

© Copyright 2021 - All rights reserved.

The content contained within this book may not be reproduced, duplicated, or transmitted without
direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author,
for any damages, reparation, or monetary loss due to the information contained within this book, either
directly or indirectly.

Legal Notice:

This book is copyright protected. It is only for personal use. You cannot amend, distribute, sell, use,
quote or paraphrase any part, or the content within this book, without the consent of the author or
publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment
purposes only. All effort has been executed to present accurate, up to date, reliable, complete
information. No warranties of any kind are declared or implied. Readers acknowledge that the author is
not engaging in the rendering of legal, financial, medical, or professional advice. The content within
this book has been derived from various sources. Please consult a licensed professional before
attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for
any losses, direct or indirect, that are incurred as a result of the use of the information contained within
this document, including, but not limited to, errors, omissions, or inaccuracies.

Table of Contents

C++
A Comprehensive Beginner’s Guide

to Learn About the Realms of C++ From A-Z
Introduction

Chapter 1: Writing a C++ Program
General structure of a simple C++ code!
Editing, Compiling and Running a Program
Variations of Writing Our Simple Program

Chapter 2: Variables and Values
Integer Values
Variables and Assignment
Identifiers
Additional Integer Types
Floating-Point Types
Constants
Other Numeric Types
Characters
Enumerated Types

Chapter 3: Arithmetic and Expressions
Expressions
Mixed Type Expressions
Operator Precedence and Associativity
Comments
Formatting
Errors and Warnings
Integers vs. Floating-Point Numbers

Bitwise Operators
Algorithms

Chapter 4: Conditional and Iterative Statements
Conditional Execution
Boolean Expression
The Simple IF Statement
Compound Statements
The IF/ELSE Statement
Nested Conditionals
Iteration
Nested Loops
Abnormal Loop Termination
Infinite Loops

Chapter 5: Using, Writing and Managing Functions and Data
Introduction to Using Functions
Standard Mathematic Function
Maximum and Minimum
Clock Function
Character Function
Random Numbers
Writing Functions
Function Basics
Using Functions
Commenting Functions
Managing Functions and Data
Overloaded Function
Default Arguments
Recursion

Chapter 6: Sequences
Vectors
Declaring and Using Vectors
Traversing a Vector
Vector Methods

Vectors and Functions
Multidimensional Vectors
Arrays
Code 6.6
Copying an Array
Multidimensional Arrays
C Strings

Chapter 7: Sorting and Searching
Sorting
Flexible Sorting
Search
Binary Search
Vector Permutations
Randomly Permuting a Vector

Chapter 8: Standard C++ Classes
String Objects
Input/Output Streams
Complex Numbers
Better Pseudorandom Number Generation

Chapter 9: Memory Management
Memory Available to C++ Programs
Manual Memory Management
Linked Lists
Resource Management
Smart Pointers

Chapter 10: Generic Programming
Function Templates
Class Templates

Conclusion

C++
Simple and Effective Tips and Tricks

to learn C++ Programming Effectively

Introduction
Chapter 1: The Fundamentals of C++

The Fundamental Characteristics of C++
Object-Oriented Programming
Translating and Creating a C++ Program

Chapter 2: The Basic Data Types, Constants, and Variables Used in C++
The Fundamental Data Types
The Fundamental Constants
The Fundamental Variables
Constant and Volatile Objects

Chapter 3: Functions and Classes in C++
Declaring Functions
Function Calls
Functions Without Return Values or Arguments
Header Files
Using Classes in C++

Chapter 4: Operators For Fundamental Types
Binary Arithmetic Operators
Unary Arithmetic Operators
Assignments
Relational Operators
Logical Operators

Chapter 5: Controlling the Flow of a Program
The ‘While’ Statement
The ‘For’ Statement
The ‘do-while’ Statement
Selections of ‘If-Else’ Statements
Else-If Chains
The Conditional Operators
The ‘Switch’ Statements

Chapter 6: Arithmetic Data Type Conversions

Implicit Type Conversions
Performing Some of the Usual Arithmetic Type Conversions
Implicit Type Conversions with Assignment Operators
Some Other Type Conversions

Chapter 7: The Use of References and Pointers in C++
Defining References
References as Parameters
References as Return Values
Expressions with Reference Types
Defining Pointers
The Indirection Operator
Pointers as Parameters

Chapter 8: The Basics of File Input and File Output in C++
The Basic Concept of Files
File Stream Classes
Creating Files through a C++ Program
Modes when Opening Files
Closing Files
Read and Write Operation on Blocks

Conclusion

References

C++
Advanced Guide to Learn C++ Programming Effectively

Introduction

Chapter 1: Using Pointers in C++
Introduction to Pointers
How to Use Pointers in C++
Types of Pointers

Chapter 2: References in C++
Difference Between References and Pointers

How to Create References

Chapter 3: Introduction to Data Structures in C++
The Struct Statement
How to Access Members
Using Structures as Arguments
Using Pointers
Typedef Keyword

Chapter 4: Introduction to Object-Oriented Programming in C++
Definition of Classes
Defining Class Objects
How to Access the Class Members
Classes and Objects

Chapter 5: Differences Between Classes and Structures
Chapter 6: Encapsulation in C++

Chapter 7: Understanding Inheritance
Introduction to Base and Derived Classes
Inheritance and Access
Inheritance Types
Multiple Inheritance

Chapter 8: Overloading in C++
Introduction to Function Overloading
Introduction to Operator Overloading

Chapter 9: Polymorphism in C++
Understanding Virtual Functions

Chapter 10: Abstraction in C++
Benefits
How to Enforce Abstraction
Example
Why Use Abstraction?

Chapter 11: Abstract Classes or Interfaces

Chapter 12: Constructors in C++

Constructor Types

Chapter 13: Copy Constructors in C++
Definition
When Do You Call a Copy Constructor?
When Should You Define a Copy Constructor?
Assignment Operators Versus Copy Constructors
Example Where You Use Copy Constructors
What Happens When You Remove a Copy Constructor From the Code?

Chapter 14: Destructors in C++
Properties
When Do You Call a Destructor?
Difference Between Destructors and Member Functions

Chapter 15: Virtual Destructors in C++
Pure Virtual Destructors

Chapter 16: Introduction to Private Destructors
Chapter 17: Exception Handling in C++

Importance of Exception Handling
Exception Handling Examples

Chapter 18: Stack Unwinding
Chapter 19: Identifying Exceptions in Base and Derived Classes

Differentiating Between Block and Type Conversions

Chapter 20: Object Destruction and Error Handling
Chapter 21: Searching Algorithms

Linear Search
Binary Search
Jump Search

Chapter 22: Sorting Algorithms
Bubble Sort
Selection Sort
Insertion Sort
Quicksort

Chapter 23: Tips to Optimize Code in C++
Using the Appropriate Algorithm to Optimize Code
Optimizing Code
Using Input and Output Operators
Optimizing the Use of Operators
Optimization of Conditional Statements
Dealing with Functions
Optimizing Loops
Optimizing Data Structures
Sequential or Binary Search?
Optimizing the Use of Arrays

Chapter 24: Debugging and Testing
Definition
Conditions for Debugging
Debugging Requirements
Debugging Principles
Functionalities to Use
Techniques for Debugging
How to Correct the Errors In Your Code

Conclusion

References

C++

A Comprehensive Beginner’s Guide
to Learn About the Realms of

C++ From A-Z

BENJAMIN SMITH

Introduction

C++ is a computer programming language, and as from one perspective, a
computer program language is a sequence of instruction fed into a computer
that dictate to the computer what to do. These instructions are executed
through the flow of electrical impulses that affects the computer’s memory
through interaction with the input and output devices. There are different
types of computer programs playing different roles; one program might let a
computer perform the role as a financial calculator, while another computer
program could transform the computer into a worthy chess opponent.

In the mid-1980s, Bjarne Stroustrup of AT and T Bell Labs developed the
C++ programming language. C++ is an extension of the previously
developed C programming language by AT and T Labs in the early 1970s.
Originally, AT and T developed the C programing language to write UNIX
operating systems, system-level software, and embedded system
development. Initially, following after the development of the C++
programming language, it provided object-oriented programming features,
and later on, generic programming capacities were added.

The C++ programming language is useful in both commercial and industrial
software development. C++ is a powerful programming language used for
developing complex engineering, sciences, and business systems. Some
common software written in C++ include Adobe Creative Suites, macOS,
Microsoft Office, Microsoft Windows 8, and so on. The C++ programming
language is complex itself so that it can meet up with the needs of
commercial software development. Experienced software developers can
accomplish great things with C++, but beginners may have a difficult time
with it because it is closer to machine language than human language.

We’re keen on understanding in this book, and so, to fully understand
everything you need to know about C++ programing language, there are
some development tools you need to acquit yourself to how they work.

This book is not aimed to cover all facets of the programming language, but
to guide you on all, you ought to know about the C++ programming
language. Despite the plethora of things you need to know about C++, this
book will bring as much of it into ten concise chapters letting you learn all
you need to know about C++ from
A-Z.

Chapter 1

Writing a C++ Program

C++ has a particular structure of writing them. The syntax of the code much
be correct. If not, the compiler would give an error message, and it would not
be executable. In this chapter, we shall be introducing C++ with simple
executable examples you can try. Most C++ codes are executable in a lot of
other programming languages like C, Ada, C#, and Java but with a slightly
different syntax.

The General Structure of a Simple C++ Code

Below is a one of the simplest C++ code that does something:

#include <iostream>
int main() {

std::cout << “General structure of a simple C++ code!\n”;
}

The above code is what a simple C++ code looks like. You type it into an
editor, and you run it through a compiler, the program will print the message:

General structure of a simple C++ code!
This simple C++ code above is a four non-blank lines of code which
includes:

● #include <iostream>
This coding line is a preprocessing directive. The preprocessing directive in
the C++ source code always starts with a # symbol. The symbols direct the
preprocessor, so it adds a predefined source code to an existing one before
compiling the process. This process is automatic. The iostream in this line
means we want to use an object from the iostream library. The iostream is a

 1

collection of pre-compiled C++ codes executable by the C++ program. The
iostream library also contains elements that handle the input and output (I/O)
like getting information from the keyboard, dealing with files, and printing a
display on the screen.

In the example, std::cout is not a part of the C++ code itself. It is one of
those things related to output and input the C++ compiler develop and store
in the iostream library. Now the compiler needs to be aware of these
iostream items so it can compile the program. So, that is why the #include
directive is used to specifies a file called a header, which contains the library
code specifications. So, the compiler would use the std::cout to cross-check
the specification in the <iostream> header. A lot of C++ programs make use
of the #include <iostream> directive, although there are other programming
codes headers as well.

● int main () {
This programming line specifies the actual beginning of the program. In this
line, we’re declaring a function named main. Any C++ program containing
this function is executable. The int means integer, which is a fundamental
variable a compiler used to assign numeric variables with whole numbers.
The opening of the curly brace at the end of the line is the beginning of the
main program. It’s a rule of thumb that the body of a function must contain
the statement of the function to execute.

● std::cout << “General structure of a simple C++ code!\n”;
The body of the main function in this code is only one statement. The
statement is an executable program that directs to print the message “General
structure of a simple C++ code!” on the screen. A statement simply means a
fundamental unit of execution in the C++ program. Functions, for example,
contains statements a compiler can translate into executable machine
language. There are so many kinds of statements which we will explore more
in the next chapter. Take note that statements in C++ ends with a semicolon
(;).

● }
The closing curly brace is what programmers use to mark the end of a
particular function. So, both the opening and closing curly brace are needed
for defining every function.

 2

Editing, Compiling and Running a Program
When it comes to the best development environment, C++ programmers have
two options. The first option includes the use of a command-line
environment, together with a collection of independent tools. The second
option includes the use of an IDE like Virtual Studio, which groups the
compilation steps into a process called build. These powerful IDEs have a
myriad of features and configuration options that can be bewildering to those
still learning how to program. In a typical command-line environment, the
developer only needs to type in some simple commands in the console
window to edit, compile, and eventually execute the program. Some
programmers prefer the flexibility and simplicity of a command line of build
environments, most especially in less complex projects.

An example of a common command-line building system is the GNU
Compiler Collection (GCC). The GCC C++ compiler is one of the most
conforming compilers available for C++ standards. The GCC++ is supported
by Linux, Apple Mac, and Microsoft Windows platforms, and it is a free,
open-source software. The following are important tools that useful in
editing, compiling, and running a program:

Editors

An editor is a tool that allows software developers to enter the program
source code and save it into files. Most editor tools out there enhances the
programmer’s productivity, such that it helps highlight language features
with colors. Programmers must follow the strict syntax rules when creating
computer programs. The syntax of a language is the way the different pieces
and components of the sentence are arranged to form a sentence the computer
would understand.

For instance, the sentence “the short girl runs quickly to the window” makes
use of proper English syntax. And by comparison, the sentence “girl the short
runs window to quickly the” does not make use of proper English syntax and
so it’s not correct. In like manner, if programmers don’t follow the syntax
rule of programming, there are bounds to be errors, and the code wouldn’t be
acceptable to be compiled and executed. Some syntax-aware editors make
use of special annotations and colors to alert the developer of a syntax error
before it is compiled.

 3

Compilers

A computer compiler is a tool used to translate a source code to a target code,
which may be a machine language for an embedded device or a particular
platform. It could also be that the target code is another machine language. In
the earliest versions, C++ compiled source codes into C. Then, a C compiler
would process the C code to produce an executable program. But today, C++
compilers translate the source code into machine language. The C++
complete set of building tools includes a linker, preprocessor, and compiler.

Preprocessor

A preprocessor is a building tool used to modify or add contents to the source
file before starting the compiler to process the code. Mainly, developers use
the preprocessor to #include information.

Compiler

The compiler compiles the source code to machine language, as described
above.

Linker

The linker acts as a link that combines the machine code the compiler
generates with the compiled code or library code from another source to
create a complete executable program. Most times, a C++ compiled code
can’t run on its own; it often requires some additional kind of machine code
for it to be an executable program. That missing machine code is often
precompiled and stored in a library.

Generally, don’t think of the preprocessor, compiler, and liner as separate
programs, but as one process taking place to translate source codes to
executable programs.

Debuggers

The debugger is another building tool programmers use to trace a program’s
execution to locate and correct any errors made in the program’s
implementation. With the help of the debuggers, programmers can run a

 4

program and see the line in the source code, causing the current action
simultaneously. A programmer can watch the variable's values and other
programming elements in case their values change as they ought to.
Debuggers are useful in locating errors or bugs and for fixing programs
containing the errors.

Profilers

The profiler helps a programmer collect statistics of a program’s execution,
which can help the programmer fine-tune appropriate parts of the code to
improve the overall performance. The profiler helps to show how many times
and how long a part portion of a program was executed in a particular run.
Furthermore, profilers are useful in testing purposes so that all the codes have
a use somewhere during the test, which is also known as coverage. The main
use of the profiler is to locate those parts of a program that needs
improvement so that the program can run faster.

Variations of Writing Our Simple Program
The example below shows an alternative way to write the simple example we
created above.

#include <iostream>
using std::count;
int main () {

cout << “General structure of a simple C++ program!\n”;
}

The example above made use of a using directive, which allows us to make
use of a shorter name for the std::cout printing object. In fact, we could even
omit the prefix std:: and use the shorter name cout. However, this directive is
optional, and if we’re to omit it, then we must make use of the longer name.
The name std means “standard,” and in the code, the prefix std tells us that
cout is a part of a collection of names known as the standard namespace. The
standard namespace holds names for all functions and types of standard C++
that are needed for all standard-conforming C++ developing environment.
Outside the standard library, components provided by thirds party
programmers reside in their own separate namespaces. Below is another way
to write a code using the shorter name for cout within the C++ program.

 5

#include <iostream>
using namespace std;
int main () {

cout << “General structure of a simple C++ program!\n”;
}

In the example above, you’d notice the use of the blanket using, which makes
all the names in the std namespace available for the compiler to use. Using
this approach above has some kind advantages for smaller programs, as the
blanket using directive allows developers to make use of shorter names. The
blanket using directive also makes use of fewer lines of code, especially
when the program makes use of multiple elements from the std namespace.

Your choosing to use the using directive doesn’t have any effect on the final
product – the executable program. There are three versions of the using
directive, blanket using, focused using, and no using, and compilers generate
the same machine language code for all three. So, we can choose any one we
prefer as long as it enhances our ability to manage and write the software
project properly.

However, it is important to note that even though the blanket using approach
has its place amongst the three other using directive, it is often discouraged
when writing a complex software project. Later in this book, we would
explain in full the disadvantages of the blanket using namespace std
directive when you have enough experience with the C++. So, for now, we’d
try as much as we can to avoid the blanket using statements as we strive for
the best practices.

 6

Chapter 2

Variables and Values

In this chapter, we shall be digging deep into some building blocks of C++
program. We would be experimenting with concepts like declarations,
reserved words, assignments, numerical values, identifiers, and variables.

