M

macro, difference from C 165

main() 2

exception and 99

make_pair() 124

make_shared() 120

make_tuple() 125

make_unique() 120

management, resource 54, 117

map 101, 103

<map> 73

mapped type, value 101

match

greedy 80, 83

lazy 80, 83

mathematical

191

function 134

functions, standard 134

<math.h> 134

meaning, C++ 155

member initialization, in-class 159

memberwise copy 52

mem_fn() 126

<memory> 73, 118, 120

merge() 114

minus operator - 6

model, template compilation 68

modf() 134

modularity 23

modulus operator % 6

move 51

assignment 51–52

constructor 51–52

move() 52, 114

multimap 103

multiple

character sets 77

inheritance 156

multiply operator * 6

multiset 103

mutex 144

<mutex> 144

N

\n 3

naked

delete 38

new 38

named cast 161

namespace scope 8

namespace 26

inline 159

placeholders 126

192

std 72

narrowing 161

conversion 7

navigation, hierarchy 47
new

naked 38

operator 37

noexcept 28

noexcept() 159

non-standard library 71

noreturn 159

normal_distribution 136

notation, regular expression 79

not-equal operator != 6

notify_one(), condition_variable 147

NULL 0, nullptr 12

nullptr 11

function and 127

NULL 0 12

number, random 136

<numeric> 135

numerical algorithm 135

numeric_limits 138

O

object 5

function 64

in container 98

object-oriented programming 42

operation, delete an 55

operations

default 52

essential 52

operator

%= 7

+= 7

&, address-of 10

193

(), call 64

*, contents-of 10

--, decrement 7

/, divide 6

==, equal 6

>, greater-than 6

>=, greater-than-or-equal 6

++, increment 7

<, less-than 6

<=, less-than-or-equal 6

-, minus 6

%, modulus 6

*, multiply 6

!=, not-equal 6

<<, output 2

+, plus 6

%, remainder 6

*=, scaling 7

/=, scaling 7

arithmetic 6

comparison 6

declarator 11

delete 37

new 37

overloaded 36

user-defined 36

optimization, short-string 77

ostream_iterator 112

out_of_range 98

output

bits of int 123

cout 2

operator << 2

overloaded operator 36

overloading

bind() and 126

194

function 4

override 40

override 45

overview, container 103

ownership 118

P

packaged_task thread 149

pair 124

member first 124

member second 124

parameterized type 59

partial evaluation 125

partial_sum() 135

passing data to task 143

pattern, (? 82

phone_book example 96
placeholders

_1 126

_2 126

namespace 126

plus operator + 6

pointer

smart 118

to * 9

polymorphic type 40

pow() 134

precondition 29

predicate 64, 113

type 130

pr int, regex 81

program 2

programmer

C++ 168

C 168

programming

generic 62

195

object-oriented 42
promise

future and 147

member set_exception() 147

member set_value() 147

pronunciation, C++ 155

punct, regex 81

pure virtual 39

purpose, template 62

push_back() 38, 97, 101

push_front() 101

R

R" 78

race, data 142

RAII

lock() and 145

resource acquisition 118

RAII 38

Rand_int example 137

random number 136
random

distribution 136

engine 136

<random> 73, 136

range

checking Vec 98

error 134

for statement 10

raw string literal 78

reference

&&, rvalue 51

rvalue 52

to & 10
regex

| 79

$ 79

(79

196

) 79

* 79

+ 79

. 79

? 79

^ 79

[79

] 79

} 79

{ 79

alnum 81

alpha 81

blank 81

cntrl 81

\d 81

d 81

\D 81

digit 81

graph 81

\l 81

\L 81

lower 81

pr int 81

punct 81

regular expression 78

repetition 80

\S 81

\s 81

s 81

space 81

\U 81

\u 81

upper 81

w 81

\w 81

\W 81

197

xdigit 81

<regex> 73, 78

regular expression 78

regex_iterator 83

regex_search 78

regular

expression notation 79

expression <regex> 78

expression regex 78

reinter pret_cast 161

remainder operator % 6

removed, export 161

repetition, regex 80

replace() 114

string 76

replace_if() 114

requirement, template 63

requirements, element 98

reserve() 97

resource

acquisition RAII 118

handle 49, 119

leak 47, 54, 118

management 54, 117

safety 54

rethrow 30

return

function value 52

type, suffix 159
return

container 109

type, void 3

returning results from task 144

run-time error 27

rvalue

reference 52

reference && 51

198

S

\s, regex 81

s, regex 81

\S, regex 81

safety, resource 54

scaling

operator *= 7

operator /= 7

scope

and lifetime 8

class 8

local 8

namespace 8

search, binary 114

second, pair member 124

separate compilation 24

sequence 108

half-open 114

set 103

<set> 73

set_exception(), promise member 147

set_value(), promise member 147

shared_ptr 118

sharing data task 144

short-string optimization 77

Simula 153

sin() 134

sinh() 134

size of type 5

size(), array 122

sizeof 5

sizeof() 128

size_t 67

smart pointer 118

sort() 107, 114

container 129

199

space, regex 81

specialized container 121

sqrt() 134

<sstream> 73

standard

ISO C++ 2

library 71

library algorithm 114

library, C++ 2

library, C with Classes 156

library, C++98 157

library container 103