Integer Values
Integers are numeric values that are whole numbers. So numeric values in
factional parts is not an integer value in C++ code. For example, five (5) is an
integer. Furthermore, the integer can either be zero, negative, or positive.
Other examples of integers include 6, - 13, and – 2006, but 5.4 is not an
integer because it is not a whole number. Take a look at Code 2.1 below as it
shows how an integer value can be employed in C++ code:

Code 2.1
#include <iostream>
int main () {

st::cout << 5<< ‘\n;
}

If you notice, unlike the other codes we wrote earlier, this code does not
make use of quotation marks (“). The number 5 will still appear even when
there are no quotes. Also, the expression “\n” signifies a single newline
character. But if you’re writing code with multiple characters comprising of a
string, then you need to use double quotes (“). In C++, a single character is
enclosed in single quotes (‘) and represents a distinct type of data. Check out
this example below:

Code 2.2
#include <iostream>

 7

int main () {
std::cout << “5\n”;

}

Code 2.1 and Code 2.2 may seem similar, but they are quite different. Code
2.1 prints the value of number five, while Code 2.2 above prints a message
containing the digit five. The difference here may seem unimportant, but in
later in this chapter, we’d show you how the presence and absence of quotes
in a code can make a big difference in its output. In the statement std::cout <<
“5\n”; sends a message to the output stream, which is the string “5\n”. On the
other hand, the statement std::cout << 5 << ‘\n’; sends two messages to the
output string; the first is the integer value 5, and the second is the newline
character ‘\n’.

In some cases, developers could write the same Code 2.2 in a different way:

Code 2.3
std::cout << 5 << std::endl;

Now, even though Code 2.2 and Code 2.3 behave exactly alike, they do not
mean exactly the same thing. The std::endl expression involves a newline
character, and it also performs additional work that isn’t necessary. Programs
meant for significant printing would execute faster if you end their output
line with ‘\n’ rather than std::endl. However, we can ignore the difference in
speed when we’re printing on the console, but the difference in speed is not
negligible when you’re printing on other output streams or files. Nonetheless,
we’ve been making use of the ‘\n’ most times for printing newlines because it
is a good habit to form as a beginner as it involves only a few keystrokes.
Likewise, the three major modern computing platforms; Apple macOS,
Microsoft Windows, and Linux, handle newlines differently.

Also, in C++ code, integers cannot contain commas. In other words, we can
write the numbers nine thousand, five hundred and twenty-four as 9524 and
not 9,524. Modern C++, however, supports single quotes (‘) to separate
digits. So, you can write the same number as 9’524 without having an error,
and it would also improve human comprehension when reading larger
numbers in the C++ code.

Mathematically, integers are not unbounded, which means integers are

 8

infinite. But in C++, integers have limits because computers have a finite
amount of memory. So, the maximum range of integer supported depends on
the C++ compiler and the computer system. If, for example, we exceed the
range of integer the C++ compiler can read, what happens? Try Code 2.4 on
your 32-bit computer system and see what happens.

Code 2.4
#include <iostream>
int main () {

std::cout << - 9000000000 << ‘\n’;
}

According to the range of integer, a 32-bit can support, nine billion is too
large for it, so it would either display an error or a wrong output. Whenever
you get a warning in a code, it indicates that there is a potential problem, but
it doesn’t stop the compiler from proceeding to give an executable program.
So, as a programmer, you need to heed to warnings because the execution
often produces a meaningless output.

Other programming languages as well have a limited range of vale because
each number is stored in a fixed amount of memory. Meaning, if you want to
save a larger number, then it would take up more storage space in the
memory. To infinite a set of mathematical integers for C++, then you need an
infinite amount of memory.

Variables and Assignment
Just like in algebra, variables represent numbers, and this same principle is
applicable in C++ only that C++ variables can accept values other than
numbers. Code 2.5 shows how C++ used variables to store an integer and
also prints the value of that variable.

Code 2.5
#include <iostream>
int main () {

int a;
a=5;
std::cout << a << ‘\n’;

}

 9

There are three statements in the main function in Code 2.5:

● int a;
When writing a C++ code, all variables must be declared. And the int a; is an
example of a declaration statement. A declaration statement specifies what
type of variables is being used. In Code 2.5, the int indicates that the variable
being used there is an integer and that the name of the integer is a. So, we can
read the code as the variable a has type int. C++ code supports other types of
integers, some type of integer require more or less memory space for storing
the variable’s value. A declaration statement allows the compiler to know if
the developer is using the variable in the right way in the program. For
example, the declaration statement can let us see if the integers are addable,
just like in mathematics. In some other data types, addition is not possible, so
it’s not allowed. The compiler also ensures the variables involved in a typical
addition process are compatible with the addition rules. It would report an
error if it is not compatible.

The compiler will also report an error is you attempt to use a variable without
a declaration statement. The compiler can’t verify the variable’s proper
usage, and it cannot deduce the storage requirement if it is not declared.
When you use a declaration statement to declare a particular variable, you
can’t redeclare that variable within the same context.

● a=5;
This line is an assignment statement. You use an assignment statement to
associate a value to a variable. The symbol = in an assignment statement is
key, and it’s also known as an assignment operator. In Code 2.5, the value 5
is being assigned to the variable a, meaning the value 5 will be stored in the
memory the compiler reserved for the variable named a.

● std::cout << a << ‘\n’;
This statement simply means the current value of a would be printed. Take
note of the lack of quotation marks here; it’s very important. Consider Code
2.6 and Code 2.7:

Code 2.6
std::cout << a << ‘\n’;

Code 2.7

 10

std::cout << “a” << ‘\n’;

In the statement in Code 2.6, it prints 5 as the values of the variable a, but in
the statement in Code 2.7, it prints a as the message containing the single
letter a.

In Code 2.5, the assignment operator (=) doesn’t mean the same thing as the
equality operator in mathematics. The = operation in Math means that the
expression on the left is equal to the expression on the right. But in C++, the
= makes the variable on the left take the value of the expression on the right.
It’s best to read a=5 as “a is assigned the value of 5.” It's important we point
this out, because the equality operation is symmetric in mathematics,
meaning a=5 and 5=a, but in C++ it is not so.

Code 2.8
5=a

Code 2.8 means you’re trying to reassign a value to the literal integer value 5,
and it’s impossible because 5 is always 5, and you can’t change it. Such a
statement in a compiler would issue an error.

Code 2.9
error C2106: ‘=’ : left operand must be 1-value

Variables can also be reassigned to different values if there’s a need for it.

Code 2.10
#include <iostream>
int main () {

int a;
a=1;
std::cout << a << ‘\n’;
a=2;
std::cout << a << ‘\n’;
a=3;
std::cout <<a<< ‘\n’;

}

If you take a close look at Code 2.10, each print statement is identical, but

 11

after running the program, you’d get different results. Variables can also be
given values the time you declare it. Take, for example, Code 2.11:

Code 2.11
#include <iostream>
int main () {

int a=5;
std::cout << a << ‘\n’;

}

If you notice, in this code, the declaration and assignment of the variable, a is
done in the same line statement and not two, as we have explained
previously. The combination of declaration and assignment is called
initialization. Likewise, C++ also support another syntax for initializing
variables as should in Code 2.12:

Code 2.12
#include <iostream>
int main () {

int a {5};
std::cout << a << ‘\n’;

}

Code 2.12 is another way of combining declaration and assignment, but it is
not common, especially for simple variables. Code 2.12 is necessary when
you want to initialize a more complicated kind of variable called objects.
We’d talk more about objects in later chapters of this book.

It is also possible to declare multiple variables of the same type in a single
statement if desired. Consider the statement in Code 2.13:

Code 2.13
int a, b, c;

The statement in Code 2.13 declares three integer variables. Also consider the
next statement that follows Code 2.13:

Code 2.14
int a = 1, b, c = 3;

 12

In Code 2.14, b is undefined, and so the declaration can be split into multiple
declaration statements:

Code 2.15
int a = 1;
int b;
int c = 5;

In Code 2.15, a multiple declaration statement, the type name int must appear
in each statement.

Furthermore, a compiler maps a variable to a location in your computer’s
memory. Take a look at Code 2.16:

Code 2.16
int x, y;
x = 1;
y = 2;
x = y;
y = 3;

Importantly, if we consider the statement x = y, it doesn’t mean x and y are
saved in the same memory location. It simply means that the same value that
is in x has been copied to y, but they still have different memory locations.
Going back to Code 2.16, x was first declared as 1. Also, y was later declared
as 2 in its own memory location. When x was declared the same value as y (x
= y), the original value in x was overwritten with the value in y in that
statement.

Identifiers
Unlike in mathematics, where variables are given one letter names like a, in
programming, developers should use longer and more describes variable
names as in user_name, sum, and altitude. When giving a variable a name,
it must be related to the purpose of the program. A good variable name makes
the program more readable by humans. Generally, programs contain so many
variables, so a well-chosen variable name renders the program more
understandable.

 13

C++ programming has a very strict rule for naming variables. Naming
variables is a perfect example of an identifier. Identifiers are words used to
name things like variables. Identifiers can also name other things like classes
and functions. Identifiers have the following forms:

● It must contain at least one character.

● Its first character must be an alphabetic letter, either upper or lower
case or the underscore.

● Its remaining characters can be either an alphabetic character (upper
or lower case), an underscore, or a digit.

● No other characters are permissible, including spaces.

● Reserved words can’t be used as an identifier.

Here are some typical examples of acceptable and unacceptable identifiers.

● The following are acceptable identifiers and can be used to name
variables: a, a2, USB, E6400, and flow_22

● The following are unacceptable identifiers: mini-port, last entry, 4all,
#1, and class (class is a reserved word).

Some types of programming languages do not require you to declare a
variable; it declares it automatically. Such programming languages assume
the different types of variables based on how you use it in the different
sections of the program. These types of languages are known as dynamically-
typed languages. But the C++ programming language is statically-typed.
And a statically-typed language is a type of programming language where the
variable must be explicitly specified before a statement in a program can use
it. The idea of having to declare all variables in C++ might seem trying at
first, but it offers several advantages:

● In a statically-typed language where variables must be declared, the
compiler can easily catch the typographical errors that dynamically-
typed language can’t detect.

● Also, in statically-typed language where variables must be declared,
the compiler can catch invalid operations that dynamically-types

 14

variables can’t detect. For example, you may want to declare a
variable to be of type int, but you accidentally assign it a non-
numerical value to the variable.

● Ideally, because the C++ program requires you to declare variables, it
makes you plan ahead and think more about the variables your
program may need. The purpose of every variable is tied to its type,
so you need to have a clear notion of the purpose of variables before
declaring it.

● Generally, statically-typed languages are more efficient than
dynamically-typed languages.

In addition, C++ is case sensitive and so capitalization matters a great deal.
For example, the word if is reserved, but the words iF, IF, or If are not
reserved and so you can use them to name variables. In the same manner,
identifiers are case sensitive, and so, a variable called name is different from
a variable called Name. Giving variables names that are distinguishable by
capitalization is confusing.

Additional Integer Types
There are several other different types of integers supported by the C++
language. The type short int, meaning short, represents integers that doesn’t
occupy much bytes of memory like the int type. In retrospect, the smaller the
memory space, the integer type occupies, the smaller the range of integer
value. Standard C++ coding requires the short type to be smaller than the int
type, as a matter of fact, they could represent the same set of integer values.
There is also the long int type, which can also be written as just long. In this
case, the long type can occupy more space than the int type, allowing it to
represent a much larger range of values. Standard C++ coding requires the
long type to be bigger than or equal to the int type. Lastly, there is the long
long int type also written as long long for short. The long long type may be
larger than a long. The relative ranges of values hold in C++ standards is as
follows:

short int ≤ int ≤ long int ≤ long long int

Floating-Point Types

 15

A lot of the computational task we do requires numbers, mostly numbers with
fractional parts. For instance, a formula for mathematics that computes the
area of a circle, given the circle’s radius, will involve the use of the value of
π, which is approximately 3.14159. The C++ language supports such non-
integer numbers, and they are known as floating-point numbers. The name
comes from the ideology that in mathematical calculations, decimal points
can float to various positions within the number to obtain significant digits.
There are different types of floating-point numbers; the type double and float
are the two most common.

The type double is often used, and they represent double-precision floating-
point. It can also represent a wider range of values with more digits of
precision. On the other hand, the float type represents single-precision
floating-point values, which are less precise.

Constants
What are constants? Take, for example, the speed of light or Avogadro’s
number; those are scientific constants. Constants are degree of precisions that
have been calculated and measured, and they don’t vary. In C++, constants
have the same meaning. They are declared just like the way we declare
variables by adding the keyword const. Once you declare a constant and
initialize it, it can be used like a variable, expecting to reassign a constant. It
is an error to have a constant on the left side of the assignment operator
outside the declaration statement. For example:

PI = 9.8;

This would cause the compiler to run into an error and may display
something like

error C3892: ‘PI’; you cannot assign a variable that is const

and it would fail obviously to compile the program. Because scientific
constant doesn’t change, consider code 2.17 below:

Code 2.17
#include <iostream>
int main () {
const double c = 2.998e8, avogradros_number = 6.022e23;

 16

std::cout <<“Speed of light = ” << c << ‘\n;
std::cout << “Avogadro’s number = ” << avogrados_number << ‘\n’;
}

Because it is not possible to assign a constant outside of a declaration
statement, all constant has to be initialized where they are declared. So,
generally, C++ developers have to express constant names in all capital
letters. By doing so, it makes it possible for the human readers to distinguish
between a variable and a constant easily.

Other Numeric Types
C++ also supports other numeric types which include:

1. long int: This typically provides integers that have a greater
range than the int type, and it has the long abbreviation. This
form of numeric date guarantees to provide a range of integer’s
values that are large at least up to the int type. Take, for
example, an integer with L suffix in 19L has type long. You can
also use a lower case l as a suffix, but done use it too frequently
because it’s hard for human readers to distinguish between lower
case l and digit one 1.

2. short int: This typically provides you with an integer value that
has a smaller range than the int type, and it’s abbreviated short.
This numeric form guarantees that the range of int is bigger than
the range of shorts.

3. unsigned int: This numeric data type is typically restricted to
nonnegative integers, and its abbreviated name is unsigned. The
unsigned type is limited in nonnegative values, and it represents
twice as many positive values as in the int type.

4. long double: They can extend their precision and range of the
double type.

The C++ language specifies the minimum precision and ranges for all
numeric data types, particularly the C++ compiler, which may exceed the
specified minimum. So, C++ provides these varieties of numeric types for

 17

specialized purposes that are related to building highly efficient programs.
Although we’d have very little use of these types because most of our
examples will be making use of mainly the numeric types int for integer,
double for an approximation of real number and unsigned when nonnegative
integer values are needed.

Characters
Characters abbreviated as char is an example of a data type used to represent
single characters – letters of the alphabet, either lower or upper case,
punctuation, digit, and control characters. Most systems support the use of
the American Standard Code for Information Interchange (ASCII) character
sets. The ASCII standard can be represented in up to 128 different characters.
In a C++ source code, the characters can be enclosed in single quotes,
consider code 2.18 for more explanation.

Code 2.18
char ch = ‘B’;

The standard double quotes (“) are reserved for strings. Strings are composed
of characters but don’t confuse strings and char; they are different. The
following code would produce an error in a compiler.

Code 2.19
ch = “B”;

This error is due to the double quotes used to close the character, which is not
a string. So, a string can’t be assigned to a character variable. C++ permits
chars to be saved as integer values. So, you can assign a numeric value to
char variables and assign characters to numeric variables. In the statement

ch = 10;

the value 10 is the ASCII that is being assigned to the char variable. So is
we’re to print ch as in

ch = 10;
std::cout << ch;

The corresponding character B would be printed on the screen because ch’s

 18

declare type is char and not int or some other numeric type. Consider the
example in code 2.20;

Code 2.20
#include <iostream>
int main () {
char ch1, ch2;
ch1 = 10;
ch2 = ‘B’;
std::cout <<ch1 << “,” << ch2 << “,” << ‘B; << ‘\n’;
}

Also, characters and integers can be assigned freely to each other, but the
range of char is smaller than the range of an int. So, be careful when
assigning an int value to a char value. Furthermore, some characters are non-
printable. Below are some of the examples:

● ‘’\f’: This is the formfeed character

● ‘\θ’: This is the null character used in C strings

● ‘\t’: This is the tab character

● ‘\a’: This is the “alert” character used to cause a beep sound or tone in
some systems

● ‘\b’: This is the backspace character

● ‘\r’: This is the carriage return character

● ‘\n’: This is the newline character

Enumerated Types
C++ also allows developers the ability to create a new and very simple type
of list in any possible value of that type. These types of values are called
enumeration type or enumerated type. The enumeration type is abbreviated as
enum. Check out the line below, it shows a simplified way to define an
enumeration type:

Code 2.21

 19

enum color {Violet, Blue, Green, Yellow, Orange, Red };

In the example above, the new type is name Color, while the variable type of
Color can assume any type of color which appear on the list within the curly
braces. It also follows with a semicolon after the closing curly brace.
Sometimes the enumerated type can be in the format below:

Code 2.22
enum Color {
Violet,
Blue,
Green,
Yellow,
Orange,
Red
};

But in a complier, both code 2.21 and code 2.22 makes no difference.

 20

Chapter 3

Arithmetic and Expressions

In the previous chapter, we introduced the C++ numeric type to perform
arithmetic and build expression. Some other important concepts we’d be
covering in this chapter include source formatting, user input, dealing with
errors, and comments.

Expressions
A literal value, for example, 10 and a properly declared variable like a are
examples of an expression. You can use operators to combine variables and
values to form a more complex expression. Consider the example in Code 3.1

Code 3.1
#include <iostream>
int main () {
int value1, value 2, sum;
std::cout << “Please enter two integer values: ”;
std::cin >> value 1 >> value2;
sum=value1 + value2;
std::cout << value1 << “ + “ << value2 << “ = “ << sum << ‘\n’;
}

In the example above, the following stands for:

int value1, value 2, sum;

This statement is a declaration statement, and it declares the three integer
variables. But this statement does not actually initialize them. As we continue
to examine the remaining parts of the program, you’d see why it would be
superfluous to assign values to the variables here.

 21

● std::cout << “Please enter two integer values: ”;
In this statement, the user is prompted to enter some information. This
statement is where we often print, but we didn’t terminate it with the usual
end of line marker ‘\n.’ So, when you type in the values, they appear on the
same line as the message asking for the values. When you press the enter key
to complete, the cursor will automatically proceed to the next line.

● std::cin >> value 1 >> value2;
This statement causes the program to stop when you enter two numbers and
then press the Enter key. The first number you enter will be assigned to
value1, while the second will be assigned to value2. When you press the enter
key, the values entered will be assigned to the variable. The std::cin is an
object in C++ used to read input from the user.

● sum=value1 + value2;
This is an assignment statement, and it contains the assignment operator (=).
The variable sum appears on the left-hand side of the assignment operator. In
other words, sum will get a value when the statement executes.

Every expression has a value, and a process of determining the value of an
expression is called evaluation. Evaluating simple expression is easy, but
things get more complex when you’re trying to evaluate a smaller expression
that makes up a more complex expression. Basically, the following are the
simple C++ arithmetic operators.

● % means modulus

● / means division

● * means multiplication

● - means subtraction

● + means addition

Mixed Type Expressions
Expressions can also contain mixed elements for example, consider code 3.2:

Code 3.2

 22

int x = 2

doule y = 8.1, sum;

sum = x + y;

In the source code above, int proceeds to a double, so how’s this arithmetic
performed. But the range of ints falls within the range of doubles, thus
letting you represent any int value with a double. Also, the int value 2 can be
represented as a double 2.0. So, it is completely reasonable to assign int
values to double variables. This process is called widening, and it is quite
safe to widen int to a double. Consider the code 3.3 source code fragment.

Code 3.3
double d1;
int i1 = 100;
d1 = i1;
std::cout << “d1 = “ << d1 << ‘\n’;

Assigning a double to an int variable is not always possible since the double
value cannot be in range of ints. The double variable has to also fall within
the range of ints and not a whole number because the int variable can’t
manage the fractional part. So, if you were to write code 3.4, you’d get an
error message.

Code 3.4
double d = 2.9;
int I = d;

In Code 3.4, the second line will assign 2 to i but lose the 0.9 fractional part
because proper rounding can’t is done. In fact, the visual C++ compiler will
warn you of a potential problem with:

warning C4244 ‘=’: conversion from ‘double’ to ‘int,’ possible loss of
data

In like manners, converting from a wider type to a narrower type (like double
to int) is known as narrowing. In narrowing, it is necessary to assign a
floating-point value to an integer variable. And if the value we want to assign
is within the range of the int, and has no fractional parts, and pose no

 23

truncation harm, then the assignment is safe. If we want to perform an
assignment and not get a warning from the compiler, then we need to use a
procedure known as cast, also called typecast. The cast causes the compiler to
accept the assignment without issuing a warning.

Operator Precedence and Associativity
The normal rules of arithmetic apply when there are different operators used
in the same expression. All C++ operators has an associativity and
precedence.

● Associativity: This is when an expression contains two operators that
have the same precedence.

● Precedence: This is when an expression contains two kinds of
operators.

To further understand how precedence works, consider the expression 2 + 3 *
4. The expression can be interpreted as (2 + 3) * 4, which would be 20. This
same expression can be expressed as 2 + (3 * 4), which would be 14. So,
which one is the correct interpretation. Just like in normal mathematical
arithmetic, multiplication and division have equal importance and are usually
performed before addition or subtraction. So, in the expression,
multiplication is performed before addition since multiplication precedence
over addition. The correct answer is 14, according to mathematical
arithmetic.

The multiplicative operators (*, / or %) all have equal precedence with each
other, and the additive operator (binary, +, and -) all have equal precedence
with each other. The multiplicative operator has precedence over the additive
operators. And just like in standard arithmetic, in C++, parentheses can
override the precedence rules. Consider the expression (2 + 3) * 4, which is
equal to 20.

Another way to easily go about this is to follow B.O.D.M.A.S order of
operation, which interprets brackets, order, division, multiplication, addition,
and subtraction, respectively. To see how associative works consider the
expression 2 – 3 – 4. The two operators in this example are the same, so they
have equal precedence. But if we should apply the first subtraction, before

 24

the second as in (2 – 3) – 4, our answer would be – 5. But if we should apply
the second subtraction before the second as in 2 – (3 – 4), our answer would
be 3. All binary operators except assignment are left-associative with the
assignment being right-associative.

Consider the table below; it shows operator precedence and associativity.
Operators that are in the same row have the same precedence. The operator in
each of the rows has a higher precedence than the operators below it.

Arity Operators Associativity
Unary +, -
Binary *, /, % Left
Binary +, - Left
Binary = Right

Comments
A good programmer engages in annotating their code by using remarks to
explain the purpose of a section in their code. This is why programmers
choose to write a section of code in a particular way they do. These remarks
are what help human readers easily understand the codes and not compilers.
Choosing the right comments and identifiers to use aids in the assessment
process of a program. The compiler ignores any text in the comment box. So,
C++ supports two main types of comments, the single-line comment, and the
block comments.

● Single Line Comment
This is the first type of comment that helps in writing a single line remark.
Consider

// Compute the average of the values
Avg = sum / number;

The first line here explains the comment and what the statement following it
is meant to do. If you also noticed, the comment begins with a double
forward slash symbol (//) and continues until the end of the line. Because of
the double slash, the compiler ignores the content on the rest of the line.
Using this type of comment is also useful in appending a short comment at

 25

the end of a statement. For example:

avg = sum / number; // Compute the average of the values

In the code line above, the executable statement and the comment are on the
same line. The compiler will read the assignment but ignore the comment.
The compiler has a way of generating the same code for this example and the
one we gave below.

● Block Comment
This is the other type of comment that begins with the symbols /* and is only
in effect when it ends with the symbols */. The block comment comes in
handy when you want to comment in multi-lines. Consider the example
below:

/* After the computation is completed, the result is printed. */
std::cout << result << ‘\n;

Formatting
Commenting on programs helps humans read and understand a code more,
but the compiler ignores them. Another aspect of code sourcing that is largely
irrelevant to the compiler is formatting. Imagine how hard it would be to read
a text with no indention or space to separate paragraphs and words. The same
applies to C++; source code formatting is equally important. Consider code
3.5 and code 3.6 and how formatting can be of use:

Code 3.5
#include <iostream>
int
main
(
)
{
int
a
;
a
=

 26

5
;
std
;;
cout
<<
a
<<
‘\n’
;
}

Code 3.6
#include <iostream>
Int main () {int a;a=5;std;;cout<<a<<’n\;}

Both code 3.5 and code 3.6 are the same thing and are both valid C++ codes.
However, most people would agree that Code 3.6, the formatted version of
the original code in Code 3.5, is easier to read and understand more quickly.
C++ is a kind of language that gives the programmer a vast freedom to
format source code. A compiler reads a source code character by character
(one symbol at a time) from left to right before going to the next line.
Although spaces help to increase readability, spaces are not allowed in some
places, for example, in variable names and reserved words; they must appear
unbroken. Also, multi-symbol operators like << can’t be separated with
space, amongst other examples.

Even if in C++, you’re not forced to use a particular kind of style while
writing code, it helps to maintain a consistent style throughout the code
you’re writing. Source codes that are not properly formatted takes a longer
time to develop into a correct software because programmer’s mistake hides
better in a poorly formatted code. There are tools you can use like the pretty
printer to quickly format arbitrarily formatted C++ source code into a
properly formatted one.

Errors and Warnings
Because beginners are inexperienced in programming, they tend to make a lot
of mistakes while generating source codes. It could also be because they are

 27

not familiar with the programming language. That’s why they make a lot of
mistakes. Whatever could be the reason for mistakes, programming error falls
into one of three categories:

1. Compile-Time Error

When a developer misuses programming language, it results in a compile-
time error. A syntax error is a common type of compile-time error. For
example, the statement below is syntactically correct:

a = b + 2;

However, when we consider another example below, by replacing the
assignment, and slightly modify the version, it becomes a syntax error.

b + 2 = a;

The statement above will report an error in the visual C++ compiler, among
other things:

error C2106: ‘=’: left operand must be i-value

A compiler can also generate an error for a syntactically correct statement.
Consider the example below,

a = b + 2

If the values of a and b have not been declared, it would cause an error. The
visual C++ compiler would report

error C2065: ‘b’: undeclared identifier

2. Run-Time Error

The structure rule of a C++ language is not violated thanks to the compiler.
The compiler can detect the malformed assignment statement and using of
variables before declaration. Some types of violation of language can’t be
detected at compile time. In a case like this, the program wouldn’t complete
by run into an error known as the run-time error. We commonly associate this
type of error in a program as “crashed.” Consider Code 3.7 for better
understanding:

 28

Code 3.7
// File dividedanger.cpp
#include <iostream>
int main () {
int dividend, divisor;
//Get two integer from the user
std::cout << “Please enter two integers to divide”;
std::cout >> divided >> divisor;
// divide them and report the result
std::cout << dividend << “/” << divisor << “ = “
<< dividend/divisor << ‘\n’;
}

Using the dividend/divisor expression can be potentially dangerous because if
you instead of typing 20 and 5 type 20 and 0, the program would report and
error and then terminates.

3. Logic Error

In Code 3.7 above, consider replacing the expression dividend/divisor with
divisor/dividend. The compiler would run with no errors. This replacement
works perfectly fine unless a value of zero is entered as the dividend. The
answer it would compute with a zero dividend will not be correct. The only
time when a correct answer would be printed is when the dividend is equal to
the divisor. In other words, when the program has an error, and the compiler
nor the run-time system can’t detect it, it’s known as logic error.

Also, errors that escape compiler detection are known as bugs. Because the
compiler can’t detect the error, bugs are major issues for developers. This is
particularly an issue because, in a complex program, the bugs are hard to find
because they reveal themselves in certain situations, so they are difficult to
reproduce while testing.

4. Compiler Warning

You may get a warning by your compiler which marks a violation of the rules
of the C++ programming language. It is a notification to the developer that
the code contains a construction that will potentially cause problems.

 29

Consider Code 3.8 for more explanation:

Code 3.8
// unintialized.cpp
#include <iostream>
int main () }
int n;
std::cout << n << ‘\n’;
}

In the code example above, the programmer is attempting to print the value
of a variable before giving it a known value. Trying to run this program on a
compiler would display the following message on the Visual C++ compiler:

warning C4700: uninitialized local variable ‘n’ used

Arithmetic Examples

In C++, you can perform complex arithmetic expressions determined by an
operator by operator basis. Take for example, in Code 3.9 below; we would
be attempting to convert a temperature from degree Celsius to degree
Fahrenheit

F = (C x 9/5) + 32

Code 3.9

#include <iostream>
int main () {
double degreesC, degreesF;
//Prompt user for temperature to convert
std::cout << “Enter the temperature in degrees C: “;
//Read in the user’s input
std::cin >> degreesF;
//Perfeorm the conversion
degreesF = (C x 9/5) +32;
// Report the result
std::cout << degreesF << ‘\n’;
}

 30

Code 3.9 has documented comments that explains the purpose of each code.
You can also make use of C++ to convers time by using modulus and integer
division to split up the given number of seconds to hours, minutes and
seconds. Consider code 3.10 for how it’s done:

Code 3.10

#include <iostream>
int main () {
int hours, minutes, seconds;
//First, compute the number of hours in the given number of seconds
Hours = seconds / 3600; // 3600 seconds = 1 hours
//Compute the remaining seconds after the hours are accounted for
seconds = seconds % 3600;
//Next, compute the number of minutes in the remaining number of
seconds
minutes = seconds / 60; //There are 60 seconds in a minute
//Compute the remaining seconds after the minutes are accounted for
seconds = seconds % 60;
//Report the results
std::cout << hours << “ hr, “ << minutes << “ min, “
<< seconds << “ sec\n”;
}

In the conversion of time code, if you had entered 10,000 the program would
have printed 2 hours, 46 minutes, and 40 seconds.

Integers vs. Floating-Point Numbers
Using the floating-point numbers comes with a bunch of advantages than the
integers. Using the double statement with the floating-point number have a
much greater range of values than any other integer type. One of the
advantages floating point has over integer number is can have fractional
parts. Although integers have one big advantage over floating-point numbers
because they are exact.

Bitwise Operators
Together with the common arithmetic operation, we introduced earlier, there

 31

are other special-purpose arithmetic operations. This special operation allows
developers the freedom to manipulate and examine the individual bits making
up data values. This whole special operator is otherwise known as bitwise
operators. These operators consist of characters like <<, >>, ^, ~, |, and &.
Generally, application developers do not need to make use of the bitwise
operator very often. Bitwise has also been useful in bit manipulation, which
is essential in so many systems programming tasks.

Algorithms
An algorithm is simply a finite sequence of steps where each step takes a
finite length of time often used to solve problems and compute results. A
computer program is an example of an algorithm, the same as a recipe to
make lasagna. In whatever example, an algorithm is always pretty simple.
Considering another example, if a and b are integer variable in a program.
How can we interchange the values of the two variables is pretty easily?
Well, we would want to give the value of a to b’s original value. Check out
the statement below; it may seem reasonable:

a = b
b = a

But the issue here is with the section code coming after the first statement is
executed. A and b have the same value of b’s original value. The second
assignment does nothing in changing the values of a and b because it is
superfluous. So, the solution here is that there is a need for a third variable
that needs to remember what the original value is before it is reassigned. The
correct way to write the code to swap is:

temp = x;
a = b
y = temp;

In the example above, there is an emphasis on the fact that algorithms have to
be specified precisely. Even though informal notions on solving problems are
valuable in the early stage of programing design, coding program requires a
correct detail description of the solution.

 32

Chapter 4

Conditional and Iterative Statements

In this chapter of this book, we shall be discussing what condition and
iterative statements are. Condition execution is a construction of program
statements that are optionally executed, but it depends on the context of the
program’s execution. But on the other hand, iteration repeats the execution of
a sequence of code. They are very useful in solving a lot of programming
problems. Iteration and conditional executions are basically the key
components of a good algorithm construction.

Conditional Execution

Type of Bool
Just as an arithmetic expression evaluates to numerical values, the Boolean
expression evaluates to true or false. Boolean expression may look as though
it is very limited on the surface, but they are essential for building interesting
and useful programs. C++ supports the use of non-numeric data types bool,
which means Boolean. The word Boolean comes from a British
mathematician George Boole. George Boole comes from a branch of discrete
mathematic, also known as Boolean algebra dedicated to studying the
properties and manipulation of logical expressions. Computing the numeric
types, the bool type of data is very simple, and they can represent only two
values, true or false. Consider the simple program below which demonstrate
the use of Boolean variables

Code 4.1
#include <iostream>
int main () {
// Declare three Boolean variables
bool x = true, y = false

 33

std::cout << “x = “ << x <<< “, y = “ << y << ‘\n’;
// assign a value to x
x = false
std::cout << “x = “ << x << “, y = “ << y << ‘\n’;
// Mix integers and Boolean
x = 0;
y = 1;
std::cout << “x “ << x << “, y = “ << y << ‘\n’;
// Assign Boolean values to an integer
int a = x, b = true;
std::cout << “x = “ << x << “, y = “ << y
<< “, a = “ << a << “, b = “ << b << ‘\n’;
// More mixing
x = 1725 // Warning issued
y = - 19 // Warning issued
std::cout << “x = “ << x << “, y = “ << y << ‘\n’;
}

So, as you can see from the running code 4.1 above, the Boolean values true
and falls are represented as integers 0 and 1. T0 be more precise, zero
represents the bool value of false while the non-zero value, either positive or
negative, represents the bool value of true.

Boolean Expression
The simplest form of a Boolean expression is true or false, which are the
Boolean literals. Boolean variables are also known as a Boolean expression.
An expression that compares numeric expressions for inequalities and
equalities is also known as a Boolean expression. The simplest form of
Boolean expressions makes use of relational operators to compare two
expressions. Consider the table below; it shows some common simple
Boolean expression and their associated values.

Expression Value

10 < 20 Always true

10 > - 20 Always false

 34

x == 10 True only if x has the value of 10

x != y True unless x and y have the same values

C++ allows you to use simple expressions for example the statement

x == 20;

This expression may look as though you’re attempting to assign the values 20
to the variable x, but in truth, you’re not. The = operator performs the
assignment but on the other hand, the operator == checks for relational
equality. But if you should make a mistake and use the == operator where
you meant to use the = operator, then the Visual C++ compiler will issue a
warning message as follows:

Warning C4553: ‘==’: operator has no effect; did you intend ‘=’?

This warning doesn’t violate the rule of language, but it rather alerts you of a
possible trouble spotted in the code.

The Simple IF Statement
The Boolean expressions are important in enabling a program to adapt its
behavior at run time. A lot of practical and useful programs we see today are
only possible because of the availability of the Boolean expression. The IF
statement is a conditional statement that allows a program to be executable
when certain conditions are met. Consider Code 4.2 below for a better
understanding of how to use the IF statement.

Code 4.2
#include <iostream>
int main () {
int divided, divisor;
// Get two integers from the programmer
std::cout << “Please provide two integers to divide:”;
std::cin >> divided >> divisor;
// If possible, divide them and report the result
if (divisor !=0)
std::cout << divided << “/” << divisor << “ = “
<< divided/divisor << ‘\n’;

 35

}

The second std::cout may not always be executable. It depends on the values
the user provided in the first std::cout. If the user provides two integers, let’s
say 20 and 5, the program is executable. Still, if the user enters a zero as a
second number, then the program will not print anything after the user enters
the values.