library facilities 72

library header 73

library std 72

mathematical functions 134

standardization, C++ 157

statement

for 10

if 12

range for 10

switch 13

while 12

static_asser t 138

assertion 30

static_cast 39, 161

std 2

namespace 72

standard library 72

<stdexcept> 73

STL 157

store

dynamic 37

free 37

string

C-style 12

200

literal " 3

literal, raw 78

Unicode 77

string 75

[] 76

== 76

append += 76

assignment = 77

concatenation + 75

implementation 77

replace() 76

substr() 76

<string> 73, 75

subclass, superclass and 40

substr(), string 76

suffix return type 159

superclass and subclass 40

switch statement 13

T

table, hash 102

tag dispatch 129

tanh() 134

task

and thread 142

communication 147

passing data to 143

returning results from 144

sharing data 144

TC++PL 154

template

arguments, >> 159

compilation model 68

variadic 66

template 59

class 59

extern 159

201

function 62

purpose 62

requirement 63
thread

join() 142

packaged_task 149

task and 142

<thread> 73, 142

thread_local 159

time 125

timeline, C++ 154

time_point 125

timing, clock 146
try

block 28

block as function body 99

tuple 125

type 5

abstract 39

argument 61

concrete 34

conversion, explicit 39, 161

function 128

fundamental 5

parameterized 59

polymorphic 40

predicate 130

size of 5

typename 59, 110

<type_traits> 130

typing, duck 68

U

\u, regex 81

\U, regex 81

Unicode string 77

uniform_int_distribution 136

uninitialized 7

202

unique_copy() 107, 114

unique_lock 144, 146

unique_ptr 47, 118

unordered_map 102–103

<unordered_map> 73

unordered_multimap 103

unordered_multiset 103

unordered_set 103

unsigned 5

upper, regex 81

user-defined

literal 159

operator 36

using alias 67

usual arithmetic conversions 6

<utility> 73, 124–125

V

valarray 138

<valarray> 138

value 5

argument 61

key and 101

mapped type 101

return, function 52

value_type 67

variable 5

variadic template 66
Vec

example 98

range checking 98

vector arithmetic 138

vector 96, 103

array vs. 122

<vector> 73

vector<bool> 121

virtual 39

203

destructor 44

function, implementation of 42

function table vtbl 42

pure 39
void

* 165

* assignment, difference from C 165

return type 3

vtbl, virtual function table 42

W

w, regex 81

\w, regex 81

\W, regex 81

wait(), condition_variable 146

WG21 154

while statement 12

X

X3J16 157

xdigit, regex 81

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

	About This eBook
	Title Page
	Copyright Page
	The C++ In-Depth Series
	Contents
	Preface
	Acknowledgments

	1. The Basics
	1.1. Introduction
	1.2. Programs
	1.3. Hello, World!
	1.4. Functions
	1.5. Types, Variables, and Arithmetic
	1.6. Scope and Lifetime
	1.7. Constants
	1.8. Pointers, Arrays, and References
	1.9. Tests
	1.10. Advice

	2. User-Defined Types
	2.1. Introduction
	2.2. Structures
	2.3. Classes
	2.4. Unions
	2.5. Enumerations
	2.6. Advice

	3. Modularity
	3.1. Introduction
	3.2. Separate Compilation
	3.3. Namespaces
	3.4. Error Handling
	3.5. Advice

	4. Classes
	4.1. Introduction
	4.2. Concrete Types
	4.3. Abstract Types
	4.4. Virtual Functions
	4.5. Class Hierarchies
	4.6. Copy and Move
	4.7. Advice

	5. Templates
	5.1. Introduction
	5.2. Parameterized Types
	5.3. Function Templates
	5.4. Concepts and Generic Programming
	5.5. Function Objects
	5.6. Variadic Templates
	5.7. Aliases
	5.8. Template Compilation Model
	5.9. Advice

	6. Library Overview
	6.1. Introduction
	6.2. Standard-Library Components
	6.3. Standard-Library Headers and Namespace
	6.4. Advice

	7. Strings and Regular Expressions
	7.1. Introduction
	7.2. Strings
	7.3. Regular Expressions
	7.4. Advice

	8. I/O Streams
	8.1. Introduction
	8.2. Output
	8.3. Input
	8.4. I/O State
	8.5. I/O of User-Defined Types
	8.6. Formatting
	8.7. File Streams
	8.8. String Streams
	8.9. Advice

	9. Containers
	9.1. Introduction
	9.2. vector
	9.3. list
	9.4. map
	9.5. unordered_map
	9.6. Container Overview
	9.7. Advice

	10. Algorithms
	10.1. Introduction
	10.2. Use of Iterators
	10.3. Iterator Types
	10.4. Stream Iterators
	10.5. Predicates
	10.6. Algorithm Overview
	10.7. Container Algorithms
	10.8. Advice

	11. Utilities
	11.1. Introduction
	11.2. Resource Management
	11.3. Specialized Containers
	11.4. Time
	11.5. Function Adaptors
	11.6. Type Functions
	11.7. Advice

	12. Numerics
	12.1. Introduction
	12.2. Mathematical Functions
	12.3. Numerical Algorithms
	12.4. Complex Numbers
	12.5. Random Numbers
	12.6. Vector Arithmetic
	12.7. Numeric Limits
	12.8. Advice

	13. Concurrency
	13.1. Introduction
	13.2. Tasks and threads
	13.3. Passing Arguments
	13.4. Returning Results
	13.5. Sharing Data
	13.6. Waiting for Events
	13.7. Communicating Tasks
	13.8. Advice

	14. History and Compatibility
	14.1. History
	14.2. C++11 Extensions
	14.3. C/C++ Compatibility
	14.4. Bibliography
	14.5. Advice

	Index