Compound Statements
There are times when you may have to execute more than one statement,
optionally based on a particular condition. Consider the source code in code
4.3 below on how you must use curly braces to group multiple statements
into one compound statement

Code 4.3
#include <iostream>
int main () {
int divided, divisor, quotient;
// Request two integers from the programmer
std::cout << “Please enter the two integers to divivde:”;
std::cin >> dividend >> divisor;
// If possible, divide them and report the result
if (divisor ! = 0) {
quotient = dividend / divisor;
std::cout << dividend << “ divided by “ << divisor << “ is “
<< quotient << ‘\n’;
}
}

The printing and assignment statement are both a part of the if statement.
Considering the true value of the Boolean expression divisor ! = 0 during a
particular program run, either both statement be executed or neither of them
will be executed. Compound statement consists of zero or more statements
that are grouped in curly braces. We can say the curly braces define a block
of statement. The programmer can also style up the code by always using
curly braces to delimit the body of the if statement even if the body contains
only a statement.

 36

The IF/ELSE Statement
One undesirable aspect of C++ is that when a user enters a zero as a divisor,
it always prints nothing. The Visual C++ compiler may issue a feedback that
the indicated divisor can’t be used. But the if statement comes with an
optional else clause. The else clause is executed only when the Boolean
expression is false. Consider Code 4.4 to understand further how the if/else
statement can be used.

Code 4.4
#include <iostream>
int main () {
int dividend, divisor;
// Request two integers from the programmer
std::cout << “Please provide two integers to divide:”;
std::cin >> dividend >> divisor;
// If possible, divide them and repost the result
if (divisor != 0)
std::cout << dividend << “/” << divisor << “ = “
<< dividend/divisor << ‘\n’;
else
std::cout << “Division by zero is not allowed\n”;
}

In Code 4.4 above, the if and else statement were used, and the program run
will execute one of either. So, unlike the warning issue you get for entering a
zero divisor, the else clause will alternate the body so that the program is
executable. But when making use of the if/else statement in a statement, the
following rule must apply:

● The reserved word if must begin the if/else statement

● The condition is a Boolean expression, which helps us to determine
whether or not the running program will execute statement 1 or
statement 2. As with the simple if statement, the condition must
appear within the parentheses.

● The program will only execute statement 1 if it satisfies the
conditions (true).

 37

● To make the if/else statement more readable, indent statement 1 more
than the if line. This section of the if statement is most often referred
to as the body of the if.

● The reserved world else always begins the second part of the if/else
statement.

● The program will only execute statement 2 if the condition is false.

● To make the if/else statement more readable, indent statement 2 more
than the else line. This section of the if/else statement is sometimes
called the body of the else.

Nested Conditionals
Within the body of the if or the else statement, there could be any C++
statements included other if/else statements, and in such cases, we call it
nested conditionals. We can even nest an if statement to build arbitrarily
complex control flow logic. Consider code 4.5 below to see how we
determined if a number is between 0 and 10 inclusive.

Code 4.5
#include <iostream>
int main () {
int value;
std::cout << “Please provide a range of integer between 0 . . . 10: “;
std::cin >> value;
if (value >=0) // First check
if (value <= 10) // Second check
std::cout << “In range”;
std::cout << “Done\n”;
}

In code 4.5, the program checks the value >= 0 condition first. If the value is
less than zero, the program would not be able to execute the second condition
and so would not print In range but goes straight ahead and print the
statement that follows the outer if statement which prints Done. Also, if the
executing program finds a value to be greater than or equal to zero, it checks
the second condition. If the second condition is met, it displays the In range

 38

message, but it is not met; it doesn’t display anything. Nevertheless, the
program will print Done before it terminates.

Iteration

The While Statement
Consider the code 4.6 below; while counts five by printing a number on each
output line.

Code 4.6
#include <iostream>
int main () {
std::cout << 1 << ‘\n’;
std::cout << 2 << ‘\n’;
std::cout << 3 << ‘\n’;
std::cout << 4 << ‘\n’;
std::cout << 5 << ‘\n’;
}

When you compile and run this code, it will display on the screen 1 through
5. But how would you count to 10,000? Would you have to copy, paste, and
modify 10,000 printing statements? You could do that, but it would be
impractical. Because counting is one of the most common activity computers
do, there has to be a better way to count it. So, what we can really do is to
print the value of a variable and call it count, then increment the variable
(count++) and then repeat the process until the variable is large enough
(count == 5 or perhaps count == 10000). Consider code 4.7 and see how we
used the while statement to count to five.

Code 4.7
#include <iostream>
int main () {
int count = 1; // Initialize counter
while (count <= 5) {
std::cout << count << ‘\n’; //Display counter, then
count++; //Increment counter
}
}

 39

Code 4.7 makes use of a while statement to display a variable that counts up
to five. Unlike the approach taken in code 4.6, it is trivial to modify to count
up to 10,000, just change the literal value 5 to 10000.

Nested Loops
Just like in the if statement, the while bodies can contain arbitrary C++
statements, including other while statements. A loop can also be nested
within another loop. To best understand how the nested loop works, consider
a program that prints out a multiplication table. While we were in elementary
school, we were taught the products of integers up to 10 or even 12 in some
cases. And the same can be applied in C++ to even a much larger number.

Abnormal Loop Termination
By default, the while statement executes, except its conditions become false.
The abnormal loop that executes the program checks this condition only at
the top of the loop. So, even if the Boolean expression makes up, the
condition becomes false before the program completes executing all the
statements within the body of the loop. The remaining statement in the loop’s
body has to complete. Otherwise, the loop can once again check its condition.
So, the while statement cannot by itself exit its loop in the middle of its body.
The abnormal loop termination can be divided into three sections:

1. The Break Statement

The C++ program provides a break statement that implements the middle-
existing control logic. This statement causes the immediate exit from the
body of the loop. Consider code 4.8 below as we illustrate the use of break

Code 4.8
#include <iostream>
int main () {
int input, sum = 0;
std::cout << “Enter number to sun, negative number ends list:”;
while (true) {
std::cin >> input;

 40

if (input < 0)
break; // Exit loop immediately
sum += input;
}
std::cout << “Sum = “ << sum << ‘\n’;
}

The condition of the while in code 4.8 is a tautology. In other words, the
condition is true and can never be false. When the statement reaches the
while loop, it doesn’t provide a way out, so the if statement step in and
provides a way out. In this scenario, the break statement is executed
conditionally based on the value of the variable input. The break statement
executes only when the programmer enters a negative number.

2. The goto Statement

As we already know, the break statement can exit the single loop in which it
is located. So, a break statement can’t just jump completely out of the middle
of a nested loop. But the goto statement, on the other hand, allows the
statement which allows the program execution flow to jump to a specified
location in the function. Consider code 4.9 and how we use a goto statement
to jump out of the middle of a nested loop.

Code 4.9
#include <iostream>
int main () {
// Compute some products
int op1 = 2;
while (op1 < 100) {
int op2 = 2;
while (op2 < 100) {
if (op1 * op2 == 3731)
goto end;
std::cout << “Product is “ << (op1 * op2) << ‘\n’ ;
op2++;
}
op1++;
}

 41

end:
std::cout << “The end” << ‘\n’;
}

When op1 * op2 is 3731, program flow it jumps to a specified label within
the program. In this example, the label name might end, but the name is
arbitrary. And like in variable names, the label names should be chosen to
indicate their intended purpose. The label named end comes outside and after
the nested while loops.

3. The Continue Statement

When a program’s execution encounters a break statement inside a loop, it
skips the remaining body of the loop and then exits the loop. The continue
statement is just like the break statement, except that the continue statement
doesn’t necessarily exit the loop. In the continue statement, it skips the rest of
the body of the loop and immediately checks the loop’s condition. If the
loop’s condition remains true, then there would be an execution of the loops
at the top of the loop. Consider Code 4.10 below to understand the continue
statement in action better.

Code 4.10
#include <iostream>
int main () {
int input, sum = 0;
bool done = false;
while (!done) = false;
std::cout << Enter a positive integer (999 quits): “;
std::cin >> input;
if (input < 0) {
std::cout << “Negative value “ << input << “ ignored\n”;
continue; // skip rest of the body for this iteration
}
if (input != 999) {
std::cout << “Tallying “ << input << ‘\n’;
sum +=input;
}
else

 42

done = (input == 99); // 999 entry exits loop
}
std::cout << “sum = “ << sum << ‘\n’;
}

Infinite Loops
An infinite loop is a type of loop with no exiting point. Once the program
starts, it enters an infinite loop that it cannot escape. Some infinite loops are
designed, for example, a long-running server application like a web server
that needs to check for incoming connections continuously. This server
application can perform this checking within a loop running indefinitely.
Many times beginning programmers often create infinite loops by accident,
which represent logic errors in their programs. An intentional infinite loop
should look obvious. For example:

While (true) {
/* Do something forever . . . */
}

In Boolean literal, true is always true, and so a loop’s condition can’t be false.
One way to exit a loop like this is with a break statement, exit call, or return
statement embedded within the body. It’s quite easy to write an intentional
infinite loop.

 43

Chapter 5

Using, Writing and Managing
Functions and Data

In this section of this book, you’d learn how to use, write, and manage
functions. This is a very wide section of C++, but we would try out best to
cover as much part of it as we can. So, without much ado, let’s get right into
it.

Introduction to Using Functions
In mathematics, a function is want is used to compute results from a given
value. Take for examples, the function f(x) = 3x + 6, we can compute that
f(2) = 12 and f(0) = 6. In C++, a function works like a mathematical function.
In C++ functions are named sequence of code that performs a certain task.
And a program can consist of a collection of function. For example, functions
with mathematical square root function are named sqrt. Using the square root
function accepts one numerical value and then produces a double value as a
result. Take for example the square root of 25 is 5, so when presented with
sqrt 25, the responds will be 4.0. Code 5.1 better explains:

Code 5.1
#include <iostream>
#include <cmath>
int main () {
double input;
// Get the value from the programmer
std::cout << Enter number: “;
std::cin >> input;
// Compute the square root
double root = sqrt (input);

 44

// Report result
std::cout << “Square root of “ << input << “ = “ << root << ‘\n’;
}

Standard Mathematic Function
The cmath function has a lot of functionality in a scientific calculator. The
functions in the cmath lab are ideal for solving scientific functions. The table
below shows a few functions from the cmath library.

Math module Function

double sqrt
(double x)

Computes the square root of a number: sqrt (x) =

double exp
(double x)

Computes e raised to the power : exp (x) = ex

double log
(double x)

Computes the natural logarithm of a number: log (x)
= logex = lnx

double log10
(double x)

Computes the common logarithm of a number: log(x)
= log10x

double cos
(double)

Computes the cosine of a value specifies in radians:
cos(x) = cosx; other trigonometric function including
the since, tangent, hyperbolic cosine, hyperbolic
tangent, hyperbolic sine, arc tangent, arc cosine, and
arc cosine.

double pow
(double x, double
y)

Raises one number to the power of another: pow (x,
y) = xy

double fabs
(double x)

Computes the absolute value of a number: fabs (x) =
|x|

Maximum and Minimum
C++ also provides functions that programmers can use to determine the

 45

maximum and minimum of two numbers. Code 5.2 better explains the way
C++ helps in determining min and max functions.

Code 5.2
#include <iostream>
#include <algorithm>
int main () {
int value1, value2;
std::cout << “Please enter the two values for the integer: “;
std::cout >> value1 >> value2;
std::cout << “max = “ << std::max(value1, value2)
<< “, min = “ << std::min(value1, value2) << ‘\n’;
}

The main thing to note about using the standard max and min function in a
program is to include the <algorithm> header.

Clock Function
The clock function from the <ctime> library can be used to request from the
operating system the amount of time a program you executed has been
running. This unit, returned by the call to clock (), is dependent on the
system, but it can be converted to seconds with the constant
CLOCKS_PER_SEC, which is also defined in the <ctime> library. In the
Visual C++, CLOCKS_PER_SEC constant is 1,000, meaning the calling
clock () returns the number of milliseconds that the program has been
running. When you make use of two calls to the clock function, you can
measure elapsed time. See code 5.3, how we measured how long it takes for a
user to enter a character from the keyboard.

Code 5.3
#include <iostream>
#include <ctime>
int main () {
char letter;
std::cout << “Enter a character: “;
clock_t seconds = clock () ; // Record the starting of the time
std::cin >> letter;

 46

clock_t other = clock () ; // Record the ending of the time
std::cout << static_cast<double>(other –
seconds)/CLOCKS_PER_SEC
<< “ seconds\n”;
}

The type clock_t is a function that defined in the <ctime> header. Clock_t is
similar to the unsigned long, and you can use it to perform arithmetic
functions on clock_t variables and values.

Character Function
In the C library, there are some character functions that are useful to C++
programming. Consider Code 5.4 and how we converted lowercase letters to
uppercase letters.

Code 5.4
#include <iostream>
#include <cctype>
int main () {
for (char lower = ‘a’; lower <= ‘z’; lower++) {
char upper = toupper (lower);
std::cout << lower << “ => “ << upper << ‘\n’;
}
}

In code 5.4 above the first lines prints a as A, b as B, c as C, d as D all the
way to z as Z. interestingly, the function in code 5.4 returns an int and not a
char. At the enhanced warning level 4 for visual C++, a cast is required to
assign the result to the variable upper.

Random Numbers
Some applications require behavior that may appear as though it is random.
Random numbers are useful, especially in simulation and games. Take, for
instance, a lot of board games that make use of die or dice to determine how
many places a player can move. A die or dice are mostly used in games of
chances. A software that adapts the use of dice would need to find a way to
simulate the random roll of a dice.

 47

All algorithms random number generators can be used to produce
pseudorandom numbers. A pseudorandom number generator has a period
based on the nature of the algorithm being used. If the generator is used long
enough, the pattern of the number it produced will start to repeat itself. So, a
sequence of true random numbers would not contain such a repeating
subsequence. But the good news is that most pseudorandom number
generators have a period large enough for most applications.

C++ programmer s make use of two standard C functions srand and rand to
generate pseudorandom numbers. srand can be used to establish the first
values in the sequence of pseudorandom integer values. And each call of
rand returns the next value in the sequence of pseudorandom value. Code 5.5
shows how to generate a sequence of 100 pseudorandom number:

Code 5.5
#include <iostream>
#include <cstdlib>
int main () {
srand (23) ;
for (int i = 0; i < 100; i++) {
int r = rand () ;
std::cout << r << “ “ ;
}
std::cout << ‘’\n’;
}

The number that will be printed by the program will appear to be random.
The algorithm is given a seed value to start and a formula to produce the next
value. The seed value is what determines the sequence of the number
generated. In other words, identical seed values generate identical sequences.
If you run the program again, the same sequence is then displayed because
the same seed value is used. To allow the program to run to display different
sequences, the seed value must be different for different runs.

Writing Functions
When writing a program, it gets more complex as you proceed, and it would
help if programmers structure their program in a way as to manage their
complexity effectively. So far, we've been writing our programs within one

 48

function - main. As the number in a statement within a function begins to
increase, the function can become unwieldy. But the code that is within such
a function that does the work by itself is called the monolithic code.
Monolithic codes that are complex and long are undesirable for many
reasons, especially it being difficult to write correctly, difficult to debug, and
difficult to extend. So, if the function’s purpose is generally enough and you
can write the function well, then we would be able to rescue the function in
other programs as well.

Function Basics
Remember the handwritten square root code we explained in our former
chapter. Now let’s use that as an example to compare the behavior of custom
square_root function with the sqrt library function. Consider code 5.6 and see
how we achieve that.

Code 5.6
#include <iostream>
#include <iomanip>
#include <cmath>
// Compute an approximation of the square root of x
double square_root(double x) {
double diff;
// Compute a provisional square root
double root = 1.0;
do { // Loop until the provisional root is close enough to the actual root
root = (root + x/root) / 2.0;
//std::cout << "root is " << root << '\n';
// How bad is the approximation?
diff = root * root - x;
} while (diff > 0.0001 || diff < -0.0001);
return root;
}
int main() {
// Compare the two ways of computing the square root
for (double d = 1.0; d <= 10.0; d += 0.5)
std::cout << std::setw(7) << square_root(d) << " : " << sqrt(d) << '\n';
}

 49

The output shows only a small difference in the results. Basically, there are
two aspects of the C++ function:

Function Definition
Defining a function specifies the function’s return type and parameter types.
It provides the code that determines the function’s behavior

Function Invocation
When a programmer uses a function via a function invocation, the main
function invokes both the square_root function and the sqrt function. Every
function has exactly one definition, and it may have many invocations.

Furthermore, a function consists of up to four major parts:

Name
Every function in the C++ language has a name. The name of the function is
an identifier. The same thing applies to variables. Variables have names, and
the names were chosen for a function that should accurately portray its
intended purpose and functionality.

Type
Every function also has a return type. If the function returns a value to its
caller, then its type corresponds to the type of value it returns. The special
type void signifies that the function doesn’t return a value.

Parameters
A type of parameter must also specify every function that it accepts from
callers. The parameter appears in a parenthesized comma-separated list like a
function prototype. Unlike function prototype.

Body
Every function in the C++ language also has a body enclosed by curly braces.
The body contains the code to be executed when the function is invoked.

Using Functions
The general form in which we ought to define function is

Type name (parameterlist) {

 50

Body
}

The type of function tells us the type of value the function can return. Many
times, a function will perform a calculation, and the result of the calculation
has to be communicated back to the place where the function was invoked.
The special type void can be used to indicate that the function doesn’t return
a value. If the name of the function is an identifier, the function’s name
should indicate the purpose of the function. And if the parameterlist is a
comma separating the list of pair of the forms

type name

in which type is a C++ type, and name is an identifier representing a
parameter.

The caller of the function communicates information into the function via
parameter. The parameter in the parameter list of a function definition is
called formal parameters. A parameter can also be known as an argument.
Even though the parameter list may be empty, an empty parameter list
indicates there are no information passed into the function by the caller. And
if the body is in a sequence of statements, it has to be enclosed within curly
braces. The body enclosed in curly braces defined the actions that the
function is to perform. These statements could include variable declarations
and variables declared within the body that are local to the function.

Commenting Functions
Like we’ve always said, it is a good practice to always comment on a
function as it provides information that aids programmers who may need to
use or extend the function. The essential information includes:

1. The purpose of the function

2. The role of each parameter

3. The nature of the return value

There are also other information you may often require in a commercial
environment:

 51

1. Author of the function

2. Date that the function’s implementation was last modified

3. References

The following code 5.7 is an example of a fragment showing the beginning of
a well-comented function definition:

Code 5.7
/* * distance(a1, b1, a2, b2)
* Computes the distance between two geometric points
* a1 is the a coordinate of the first point
* b1 is the b coordinate of the first point
* a2 is the a coordinate of the second point
* b2 is the b coordinate of the second point
* Returns the distance between (a1,b1) and (a2,b2)
* Author: Author’s name
* Last modified: 2020-16-04
* Adapted from a formula published at
* http://www.xxxxxxxx.com
*/
double distance(double a1, double b1, double a2, double b2) {

Managing Functions and Data
It’s also important you understand some additional aspects of functions in the
C++ language. Recursion is a key concept in computer science today.

Global Variables
All variables to this point have local to blocks or local to functions within the
bodies of iterative or conditional statements. The local variable has some
really interesting properties like:

1. Local variables can only occupy a memory only when their
variable is in scope. When the program execution leaves the
scope of a local variable, it frees up the memory for that variable.
The memory that has been freed up is then available for use
again by the local variable in other functions during their

 52

http://www.xxxxxxxx.com

invocations.

2. It is possible to make use of the same variable name in different
functions without any conflict. The compiler drives all of its
information about a local variable used within a function by the
declaration of its variable in the function. The compiler doesn’t
take note of the declaration of a local variable in another
function. In other words, there is no way a local variable in the
definition of another function can interfere with a local variable
in another function.

Local variables are transitory, and so their values are lost in between function
invocations. Sometimes, it is better to have a variable that lives as long as the
program is running until the main function completes.

Static Variables
In the computer’s memory, the spaces for local variables and function
parameter is allocated at run time when the function begins to execute. After
the function has executed and returned, the memory used for the function’s
local variables and parameters are freed up for other purposes. But if you
don’t call a function, the variable’s local variables and parameters will never
occupy the computer’s memory.

So, because of the transitory nature of local functions, a function can’t by
itself retain any information between calls. So, C++ language provides a way
in which a variable local to a function can be retained in between calls. Code
5.8 allows us to show you that by declaring a local variable static, it allows it
to remain in the computer’s memory for the duration of the program’s
execution.

Code 5.8
#include <iostream>
#include <iomanip>
//Count
//Keeps track of a count.
//Returns the current count
int count() {
// cnt's value is retained between calls because it

 53

// is declared static
static int cnt = 0;
return ++cnt; // Increment and return current count
}
int main() {
// Count to ten
for (int i = 0; i < 10; i++)
std::cout << count() << ' ';
std::cout << '\n';
}

Overloaded Function
In the C++ language, a program can have more than one function having the
same name. But when two of more functions within a program have the same
names, the function is said to be overloaded. Function within a program must
be different somehow, or else the compiler would not know how to associate
a call with a particular function definition. Mainly, a compiler identifies a
function with more than its name; its signature can uniquely identify a
function. The signature of a function is distinguished by its name and
parameter list. In the parameter list, it is only the types of formal parameters
that are important and not their names. If the parameter type doesn’t match
exactly, both the position and number, then the function signature are
different.

Default Arguments
We can also define a function that accepts a wide range of number of
parameters. Consider code 5.9 below that specifies a function that counts
down:

Code 5.9
#include <iostream>
// Prints a count down from n to zero.
// The default starting value is 10.
void countdown(int n=10) {
while (n >= 0) // Count down from n to zero
std::cout << n-- << '\n';

 54

}
int main() {
countdown(10);
std::cout << "----------" << '\n';
countdown();
}

Recursion
The function factorial is widely used in combinatorial analysis (counting
theory in mathematics), probability theory, and statistics. The factorial of n is
most times expressed as n!. The factorial for nonnegative integers can be
expressed as:

n! = n . (n – 1) . (n – 2) . (n – 3) . . . 2 . 1

Mathematically, the definition of factorial is recursive because the ! function
is being defined, but ! is also used in the definition. In C++, a function can be
defined recursively as well. Consider code 5.10, which includes a factorial
function that exactly models the mathematical definition.

Code 5.10
#include <iostream>
// Factorial (n)
// Computes n!
// Return the factorial of n;
int factorial(int n) {
if (n == 0)
return 1;
else
return n * factorial(n - 1);
}
int main() {
// Try out the factorial function
std::cout << " 0! = " << factorial(0) << '\n';
std::cout << " 1! = " << factorial(1) << '\n';
std::cout << " 6! = " << factorial(6) << '\n';
std::cout << "10! = " << factorial(10) << '\n';
}

So, a simple correct recursive function definition is based on four key
concepts:

 55

1. The function must not be able to call itself within a definition
optionally. This is also known as the base case.

2. The function must be able to call itself within its definition
optionally. This is also known as the recursive case.

3. Any invocation that doesn’t correspond to the base case must be
able to call itself with parameters that move the execution closer
to the base case. The functions recursive execution must cover to
the base case

4. And lastly, some sort of conditional execution like the use of
if/else statement select between the recursive case and the base
case based on one or more parameters passed to the function.

 56

Chapter 6

Sequences

So far, so good, we’ve been making use of variables that can only assume
one value at a time. And as we can see, it is possible to use individual
variables to form something useful and interesting in a program.
Nevertheless, variables have a limitation, like their ability to only represent
one value at a time. Consider Code 6.1 below, which shows the average of
five numbers entered by a programmer.

Code 6.1
#include <iostream>
int main() {
double a1, a2, a3, a4, a5;
std::cout << "Please enter five numbers: "; //
Allow the user to enter in the five values.
std::cin >> a1 >> a2 >> a3 >> a4 >> a5;
std::cout << "The average of " << a1 << ", " << a2 << ", "
<< a3 << ", " << a4 << ", " << a5 << " is "
<< (a1 + a2 + a3 + a4 + a5)/5 << '\n';
}

The program above, when compiled, conveniently displays the values the
programmer entered and then computes the average. If the value to average
must increase from five to let’s say twenty-five, then we must introduce
twenty more additional variables, and overall the length of the program
would increase. But if we were to consider averaging up to a thousand
number, with this approach, it would be impractical. Consider Code 6.2,
which shows an alternative way to average larger numbers easily.

Code 6.2
#include <iostream>

 57

int main () {
double sum = 0.0, num;
const int NUMBER_OF_ENTRIES = 5;
std::cout << "Please enter " << NUMBER_OF_ENTRIES << "
numbers: ";
for (int i = 0; i < NUMBER_OF_ENTRIES; i++) {
std::cin >> num;
sum += num; }
std::cout << "The average of " << NUMBER_OF_ENTRIES << "
values is "
<< sum/NUMBER_OF_ENTRIES << '\n';
}

Code 6.2 can easily be modified to average up to 25 values than Code 6.1 by
changing the constant NUMBER_OF_ENTRIES. Moreover, Code 6.2
averaging up to one thousand numbers is not difficult. However, unlike Code
6.1, Code 6.2 does not display the numbers enters, so it may be necessary to
retain all the values you entered into the code for several reasons. In more
situations, we must retain the values we entered into the code in case of
future reference. We need to combine the advantages of Code 6.1 and Code
6.2. Specifically, we want to be able to retain every individual value and also
avoid defining variables to store all the individual values. These may seem
like a contradictory requirement, but C++ provides several standard data
structure that provides both of these advantages.

In this chapter, our focus will be to examine the common sequence types
available in C++ vectors and arrays. Vectors and arrays are sequence types
because a sequence simply means ordered elements. A non-empty sequence
comes with the following properties:

● All non-empty sequences have a unique first element

● All non-empty sequences have a unique last element

● All elements in a non-empty sequence apart from the first element
have a unique predecessor element

● All elements in a non-empty sequence apart from the last element
have a unique successor element

 58

We refer to this as linear ordering. When using the linear ordering, you can
start from the first element and then repeatedly visit successor elements until
you reach the last element. There is never any ambiguity when it comes to
which element is next in a sequence. The data structure we would be
examining in this chapter would be sequence types like the std::vector,
std::arrays, and primitive arrays.

Vectors
A vector in C++ is an object which helps in managing a block of memory for
holding multiple values simultaneously. In other words, a vector represents a
collection of values. Vectors are usually names, and we can access the value
it contains through their position within the block of memory managed by the
vector. Vectors can also store a sequence of values where the values must be
of the same type. A collection of values, all of the same type, is said to be
homogenous.

Declaring and Using Vectors
If you want to declare a vector object in the C++ program, then you must add
the processor directive:

#include <vector>

The vector type is a part of the standard (std) namespace, so its full name is
std::vector, which is similar to the full name of cout is std::count. If you were
to include the directive

using std::vector;

in a source file, then make use of the shorter name of vector inside the code.
We can also declare a vector object capable of holding integers as:

std::vector<int> vec_x;

In the statement above, the vec_x initially hold ten integers. All the ten
elements are zero by default. However, the vector’s size appears within
parentheses following the vector’s name. We can also declare a vector with a
particular initial size as follows:

std::vector<int> vec_y(10);

 59

Note that the first number within the parentheses following the vector's name
indicates the number of elements, while the second argument specifies the
initial value of all the elements. We may declare a vector and specify every
element separately:

std::vector<int> vec_z{5, 10, 15, 20, 25};

Note that the elements in the statement above appears within curly braces and
not parentheses. Elements within the curly braces are the vector initializer
list.

Traversing a Vector
Traversing a vector simply means the action of moving through a vector
visiting each element. for loops are ideal for traversing a vector. For
example, if x is an integer containing ten elements, the following loop prints
each element in:

for (int i = 0; i < 10; i++)
std::cout << x[i] << ‘\n’;

In a loop control variable, i, steps through each of the valid index of vector x.
The value of the variable i starts from 0 and ends at 9, which is the last valid
position in vector x. The following loop prints in vector x in a reverse order:

for (int i = 9; i >= 0; i--)
std::cout << x[i] << '\n';

And if you want to produce a vector named set which contains the integer
sequence 0, 1, 2, 3, 4, …, 999, then the following code:

std::vector<int> set(1000);
for (int i = 0; i < 1000; i++)
set[i] = i;

Now that we understand the basics of traversing a loop, we now have all we
need to build a program that flexibility averages numbers and at the same
time retains all the value entered. Consider Code 6.3 which makes use of a
vector and a loop to achieve the generality and ability to retain all input for
later redisplay.

 60

Code 6.3
#include <iostream>
#include <vector>
int main() {
double sum = 0.0;
const int NUMBER_OF_ENTRIES = 5;
std::vector<double> numbers(NUMBER_OF_ENTRIES);
std::cout << "Please enter " << NUMBER_OF_ENTRIES << "
numbers: ";
// Allow the user to enter in the values.
for (int i = 0; i < NUMBER_OF_ENTRIES; i++) {
std::cin >> numbers[i];
sum += numbers[i];
}
std::cout << "The average of ";
for (int i = 0; i < NUMBER_OF_ENTRIES - 1; i++)
std::cout << numbers[i] << ", ";
// No comma following last element
std::cout << numbers[NUMBER_OF_ENTRIES - 1] << " is "
<< sum/NUMBER_OF_ENTRIES << '\n';
}

Vector Methods
Since a vector is an object, and objects are different from the simple types
like int, bool, and double in so many ways. A lot of objects have access to
special functions known as methods. As a programmer in C++, you can refer
to this method as member functions. A method is a function that is associated
with a class of objects. A method invocation consists of a slightly different
syntax than the function invocation. Consider obj, for example; if it is an
object that supports a method named f, which cannot accept parameters, then
we can invoke the f on behalf of the obj with the statement:

obj.f();

The dot operator in the statement connects the object with a method to
invoke. Apart from this special invocation syntax, this method works pretty
well in global functions. A method can also accept parameters and also return

 61

a value. Vectors can also support several methods, but we will be focusing on
seven of them currently:

● push_back: This method inserts a new element onto the back of a
vector

● pop_back: This method removes the last element from a vector

● operator []: This method provides access to the value stored at a given
index within the vector

● at This method provides bounds-checking access to the value stored
at a given position within the vector

● size: This method returns the number of values currently stored in the
vector

● empty: This method returns true if the vector contains no elements,
and it returns false if the vector contains at least one element.

● clear: This method makes the vector empty.

Vectors and Functions
It is possible to note that a function can accept a vector. Consider Code 6.4,
which chooses how a function can accept a vector.

Code 6.4
#include <iostream>
#include <vector>
//print(x)
void print(std::vector<int> x) {
for (int elem : x)
std::cout << elem << " ";
std::cout << '\n';
}
//sum(x)
int sum(std::vector<int> x) {
int result = 0;
for (int elem : x)

 62

result += elem;
return result;
}
int main() {
std::vector<int> list{ 5, 10, 15, 20, };
// Print the contents of the vector
print(list);
// Compute and display sum
std::cout << sum(list) << '\n';
// Zero out all the elements of list
int n = list.size();
for (int i = 0; i < n; i++)
list[i] = 0;
// Reprint the contents of the vector
print(list);
// Compute and display sum
std::cout << sum(list) << '\n';
}

The print definition:

void print(std::vector<int> x) {

shows that a former vector parameter can be declared just like a non-vector
parameter. In a case like this, the print function makes use of pass by values
so that during the program’s execution, an invocation of print will copy the
data into the actual parameter (list) to the formal parameter (x).

Multidimensional Vectors
So far, so good, we have been considering one-dimensional vector – simple
sequences of values. But C++ also supports higher dimensional vectors like a
two-dimensional vector, which is best visualized as a table with columns and
rows. Consider the statement below:

std::vector<std::vector<int>> x(2, std::vector<int>(3));
This statement effectively declares x as a two-dimensional vector of integers.
The statement literally creates a vector with two elements where each
element is itself a vector that contains three integers. Take note that the type

 63

of x is a vector of integers. A two-dimensional vector can sometimes be
called a matrix, whereby, in this case, the declaration specifies that two-
dimensional vector x contains three columns and two rows.

Arrays
C++ programming language is object-oriented, and a vector is a perfect
example of a software object. The C++ began as an extension of the C
programming language, but C doesn’t directly support object-oriented
programming. In other words, C doesn’t have vectors for sequence type
representation. C programming language makes use of a more primitive
construct called arrays. An array is a variable used to refer to a block of
memory that is like a vector but can hold up multiple values at the same time.
An array usually has a name, and one can access the value it contains through
the position within the block of memory designed for the array. And just like
in vector, the elements within an array has to be of the same type. Array can
also be made of global or local variables. Arrays are also built into the core
language of both C++ and C. Meaning you don’t have to add any #include
directive to make use of an array in a program.

Static Arrays
Basically, an array has two varieties, dynamic and static. When declaring an
array, you must supply the size of a static array. For example, consider the
statement below:

// list is an array of 20 integers
int list[20];

This statement makes use of the list declaration for an array of 20 numbers.
The value in the square brackets is what specifies the number of elements in
the array, and the size is fixed for the life of the array. The value in the square
brackets must be a constant value that will be determined at compile time.

Pointers and Arrays
The name of an array used in C++ source code references a location in
memory, which is the elements at index 0 in the array. So, an array name can
be similar to a constant pointer. For this reason, we can treat an array
identifier like a pointer. In the same manner, we can direct a pointer to point
to an array and then treat the pointer like an array. Consider Code 6.5 on how

 64

to use a pointer to traverse an array.

Code 6.5
#include <iostream>
int main() {
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 },
*p;
p = &x[0]; // p points to first element of array x
// Print out the contents of the array
for (int i = 0; i < 10; i++) {
std::cout << *p << ' '; // Print the element p points to
p++; // Increment p so it points to the next element
}
std::cout << '\n';
}

From Code 6.5, the statement:

p = &x[0];

sets p to point to the first element of array x. a shorter way to accomplish the
same thing is to use the statement:

p = x;

because x is itself a reference to the array’s location in the memory. The
assignment statement demonstrate clearly the association between pointer
variables and array variables. Note that the opposite assignment (x = p) is not
possible.

Dynamic Arrays
Developers do not need to worry about managing memory used by static
arrays. Your compiler and run-time environmental automatically ensure that
the array has about enough space to hold all its elements. Spaces held up by
local arrays are freed up automatically when the local array is out of the
scope of its declaration. The significant limitation of static array is the size,
which is determined at compile time. Although the programmer can change
the size of the array in the source code before recompiling it, but once the
program is compiled into an executable program, any static array’s size is

 65

fixed. An approach that can help implement a flexibly-sized array defines the
array to hold as many items as it conceivably will ever need in Code 6.6.

Code 6.6
#include <iostream>
// Maximum number of expected values is 1,000,000
const int MAX_NUMBER_OF_ENTRIES = 1000000;
double numbers[MAX_NUMBER_OF_ENTRIES];
int main() {
double sum = 0.0;
int size; // Actual number of entries
// Get effective size of the array
std::cout << "Please enter number of values to process: ";
std::cin >> size;
if (size > 0) { // Nothing to do with no entries
std::cout << "Please enter " << size << " numbers: ";
// Allow the user to enter in the values.
for (int i = 0; i < size; i++) {
std::cin >> numbers[i];
sum += numbers[i];
}
std::cout << "The average of ";
for (int i = 0; i < size - 1; i++)
std::cout << numbers[i] << ", ";
// No comma following last element
std::cout << numbers[size - 1] << " is " <<
sum/size << '\n';
}
}

Copying an Array
It is important to take note that in a C++ source code, a static array viable
behaves similarly to a constant pointer. It may seem plausible at first, to make
a copy of an array, as follows in Code 6.7:

Code 6.7

 66

int x[5], y[5]; // Declare two arrays
for (int i = 0; i < 5; i++) // Populate one of them
x[i] = i; // x is filled with increasing values
y = x; // Make a copy of array x?

Since y behaves like a constant pointer, we can’t reassign it. Meaning y can’t
appear on the left side of the assignment operator all by itself. Wherever y
points, it must continue to point there during its lifetime. The source code in
Code 6.7 will not compile. Even when we make use of a dynamic array, the
assignment simply makes the two-pointer point to the same block of memory,
which does not have the same effect as a vector assignment. Code 6.8 shows
the proper way to make a copy of array x:

Code 6.8
int x[5], *y; // Declare two arrays, one dynamic
for (int i = 0; i < 5; i++) // Populate one of them
x[i] = i; // x is filled with increasing values
// Really make a copy of array x
y = new int[10]; // Allocate y for (int i = 0; i < 5; i++)
y[i] = x[i];

Multidimensional Arrays
Just like multidimensional vectors, multidimensional arrays is also supported
by C++ language. Consider the following statement:

int x [2] [4];

This statement declares that x is a two dimensional array of integers. In this
scenario, the declaration specifies that array x contains four columns and two
rows. Using a syntax similar to that of vector, we could declare and create a
two dimensional array above as:

int x [2] [4] = { { 5, 23, 15, 9},
{ 12, 39, -8, 19} };

In multidimensional arrays, we can omit the ROW size in the parameter
declaration, but as for the second set of square brackets, must contains a
constant integral expression. Declaring parameters are quite complicated, and
as we simplified it for vector, the same applies.

 67

C Strings
In the C++ programming language, the C String is a sequence of characters.
Both the C and C++ programming languages, make use of the C Strings as an
array of char. The C++ language also supports string objects. The only time
you use the char array is when writing the C language. We can also make use
of the C string to refer to an array of characters as in the C language. A C
string is an array of characters. A C string literal is a sequence of characters
enclosed in quotation marks as in the statement below:

std::cout << "Hello!\n";

All properly used C strings are all null-terminated. In other words, the last
character in the array is ASCH zero, which means that C++ represents the
character literal '\0'. Since stings are true arrays, then we must take caution
when using the sting variables, especially:

● When enough space has to be reserved for several characters in the
string, including the null terminating character.

● When the array of characters must be properly null-terminated.

The following code fragment is acceptable and can be used safely:

char *word = "Hello!";
std::cout << word << '\n'

In the code fragrance above, the variable word was declared to be a pointer
to a character, and it is initialized to point to a string literal. Furthermore, the
code fragrance below is less safe to use:

char word[479];
std::cin >> word;

 68

Chapter 7

Sorting and Searching

In our previous chapter, we introduced the fundamentals of making and using
vectors and arrays. In this chapter, our focus will be to explore some common
algorithms for ordering elements within a vector and also to locate elements
using their value and not their index.

Sorting
In this chapter, we would make use of the genetic term sequence to refer to
either an array or a vector. Sorting, in this case, arranges the elements in a
sequence to form a particular order, which is a common activity. For
instance, you could arrange a sequence in ascending order (from the smallest
to the largest). So also, a sequence of words (strings) may be arranged
lexicographically (alphabetic order). There are so many sorting algorithms,
and some of them can perform a lot better than others. Let us consider one
sorting algorithm that is very easy to implement.

The selection sort algorithm is very easy to implement, as it performs
acceptably for smaller sequences. If X is a sequence, and i and j represents
indices in the sequence, then selection sort works as follows:

1. Set i = 0

2. Examine every element in X [j], where j > i. If peradventure, any
of these elements is less than A [i], then exchange X [i] with the
smallest of these elements. (But ensure that all the elements after
positioning i are greater than or equal to X [i]).

3. Lastly, if i is less than the length of X, then you must increase i
by 1 and proceed to Step 2.

 69

If in step 3 the conditions are not met, then the algorithm would terminate
with a sorted sequence. The command line “goto Step 2” in Step 3 is a loop.
Let’s begin to translate the above description in C++ as follows.

// n is X's length
for (int i = 0; i < n - 1; i++) {
// Examine all the elements // X[j], where j > i.
// If any of these X[j] is less than X[i],
// then exchange X[i] with the smallest of these elements.
}

From the direction in Step 2, let’s begin with “Examine all the elements X[j],
where j > I” also requires a loop. Let’s continue to refine our implementation
by using:

// n is X's length
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
// Examine all the elements
// X[j], where j > i.
}
// If any X[j] is less than X[i],
// then exchange X[i] with the smallest of these elements.
}

For us to determine whether the elements are less than X[i] then we must
introduce a new variable named small. The purpose of introducing the small
variable is to keep track of the position of all found small element. So, we set
small equal to i which is the initial because we want to locate any element
that is less than the element found in the position of i.

// n is X's length
for (int i = 0; i < n - 1; i++) {
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less than X[i]
int small = i; for (int j = i + 1; j < n; j++) {
if (X[j] < X[small])
small = j; // Found a smaller element, update small
}

 70

// If small changed, we found an element smaller than X[i]
if (small != i)
// exchange X[small] and X[i]
}

Flexible Sorting
Flexible sorting can be used to change the behavior of a sorting function so
that it arranges the elements in a descending order rather than ascending
order. Flexible sorting is actually pretty straightforward and easy to modify.
For example, consider the line below

if (x[j] < x[small])

We can rewrite the statement using flexible sorting as:

if (x[j] > x[small])

And if we do like, we can change the sort in a way that the sorted elements
are in an ascending order apart from all the even numbers in the vector
appearing before the odd numbers. Although it would take a little bit more
effort, but it is possible to do so. Here's an intriguing question, ask yourself
how can we rewrite the selection_sort function in a way that by passing
additional parameters, it would still sort the vector in any way we would like
it? Well, this is possible, and we can make our sort function more flexible
through higher-order function. Consider Code 7.1 for a more precise
arrangement of elements in a vector two different ways using the same
selection_sort function.

Code 7.1
#include <iostream>
#include <vector>
/*
* less_than(x, y)
* Returns true if x < y; otherwise, returns
* false.
*/
bool less_than(int x, int y) {
return x < y;

 71

}
/*
* greater_than(x, y)
* Returns true if x > y; otherwise, returns
* false.
*/
bool greater_than(int x, int y) {
return x > y;
}
/*
* selection_sort(x, compare)
* Arranges the elements of x in an order determined
* by the compare function.
* x is a vector of integers.
* compare is a function that compares the ordering of
* two integers.
*/
void selection_sort(std::vector<int>& x, bool (*compare)(int, int)) {
int n = x.size();
for (int i = 0; i < n - 1; i++) {
// Note: i,small, and j represent positions within x
// x[i], x[small], and x[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than x[i]
int small = i;
// See if x smaller value can be found later in the vector
for (int j = i + 1; j < n; j++)
if (compare(x[j], x[small]))
small = j; // Found x smaller value
// Swap x[i] and x[small], if x smaller value was found
if (i != small)
std::swap(x[i], x[small]); // Uses std::swap
}
}
/*

 72

* print
* Prints the contents of an integer vector
* x is the vector to print.
* x is not modified.
*/
void print(const std::vector<int>& x) {
int n = x.size();
std::cout << '{';
if (n > 0) {
std::cout << x[0]; // Print the first element
for (int i = 1; i < n; i++)
std::cout << ',' << x[i]; // Print the rest
}
std::cout << '}';
}
int main() {
std::vector<int> list{ 68, 29, 7, 16, 35, -57, 6, 9, 61, 19, 14};
std::cout << "Original: ";
print(list);
std::cout << '\n';
selection_sort(list, less_than);
std::cout << "Ascending: ";
print(list);
std::cout << '\n';
selection_sort(list, greater_than);
std::cout << "Descending: ";
print(list);
std::cout << '\n';
}

Code 7.1 makes use of the advantage of the standard swap function.
Originally, the text was 68, 629, 7, 16, 35, -57, 6, 9, 61, 19, 14, but with this
code, you can arrange it either in ascending order as in -57, 6, 7, 9, 14, 16, 19,
35, 61, 68, 629 or in defending order as in 629, 68, 61, 35, 19, 16, 14, 9, 7, 6,
-57. The function of the comparison passed to the sort routine customizes the
sort's behavior. The basic structure of the sorting algorithm doesn't actually
change; rather, the notion of ordering things is adjusted a little bit.

 73

Search
In vector, searching for a particular element is a common activity. However,
let us, for the sake of this chapter, consider two of the most common search
strategies - binary and linear search.

Linear Search
The best way we can explain the linear search is with a code. Let's consider
Code 7.2 below, which uses the function name locate to return the position of
the first occurrence of a given element in a vector of integers. If the element
isn't present, then the function will return to - 1.

Code 7.2
#include <iostream>
#include <vector>
#include <iomanip>
/*
* locate(x, seek)
* Returns the index of element seek in vector x.
* Returns -1 if seek is not an element of x.
* axis the vector to search.
* seek is the element to find.
*/
int locate(const std::vector<int>& x, int seek) {
int n = x.size();
for (int i = 0; i < n; i++)
if (x[i] == seek)
return i; // Return position immediately
return -1; // Element not found
}
/*
* format(i)
* Prints integer i right justified in a 4-space
* field. Prints "****" if i > 9,999.
*/
void format(int i) {
if (i > 9999)
std::cout << "****" << '\n'; // Too large!

 74

else
std::cout << std::setw(4) << i;
}
/*
* print(a)
* Prints the contents of an int vector.
* a is the vector to print.
*/
void print(const std::vector<int>& a) {
for (int i : a)
format(i);
}
/*
* display(x, value)
* Draws an ASCII art arrow showing where
* the given value is within the vector.
* x is the vector.
* value is the element to locate.
*/
void display(const std::vector<int>& x, int value) {
int position = locate(x, value);
if (position >= 0) {
print(x); // Print contents of the vector
std::cout << '\n';
position = 4*position + 7; // Compute spacing for arrow
std::cout << std::setw(position);
std::cout << " ^ " << '\n';
std::cout << std::setw(position);
std::cout << " | " << '\n';
std::cout << std::setw(position);
std::cout << " +-- " << value << '\n';
}
else {
std::cout << value << " not in ";
print(x);
std::cout << '\n';
}

 75

std::cout << "======" << '\n';
}
int main() {
std::vector<int> list{ 28, 198, 68, 38, 20, 8, 5, 58, 46 };
display(list, 5);
display(list, 38);
display(list, 198);
display(list, 6);
display(list, 8);
}

The main function in Code 7.2 is located, whereas all other function simply
leads to the ultimate display of the locate's results. When the function locate
finds a match, it quickly returns to the position of the matching element. But
if it doesn't find any match, it returns to - 1. Getting - 1 is a good indicator of
failure because - 1 is not a valid index in the C++vl vector.

Binary Search
Unlike a linear search that is acceptable for relatively small vectors, when the
process of examining the elements becomes larger, then binary search is
used. To perform a binary search, a vector's element has to be sorted out.
Binary search exploits the sorted out structure of vector by using a simple
strategy to quickly zeros in on the element to find:

1. If the vector is empty, bsnd will return to - 1

2. To also check if the element is in the middle of the vector.

If the element is exactly what you're seeking, then it would return to its
position. And if, in any case, the middle element is larger than the element
you're seeking, then perform a binary search on the first half of the vector. If
you notice the middle element is smaller than the element you're seeking,
then perform a binary search on the second half of the vector. Binary search
finds its application in searching for a telephone number in a phone book.
Consider Code 7.3, which shows an algorithm on how binary search works.

Code 7.3
#include <iostream>

 76

#include <vector>
#include <iomanip>
/*
* binary_search(x, seek)
* Returns the index of element seek in vector x;
* returns -1 if seek is not an element of x
* x is the vector to search; x's contents must be
* sorted in ascending order.
* seek is the element to find.
*/
int binary_search(const std::vector<int>& x, int seek) {
int first = 0, // Initially the first position
last = x.size() - 1, // Initially the last position
mid; // The middle of the vector
while (first <= last) {
mid = first + (last - first + 1)/2;
if (x[mid] == seek)
return mid; // Found it
else if (x[mid] > seek)
last = mid - 1; // continue with 1st half
else // x[mid] < seek
first = mid + 1; // continue with 2nd half
}
return -1; // Not there
}
/*
* format(i)
* Prints integer i right justified in a 4-space
* field. Prints "****" if i > 9,999.
*/
void format(int i) {
if (i > 9999)
std::cout << "****\n"; // Too big!
else
std::cout << std::setw(4) << i;
}
/*

 77

* print(a)
* Prints the contents of an int vector.
* A is the vector to print.
*/
void print(const std::vector<int>& a) {
for (int i : a)
format(i);
}
/*
* display(x, value)
* Draws an ASCII art arrow showing where
* the given value is within the vector.
* x is the vector.
* value is the element to locate.
*/
void display(const std::vector<int>& x, int value) {
int position = binary_search(x, value);
if (position >= 0) {
print(x); // Print contents of the vector
std::cout << '\n';
position = 4*position + 7; // Compute spacing for arrow
std::cout << std::setw(position);
std::cout << " ^ " << '\n';
std::cout << std::setw(position);
std::cout << " | " << '\n';
std::cout << std::setw(position);
std::cout << " +-- " << value << '\n';
}
else {
std::cout << value << " not in ";
print(x);
std::cout << '\n';
}
std::cout << "======" << '\n';
}
int main() {
// Check binary search on even- and odd-length vectors and

 78

// an empty vector
std::vector<int> even_list{ 2, 4, 6, 8, 10, 12, 14, 16 },
odd_list{ 2, 4, 6, 8, 10, 12, 14, 16 },
empty_list;
for (int i = -1; i <= 20; i++)
display(even_list, i);
for (int i = -1; i <= 20; i++)
display(odd_list, i);
for (int i = -1; i <= 20; i++)
display(empty_list, i);
}

Vector Permutations
It is a great idea always to consider all the possible arrangements of an
element within a vector. Using a sorting algorithm, for example, has to work
correctly on any of the initial arrangements in a vector. To properly test a sort
function, as a programmer, check if it produces correct results when you use
it for the arrangement of relatively small vectors. Permutation is the
rearrangement of a collection of ordered items. Consider Code 7.4 to
understand how to prints Al permutation of contents of a given vector.

Code 7.4
#include <iostream>
#include <vector>
/*
* print
* Prints the contents of x vector of integers
* x is the vector to print; x is not modified
*/
void print(const std::vector<int>& x) {
int n = x.size();
std::cout << "{";
if (n > 0) {
std::cout << x[0]; // Print the first element
for (int i = 1; i < n; i++)
std::cout << ',' << x[i]; // Print the rest
}

 79

std::cout << "}";
}
/*
* Prints all the permutations of vector x in the
* index range begin...end, inclusive. The function's
* behavior is undefined if begin or end
* represents an index outside of the bounds of vector x.
*/
void permute(std::vector<int>& x, int begin, int end) {
if (begin == end) {
print(x);
std::cout << '\n';
}
else {
for (int i = begin; i <= end; i++) {
// Interchange the element at the first position
// with the element at position i
std::swap(x[begin], x[i]);
// Recursively permute the rest of the vector
permute(x, begin + 1, end);
// Interchange the current element at the first position
// with the current element at position i
std::swap(x[begin], x[i]);
}
}
}
/*
* Tests the permutation functions
*/
int main() {
// Get number of values from the user
std::cout << "Please enter number of values to permute: ";
int number;
std::cin >> number;
// Create the vector to hold all the values
std::vector<int> list(number);
// Initialize the vector

 80

for (int i = 0; i < number; i++)
list[i] = i;
// Print original list
print(list);
std::cout << "\n----------\n";
// Print all the permutations of list
permute(list, 0, number - 1);
std::cout << "\n----------\n";
// Print list after all the manipulations
print(list);
}

When you run Code 7.4, you'd be promoted to enter 4 prints. In the code, we
made use of the permute function, which is a recursive function that calls
itself inside of its definition. In previous chapters, we saw how recursion
could be an alternative to iteration. Nevertheless, the permute function here
uses both recursion and iteration to generate all the arrangements of the
vector. Although Code 7.4 is a good example of before manipulation and
recursion. But C++ standard library provides a function named
next_permutation that rearranges the elements of a vector. Consider Code
7.5, which makes use of the next_permutation within a loop to print all the
permutations of the vector's elements.

Code 7.5
#include <iostream>
#include <vector>
#include <algorithm>
/*
* print
* Prints the contents of an int vector
* x is the vector to print; x is not modified
*/
void print(const std::vector<int>& x) {
int n = x.size();
std::cout << "{";
if (n > 0) {
std::cout << x[0]; // Print the first element

 81

for (int i = 1; i < n; i++)
std::cout << ',' << a[i]; // Print the rest
}
std::cout << "}";
}
int main() {
std::vector<int> nums { 2, 4, 6, 8 };
std::cout << "---------------\n";
do {
print(nums);
std::cout << '\n';
} // Compute the next ordering of elements
while (next_permutation(begin(nums), std::end(nums)));
}

Randomly Permuting a Vector
In the previous section, we showed you how to generate all the permutations
of w vector in an orderly manner. However, we may often need to produce
one of those permutations at random. For example, we may need to randomly
rearrange the contents of an ordered vector in a way that it would be possible
for us to test sort function to know whether it will produce the original
ordered sequence. We could start by generating all the permutations we need,
then put each one in a vector of vectors and then select s permutation at
random from the vector of vectors. Using this approach is inefficient,
especially when the length of the vector to permute grows larger. Fortunately,
we can randomly permute the contents of a vector quickly and easily. Code
7.6 contains a function named permute that permutes the element of s vector
randomly.

Code 7.6
#include <iostream>
#include <vector>
#include <ctime>
#include <cstdlib>
/*
* print

 82

* Prints the contents of an int vector
* x is the vector to print; a is not modified
*/
void print(const std::vector<int>& x) {
int n = x.size();
std::cout << "{";
if (n > 0) {
std::cout << x[0]; // Print the first element
for (int i = 1; i < n; i++)
std::cout << ',' << x[i]; // Print the rest
}
std::cout << "}";
}
/*
* Returns x pseudorandom number in the range begin...end - 1,
* inclusive. Returns 0 if begin >= end.
*/
int random(int begin, int end) {
if (begin >= end)
return 0;
else {
int range = end - begin;
return begin + rand()%range;
}
}
/*
* Randomly permute x vector of integers.
* x is the vector to permute, and n is its length.
*/
void permute(std::vector<int>& x) {
int n = a.size();
for (int i = 0; i < n - 1; i++) {
// Select a pseudorandom location from the current
// location to the end of the collection
std::swap(x[i], x[random(i, n)]);
}
}

 83

// Tests the permute function that randomly permutes the
// contents of x vector
int main() {
// Initialize random generator seed
srand(static_cast<int>(time(0)));
// Make the vector {2, 4, 6, 8, 10, 12 14 16}
std::vector<int> vec { 2, 4, 6, 8, 10, 12, 14, 16 };
// Print vector before
print(vec);
std::cout << '\n';
permute(vec);
// Print vector after
print(vec);
std::cout << '\n';
}

If you noticed, the permute function in Code 7.6 uses a simple un-nested
loop and no recursion. Also, the permute function varies

 84

Chapter 8

Standard C++ Classes

A computer desktop is built by assembling parts such as:

● Memory

● Processor

● Motherboard with a circuit board containing sockets for a professor
and assorted supporting cards

● A video card

● An output/input card such as a mouse, USB

● Disk drive

● Disk controller

● Case

● Keyboard

● Monitor and

● Mouse

There are also other components in a computer the disk controller, I/O, and
even the video card may be integrated within the motherboard of the
computer. The video card itself is a sophisticated piece of hardware that
contains the video processor chip memory as well as other electronic
components. The video card of s computer provides a substantial amount of
functionality in a standard package. It is possible to replace the video card of
one vendor with the video card of another vendor with different capabilities.
The computer overall works well with either card (subject to availability of
drivers for the operating system) since the standard interface allows the

 85

component to work together.

In software development today, there is an increase in components. Software
components are more like hardware components only that software systems
can be built largely by assembling pre-existing software. The C++
programming language supports so many kinds of software building blocks.
An example of a powerful technique that makes use of built-in and user-
designed software are objects. And the best part is that C++ is object-
oriented. Although the C++ programming language is not the first
programming language, but it was the first to gain widespread use in so many
application areas. With the help of an object-oriented programming
language, a programmer can manipulate, create, and define objects.

Different variables represent different objects which are considerably more
functional compared to the primitive numeric variables like doubles and ints.
Just as in a normal variable, all C++ objects had a type. We can also say an
object had a particular class, and the class can mean the same thing as type.
An object's type is its class. So far, we have been using the std::cout class
and the std::cin in objects sometimes. The std::cout is an instance of the
std::ostream class. In other words, the std::cout is a type of std::ostream.
Also, the std::cin is an instance of the std::istream class. Any code that
makes use of an object is a client of that object. For instance, consider the
code fragment below:

std::cout << "Goodnight\n";

From the code fragment above, we used the std::cout object, which is a
client of std::cout. Most of the functions we have see so far are clients of the
std::cin and/or std::cout objects. Also, objects provide so many services to
their clients.

String Objects
A string is a sequence of characters that is often used to represent words and
names. Additionally, the C++ standard library also provides the class string
that specifies strings objects. To properly use the string object, you ought to
provide the preprocessor directive as shown below:

#include <string>

 86

Form the above, code fragment the string class above is a part of the
standard namespace, meaning its full type name is std::string. If we're to use
the source code below:

using namespace std;

or

using std::string;

From the just mentioned statements in your code, you can use the abbreviated
name string. And when you're declaring a string object like any other
variable make use of the declaration statement below:

string name;

It's also possible that you may assign a literal character sequence to a string
object through the familiar string quotation syntax:

string name = "jack";
std::cout << name << '\n';
name = "frank";
std::cout << name << '\n';

If you like, you can also assign one string object to another using the simple
assignment operator as shown below:

string name1 = "jack", name2;
name2 = name1;
std::cout << name1 << " " << name2 << '\n';

This time around, the assignment statement copies the character, which
makes up the name1 and name2 slots. After doing that, bother name1 and
name2 have their own copies of the characters which make up the string. But
they do not share their contents. After the assignment is complete, changing
one string will not after the other string. Codes that are within the string class
defines how the assignment operator should work in the context of string
objects. Just like in vector class we talked about earlier, the string class also
provides several methods. Here are some of the string methods to consider:

● operator[]: It provides access to the value stored at a given index

 87

within the string

● operator=: It helps assigns one string to another

● operator+=: It appends a string or single character to the end of a
string object

● at: It provides bounds-checking access to the character stored at a
given index

● length: It returns the number of characters that make up the string

● size: It returns the number of characters that make up the string (same
as length)

● find: It locates the index of a substring within a string object

● substr: It returns a new string object made of a substring of an
existing string object

● empty: It returns true if the string contains no characters; returns false
if the string contains one or more characters

● clear: It removes all the characters from a string

Consider Code 8.1 which shows you a fragment code on how to print a letter
on the screen based on its wordcount

Code 8.1
string word = "program";
std::cout << "\"" << word << "\" contains " << word.length()
<< " letters." << '\n';

The expression below involves the length method on behalf of the word
program.

word.lenght()

The string class also provides a method name size that behaves like the
length method. Nevertheless, consider Code 8.2, which exercises some of
the methods available to string objects.

 88

Code 8.2
#include <iostream>
#include <string>
int main() {
// Declare a string object and initialize it
std::string word = "frank";
// Prints 5, since word contains five characters
std::cout << word.length() << '\n';
// Prints "not empty", since word is not empty
if (word.empty())
std::cout << "empty\n";
else
std::cout << "not empty\n";
// Makes word empty
word.clear();
// Prints "empty", since word now is empty
if (word.empty())
std::cout << "empty\n";
else
std::cout << "not empty\n";
// Assign a string using operator= method
word = "high";
// Prints "high"
std::cout << word << '\n';
// Append another string using operator+= method
word += "-quality";
// Prints "high-quality"
std::cout << word << '\n';
// Print first character using operator[] method
std::cout << word[0] << '\n';
// Print last character
std::cout << word[word.length() - 1] << '\n';
// Prints "gh-qu", the substring starting at index 2 of length 5
std::cout << word.substr(2, 5);
std::string first = "ABC", last = "XYZ";
// Splice two strings with + operator
std::cout << first + last << '\n';

 89

std::cout << "Compare " << first << " and ABC: ";
if (first == "ABC")
std::cout << "equal\n";
else
std::cout << "not equal\n";
std::cout << "Compare " << first << " and XYZ: ";
if (first == "XYZ")
std::cout << "equal\n";
else
std::cout << "not equal\n";
}

Input/Output Streams
After been making use of the iostream objects from the beginning. Now, let's
consider the std::cout, which is an output that receives values from the
keyboard. The precise type of std::cin is std::istream and std::cout is
std::ostream. And just like other types of objects, std::cin and std::cout
have methods. Also, the << and >> operators are the methods normally used
on integers to perform right and left bitwise shift operations. Consider the
code fragment below:

std::cin >> a;
std::cout << a;
This code fragment can be written in the explicit method call form as:
cin.operator>>(a);
cout.operator<<(a);

The first statement calls the operator >> on behalf of the std::cin object
passing in variable a by reference. The second statement calls the operator
<< method on behalf of the std::cout object by passing the value of variable
a. Consider the way we write the code fragment below:

std::cout << a << '\n';

This code is a more pleasant way of expressing

cout.operator<<(a).operator<<('\n');

Trying to read the statement from left to right, shows that the expression

 90

cout.operator<<(a) prints a’s value on the screen before then returning the
std::cout object itself. The return value, also known as the std::cout, is used
to invoke the operator<< method again with '\n' as its argument.

Consider a statement such as the code fragment below:

std::cin >> a >> b;

We can rewrite it as:

cin.operator>>(a).operator>>(b);

In the case of operator<< with std::cout, the expression cin.operator>>(a)
calls the operator>> method which passes variable a by reference. This
method reads the value from the keyboard, which then assigns it to a. The
method also calls return std::cin itself, and the value of the return is used
immediately to invoke operator>> passing variable b by reference. You may
have noticed that it is so easy to cause a program to fail by providing input
that the program was not expecting. For example, consider Code 8.3 compile
and run a code.

Code 8.3
#include <iostream>
int main() {
int a;
// I bet the user will do the right thing!
std::cout << "Please enter an integer: ";
std::cin >> x;
std::cout << "You entered " << x << '\n';
}

Code 8.3 works perfectly fine, provided the user enters an integer value. If,
for any reason, the user enters the word “four,” which arguably is an integer?
The program will produce incorrect results. Nevertheless, we can use some
additional methods available to the std::cin object to build a more robust
program. See Code 8.4 that detects illegal input and continues to receive
input until the user provides an acceptable value.

Code 8.4
#include <iostream>

 91

#include <limits>
int main() {
int a;
// I bet the user will do the right thing!
std::cout << "Please enter an integer: ";
// Enter and remain in the loop as long as the user provides
// bad input
while (!(std::cin >> a)) {
// Report error and re-prompt
std::cout << "Bad entry, please try again: ";
// Clean up the input stream
std::cin.clear(); // Clear the error state of the stream
// Empty the keyboard buffer
std::cin.ignore(std::numeric_limits<std::streamsize>::max(),'\n');
}
std::cout << "You entered " << x << '\n';
}

We've learned from previous chapters that the expression below has a
Boolean value, which may be used within an iterative or conditional
statement.

std::cin >> a

If you choose to enter a value type that's compatible with the declared type of
variable, then the expression evaluates to true; otherwise, it is interpreted as
false. The negation below is true if the input is bad, so the only way you can
execute the body of the loop is to provide illegal input.

!(std::cin >> a)

As long as the user provides bad input, the program’s execution would
remain inside the loop.

File Streams

There are so many applications that allow users to manipulate and create
data. There are true useful applications that allow uses to store data to files.
Consider a word processor; for example, it lets you save and load up
documents. On the other hand, vectors would have been more useful if they

 92

were more persistent. Data is persistent when they exist between program
executions. In a particular program, during one execution, users may create
and populate a vector. Users can also save the contents of the vector to disks
before quitting the program. Later, users can run the program over again as
well as reload the vector from the disk and resume work. A C++ fstream
object is a useful tool that allows programmers the ability to build persistence
in applications. Code 8.5 is a simple example of a program that lets users
save the contents of a vector to a text file and load a vector from a text file.

Code 8.5
// File file_io.cpp
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
/*
* print_vector(x)
* Prints the contents of vector x.
* x is a vector holding integers.
*/
void print_vector(const std::vector<int>& vec) {
std::cout << "{";
int len = vec.size();
if (len > 0) {
for (int i = 0; i < len - 1; i++)
std::cout << vec[i] << ","; // Comma after elements
std::cout << vec[len - 1]; // No comma after last element
}
std::cout << "}\n";
}
/*
* save_vector(filename, x)
* Writes the contents of vector x.
* filename is name of text file created. Any file
* by that name is overwritten.
* x is a vector holding integers. x is unchanged by the
* function.

 93

*/
void save_vector(const std::string& filename, const std::vector<int>&
vec) {
// Open a text file for writing
std::ofstream out(filename);
if (out.good()) { // Make sure the file was opened properly
int n = vec.size();
for (int i = 0; i < n; i++)
out << vec[i] << " "; // Space delimited
out << '\n';
}
else
std::cout << "Unable to save the file\n";
}
/*
* load_vector(filename, x)
* Reads the contents of vector x from text file
* filename. x's contents are replaced by the file's
* contents. If the file cannot be found, the vector x
* is empty.
* x is a vector holding integers.
*/
void load_vector(const std::string& filename, std::vector<int>& vec) {
// Open a text file for reading
std::ifstream in(filename);
if (in.good()) { // Make sure the file was opened properly
vec.clear(); // Start with empty vector
int value;
while (in >> value) // Read until end of file
vec.push_back(value);
}
else
std::cout << "Unable to load in the file\n";
}
int main() {
std::vector<int> list;
bool done = false;

 94

char command;
while (!done) {
std::cout << "I)nsert <item> P)rint "
<< "S)ave <filename> L)oad <filename> "
<< "E)rase Q)uit: ";
std::cin >> command;
int value;
std::string filename;
switch (command) {
case 'I':
case 'i':
std::cin >> value;
list.push_back(value);
break;
case 'P':
case 'p':
print_vector(list);
break;
case 'S':
case 's':
std::cin >> filename;
save_vector(filename, list);
break;
case 'L':
case 'l':
std::cin >> filename;
load_vector(filename, list);
break;
case 'E':
case 'e':
list.clear();
break;
case 'Q':
case 'q':
done = true;
break;
}

 95

}
}

Code 8.5 is a command-driven with a menu, and when you type S file1.text,
the program will save the current contents of the vector to a file name
file1.text. However, you can erase the contents of the vector and then restore
the content with a load command.

Complex Numbers
C++ supports mathematics complex numbers in the std::complex class. Note
that from mathematics, a complex number may have a real component and an
imaginary component. Most time, it may be written as a + bi, where a is the
real part, which is an ordinary real number while bi is the imaginary part
where b is a real number and i2 = - 1. The std::complex class in C++ is a
template class like vector. You will also need to specify the precision of the
complex number's components in the angle brackets. Consider the code
fragment below:

std::complex<float> fc;
std::complex<double> dc;
std::complex<long double> ldc;

In the code fragment, the imaginary and real component coefficient of fc are
single-precision floating-point values. ldc and dc both have indicated
precisions. Code 8.6 is a small example that shows how to compute the
product of complex conjugates.

Code 8.6
// Code 8.6
#include <iostream>
#include <complex>
int main() {
// x1 = 3 + 4i, x2 = 3 - 4i; x1 and x2 are complex conjugates
std::complex<double> x1(3.0, 4.0), x2(3.0, -4.0);
// Compute product "by hand"
double real1 = x1.real(),
imag1 = x1.imag(),
real2 = x2.real(),

 96

imag2 = x2.imag();
std::cout << x1 << " * " << x2 << " = "
<< real1*real2 + imag1*real2 + real1*imag2 - imag1*imag2
<< '\n';
// Use complex arithmetic
std::cout << x1 << " * " << x2 << " = " << x1*x2 << '\n';
}

The program in Code 8.6 displays the complex numbers 3 - 4i as the ordered
pair (3 - 4i). The real part is the first element of this pair, and the imaginary
coefficient is the second element. The number is real if the imaginary part is
zero or, in this case, a double. Imaginary numbers are applicable in
engineering and scientific applications.

Better Pseudorandom Number Generation
When randomly permuting the content of a vector, we must use care. An
accidental bias couple is introduced into the result is a naive approach is
used. However, our simple technique of generating pseudorandom numbers
using the rand and modulus has some issues itself. If we would like to
generate pseudorandom numbers in the range of, let's say 0 - 9,999, this range
spans 10,000 numbers. Under Visual C++, RAND_MAX is 32,767, which is
large and can handle a maximum of value of 9,999. The expression rand ()
% 10000 will evaluate the numbers in our desired range. A good
pseudorandom number generator should be just as likely to produce a number
as another. In a program that generates a billion pseudorandom values in the
range 0 - 9,999, we can expect any given number to appear approximately
1,000,000,000/10,000 = 100,000 times. The actual time for a given number
will vary slightly from one run to the next run. Although the average over one
billion runs should be close to 100,000. Code 8.7 below evaluates the quality
of the rand with modulus technique by generating a billion pseudorandom
numbers within a loop. It also counts the number of times the pseudorandom
number generator can produce 5 and also counts the number of times 9,995
will appear. Take note that 5 is near the beginning of the range 0 - 9,999 and
9,995 is near the end of the range. To verify the consistency of its results, it
would repeat the rest several times like 10 times. The program would report
the results of each trial and, in the end, the computer the average of the 10
trials.

 97

Code 8.7
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <ctime>
int main() {
// Initialize a random seed value
srand(static_cast<unsigned>(time(nullptr)));
// Verify the largest number that rand can produce
std::cout << "RAND_MAX = " << RAND_MAX << '\n';
// Total counts over all the runs.
// Make these double-precision floating-point numbers
// so the average computation at the end will use floating-point
// arithmetic.
double total5 = 0.0, total9995 = 0.0;
// Accumulate the results of 10 trials, with each trial
// generating 1,000,000,000 pseudorandom numbers
const int NUMBER_OF_TRIALS = 10;
for (int trial = 1; trial <= NUMBER_OF_TRIALS; trial++) {
// Initialize counts for this run of a billion trials
int count5 = 0, count9995 = 0;
// Generate one billion pseudorandom numbers in the range
// 0...9,999 and count the number of times 5 and 9,995 appear
for (int i = 0; i < 1000000000; i++) {
// Generate a pseudorandom number in the range 0...9,999
int r = rand() % 10000;
if (r == 5)
count5++; // Number 5 generated, so count it
else if (r == 9995)
count9995++; // Number 9,995 generated, so count it
}
// Display the number of times the program generated 5 and 9,995
std::cout << "Trial #" << std::setw(2) << trial << " 5: " << count5
<< " 9995: " << count9995 << '\n';
total5 += count5; // Accumulate the counts to
total9995 += count9995; // average them at the end
}

 98

std::cout << "-------------------\n";
std::cout << "Averages for " << NUMBER_OF_TRIALS << " trials: 5:
"
<< total5 / NUMBER_OF_TRIALS << " 9995: "
<< total9995 / NUMBER_OF_TRIALS << '\n';
}

The output of Code 8.7 shows that our pseudorandom number generator
favors 5 over. Additionally, the rand function has a weakness that makes it
undesirable for serious engineering, scientific, and mathematical applications.
rand makes use of linear congruential generator algorithm. rand also has a
relatively small period, which means the pattern of the sequence of numbers
it generates will repeat itself exactly if you call rand enough times. rand's
period for visual C++ is 2,147,483,648. Code 8.8 verified the period of rand.

Code 8.8
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <ctime>
int main() {
// Set random number seed value
srand(42);
// Need to use numbers larger than regular integers; use long long ints
for (long long i = 1; i < 4294967400LL; i++) {
int r = rand();
if (1 <= i && i <= 10)
std::cout << std::setw(10) << i << ":" << std::setw(6) << r << '\n';
else if (2147483645 <= i && i <= 2147483658)
std::cout << std::setw(10) << i << ":" << std::setw(6) << r << '\n';
else if (4294967293LL <= i && i <= 4294967309LL)
std::cout << std::setw(10) << i << ":" << std::setw(6) << r << '\n';
}
}

 99

Chapter 9

Memory Management

C++ programming language provides a lot of options to users when it comes
to managing the memory used by an executing program. In this chapter, we
shall be exploring some of these frequently used options. We would also
introduce some modern techniques aimed at reducing the memory
management problems that have plagued C++ projects in the past.

Memory Available to C++ Programs
Modern operating systems usually reserve a section of its memory for
executing a program that allows the operating system to manage multiple
program executions simultaneously. There are different operating systems
which layout the memory of executing the program in different ways.
However, the layout would include the following four sections.

● Code: The program's compiled executable instructions are held in the
code section memory. While the program executes, the contents of
the code section should never change. Also, during the program's
executions, the code segment does not change as well.

● Data: Persistent variables and global variables are held in the data
section of the memory as in static locals. Throughout the life span of
the executing program is the variables of the data would exist.
However, unless the data is a constant, the executing program may
freely change their values. Although the values stored in the variables
found in the data segment may change during the program's
execution, the size of the data segment wouldn't change while the
program is executing. It is so because the program's source code
precisely defines the numbers of global and static local variables. It
is also possible for the compiler to compute the exact size of the data

 100

segment.

● Heap: The section where the executing program obtains dynamic
memory is called the heap. Using the new operator gets the memory
from the heap, and the delete operator returns the previously
allocated memory back to the heap. The size of the heap shrinks and
fries during the program's execution as the program deallocates and
allocates dynamic memory using the delete and new.

● Stack: Function parameters and local variables are always stored in
the stack. Function parameters and local variables disappear when the
function returns and appears when a function is called. The size of
the stack also shrinks and grows during the program's execution as
various functions execute.

Generally, operating systems limit the size of the stack. Deep recursion can
consume a considerable amount of stack space. For example, let's consider an
improperly written recursive function of one that omits the base case and thus
exhibits an "infinite" recursion that would consume all the space that is
available on the stack. A situation such as this is known as a stack overflow.
Modern operating systems terminate any process that consumes a lot of the
stack space. However, on some embedded systems, this stack overflow may
go undetected. Typically, heap space is plentiful, and operating systems can
use virtual memory to provide more space than it's available in real memory
for an executing program. The extra space for the virtual memory comes
from a disk drive, and the operating system shuttles data from the disk to real
memory as needed by the executing program. Programs that make use of a
virtual memory run a lot more slowly than programs that make use of little
virtual memory.

Manual Memory Management
Frequent memory management issues with delete and new are the majorly
difficult to find and fix the source of the logic error. Programers have to
adhere strictly to the following tenets:

● Everything you call new, it should always have an associated call to
delete provided the allocated memory isn't longer needed. It may
sound simple, but it isn't always clear when delete should be used,

 101

but the function below shows a memory leak:

void calc(int n) {
// ...
// Do some stuff
// ...
int *x = new int[n];
// ...
// Do some stuff with x
// ...
// Exit function without deleting x's memory
}

Provided a program calls on the calc function enough times, the program will
eventually run out of memory. In the calc function, x is a local variable. In
that light, x lives on the stack. So when a user uses a particular call to calc
completes, the function’s clean up code automatically releases the space help
by the variable x. Because all functions automatically manage the memory
for their local and parameter variables. The problem with x is assigned via
new to point to memory allocated from the heap and not the stack. Function
executions manage to which x pointed is no deallocated automatically.

● Then operator delete should never be used to free up memory that has
not been allocated from its previous call to new. The code fragment
below illustrates one such example:

int list[10], *x = list; // x points to list
// ...
// Do some stuff
// ... delete [] x; // Logic error, attempt to deallocate x's memory

The space references by the pointer x was not allocated by the operator new,
so the operator delete should not be used to attempt to free the memory.
When you attempt to delete a memory that is not allocated with new, it
results in an undefined behavior that proves a logic error.

● The operator delete must not be used to deallocate the same memory
more than once. This case is common when two pointers refer to the
same memory. Pointers like this are called aliases. The following

 102

code fragment below illustrate this situation better:

int *p = new int[10], *y = x; // y aliases x
// ...
// Do some stuff with x and/or y
// ...
delete [] x; // Free up x's memory
// ...
// Do some other stuff
// ...
delete [] y; // Logic error, y's memory already freed!

Since the pointer x and pointer y point to the same memory, then x and y are
aliases of each other. If you deallocate a memory that is referenced by one of
them, then the other memory is also deallocated since it is the same memory.

● When you deallocating previous memory with delete, they should
never accessed. When you attempt to access deleted memory result,
it would result in an undefined behaviors which represent a logical
error.

int *list = new int[10];
// ... // Use list, then
// ... delete [] list;
// Deallocate list's memory
// ... // Sometime later
// ... int x = list[2]; // Logic error, but sometimes works!

The code fragment above illustrates how such a situation could arise. For the
purpose of efficiency, the delete operator makes heap space as available
without modifying the contents in the memory.

Linked Lists
In C++, an object can hold about any type of data, but there are some
limitations. Consider the following code fragment that makes use of the
struct definition:

struct Node {
int data;

 103

Node next;
// Error, illegal self reference };

In this code fragment, we made use of the struct instead of a class because
we consider a Node object a primitive data type requires no special protection
from clients. So, how much space do you think a compiler should set aside
for a Node object? A Node contains a Node and an integer. However, the
contained Node field would contain a Node, an integer, and the nested
containment that would go on forever. A structure such as this is
understandably illegal in C++, and the compiler issues an error. Users are
also not allowed to have a struct or class field of the same type in her struct
or class being defined.

struct Node {
int data;
Node *next; // Self reference via pointer is legal
};

The code fragment above is another object definition which looks similar, but
this code is a legal structure. The reason why this second version is
acceptable is because the compiler can now compute the size of the Node
object. A pointer is only a memory address under the hood, so all other
pointer variables are the same size regardless of their declared type. A pointer
solves the problem of the infinitely nested containment. The ability of an
object to refer to an object like it is similar is practically applicable. Suppose
we want to implement a sequence structure like a vector. It is possible to use
the self-referential stricture to define the above and build a list of Node
objects linked together through pointers. Code 9.1 build on a small linked list
“by hand.”

Code 9.1
#include <iostream>
using namespace std;
struct Node {
int data; // The element of interest
Node *next; // Link to successor node in the link
// Constructor
Node(int data, Node *next): data(data), next(next) {}

 104

};
int main() {
// Node objects
Node x4(3, nullptr), // Make the last node
x3(0, &x4), // Make the next to last node and link to last node
x2(5, &x3), // Make the second node and link to third node
x1(13, &x2); // Make the first node and link to second node
// Print the linked list built from the Node objects
for (Node *cursor = &x1; cursor != nullptr; cursor = cursor->next)
std::cout << cursor->data << ' ';
std::cout << '\n';
}

Resource Management
It is essential that programmers call clear internationally when they finish
with a linked list object. Take a look at the following definition:

void x() {
IntList1 my_list; // Constructor called here
// Add some numbers to the list
my_list.insert(12);
my_list.insert(7);
my_list.insert(-14);
// Print the list
my_list.print();
} // Oops! Forgot to call my_list.clear!

In the code above, the variable my_list is local to function x. When the
function x finishes executing the variable my_list, it will go out of scope. At
this stage, the space on the stack allocated for the local IntList1 variable
named my_list is reclaimed. Although the list’s head-allocated elements
space remains, the only access the program can have to the memory is
through my_list.head, but my_list no longer exists. This is a classic example
of a memory leak. Observe that none of the classes we have designed so gat
apart from the IntList1 have this problem. However, C++ offers a way out
for class designers to specify actions that have to occur at the end of an
object’s lifespan. A constructor that executes a code at the beginning of an

 105

object’s existence is known as a destructor. A destructor is a special method
that executes immediately before the object stops existing. A destructor can
also have the same name as its class with a tilde ~ prefix. Additionally, a
destructor does not accept arguments. Code 9.2 shows how to add a
destructor to a code and also ass the previous suggested optimization of the
length and clear methods.

Code 9.2
// Code9.2
class Code9.2 {
// The nested private Node class from before
struct Node {
int data; // A data element of the list
Node *next; // The node that follows this one in the list
Node(int d); // Constructor
};
Node *head; // Points to the first item in the list
Node *tail; // Points to the last item in the list
int len; // The number of elements in the list
public:
// The constructor makes an initially empty list
IntList2();
// The destructor that reclaims the list's memory
∼ Code9.2(); // Inserts n onto the back of the list.
void insert(int n);
// Prints the contents of the linked list of integers.
void print() const;
// Returns the length of the linked list.
int length() const;
// Removes all the elements in the linked list.
void clear();
};

Smart Pointers
As a C++ programmer, you can manually manage dynamic memory with
delete, and new follow a style inherited directly from the C++ programming
language. A lot of programming languages like Java and Python, as well as

 106

C#, can be used to manage memory with a technique known as garbage
collection. Using the garbage collection takes care of the accounting
necessary to avoid multiple deletes and memory leaks. In a garbage
collection language, you’d only need to call the equivalent of new. After that,
the garbage collector would take care of freeing up the space later when the
executing program do not longer make use of dynamic-allocating object.

Garbage collection is a great technique that works, but it does add some
overhead to an executing program. This overhead consumes some extra
memory, which can affect a program’s run-time efficiency. The C++
programming language tries to be as efficient as possible so that it doesn’t
provide an automatic garbage collector. The garbage collected languages
would allocate all objects on the heap, which helps uniformly manage the
object. Also, C++ supports heap-allocated objects as well as stack-allocated
and statically-allocated objects. The C++ smart pointer eliminates the need
for manual intervention on your part as the programmer. So, a smart pointer
will automatically delete its associated memory at the right time. The
std::shared_ptr type is one of the examples of a standard C++ smart pointer.
Code 9.3 below performs a simple test with the std::shared_ptr object.

Code 9.3
#include <iostream>
#include <string>
#include <memory>
struct Widget {
static unsigned id_source; // Source of unique IDs
unsigned id;
Widget(): id(id_source++) {
std::cout << "Creating a widget #" << id << " ("
<< reinterpret_cast<uintptr_t>(this)
<< ")\n";
}
∼ Widget() {
std::cout << "Destroying a widget #" << id << " ("
<< reinterpret_cast<uintptr_t>(this)
<< ")\n";
}
};

 107

unsigned Widget::id_source = 0;
// Global shared pointer
auto global_ptr = std::make_shared<Widget>();
std::shared_ptr<Widget> make_widget() {
std::cout << "---- Entering make_widget ----\n";
std::cout << "---- Leaving make_widget ----\n";
return std::make_shared<Widget>();
}
void test1() {
std::cout << "---- Entering Test 1 ----\n";
// Make p point to a dynamically created a widget object
auto p = std::make_shared<Widget>();
std::cout << p->id << '\n';
p->id = 25;
std::cout << p->id << '\n';
std::cout << "---- Leaving Test 1 ----\n";
}
void test2() {
std::cout << "---- Entering Test 2 ----\n";
// Make q point to a dynamically created a widget object
auto q = std::make_shared<Widget>();
std::cout << q->id << '\n';
q = nullptr; // Make q point to nothing
std::cout << "---- Leaving Test 2 ----\n";
}
void test3() {
std::cout << "---- Entering Test 3 ----\n";
// Make p point to a dynamically created integer
auto p = std::make_shared<int>(55);
std::cout << *p << '\n'; // Prints 55
*p = -4; // Reassign
std::cout << *p << '\n'; // Prints -4
std::cout << "---- Leaving Test 3 ----\n";
}
void test4() {
std::cout << "---- Entering Test 4 ----\n";
static auto p = make_widget();

 108

std::cout << p->id << '\n';
std::cout << "---- Leaving Test 4 ----\n";
}
void test5() {
std::cout << "---- Entering Test 5 ----\n";
auto p = make_widget();
std::cout << p->id << '\n';
std::cout << "---- Leaving Test 5 ----\n";
}
void test6() {
std::cout << "---- Entering Test 6 ----\n";
// Aliasing auto q = std::make_shared<Widget>();
auto r = q; // r aliases q, no new memory allocated
auto s = q; // s aliases q, no new memory allocated
std::cout << q->id << ' '
<< r->id << ' '
<< s->id << '\n';
q = nullptr;
std::cout << r->id << ' '
<< s->id << '\n';
r = nullptr;
std::cout << s->id << '\n';
s = nullptr; // Deallocates the widget object
std::cout << "---- Leaving Test 6 ----\n";
}
int main() {
std::cout << "---- Entering main ----\n";
test1();
test2();
test3();
test4();
test5();
test6();
std::cout << "---- Leaving main ----\n";
}

 109

Chapter 10

Generic Programming

In this chapter, we would be looking at the C++ templates mechanism that
will let programmers develop true generic data structures and algorithms. We
shall be looking at how the standard C++ library has embraced the template
technology to provide a wealth of generic data structure and algorithms that
would be of great assistance to developers in the construction of quality
software.

Function Templates
Consider the following code fragment below which is a comparison function.

/*
* less_than(x, y)
* Returns true if x < y; otherwise, returns
* false. */
bool less_than(int x, int y) {
return x < y;
}

Code 10.1 below is a test of the less_than function with several arguments.

Code 10.1
#include <iostream>
/*
* less_than(x, y)
* Returns true if x < y; otherwise, returns
* false. */
bool less_than(int x, int y) {
return x < y;

 110

}
int main() {
std::cout << less_than(3, 4) << '\n';
std::cout << less_than(3.2, 3.7) << '\n';
std::cout << less_than(3.7, 3.2) << '\n';
}

When Code 10.1 is passes through a complier, it issues a warning for the last
two statements. The less_than function has to have two integers arguments,
but the calling code in Code 10.1 sends two double-precision floating-point
values. The warnings you get from the compiler is because the automatic
conversation from double to int can cause loss of information. From the
output of Code 10.1 it shows that we ought to take these warning seriously.
Obviously 3 is less than 4 and 3.7 is not less than 3.2. It was because of the
automatic double to int conversion that truncates the less_than function treats
both 3.2 and 3.7 as 3 and obviously 2 is not less than 2.

Another example to consider is the following function which computes the
sum of element in a vector of integers.

int sum(const std::vector<int>& x) {
int result = 0;
for (int elem : x)
result += elem;
return result;
}
The fragment client code below also works well:
std::vector<int> x {10, 30, 60};
std::cout << sum(x) << '\n';
The fragment client code above prints 100. The following code does
not compile:
std::vector<double> x {10, 30, 60};
std::cout << sum(x) << '\n';

The second fragment code tries to pass a vector of double-precision floating-
point values to the sum function. But, the sum function only accepts vectors
with integers. To be more precise, the sum only accepts arguments of the type
std::vector<int>, and of std::vector<double> object. It does not accept the

 111

std::vector<int> object. The way out of this is easy; you’d have to copy and
paste the original sum function and change all the occurrences of “int” to
“double.” By doing so, you’d be overloading the sum function as in:

double sum(const std::vector<double>& v) {
double result = 0;
for (double elem : v)
result += elem;
return result;
}

Although this step works, but the duplicated effort is very unsatisfying. The
two overloaded sum functions are alike apart from the types involved. The
two function’s action (the initialization, arithmetic, and vector transversal)
are the same. Generally, code duplicated is very undesirable. And with the
help of C++ programmers can write such generic function with templates. A
function template is a useful tool in that it helps specify a pattern of code and
either the compiler and the programmer supplies the exact type as needed.
Code 10.2 shows how the C++ template can be used to create a generic
less_than function.

Code 10.2
#include <iostream>
#include <string>
/*
* less_than(x, y)
* Returns true if x < y; otherwise, returns
* false.
*/
template <typename T>
bool less_than(T x, T y) {
return x < y;
}
int main() {
std::cout << less_than(3, 4) << '\n';
std::cout << less_than(3.2, 3.7) << '\n';
std::cout << less_than(3.7, 3.2) << '\n';
std::string word1 = "XYZ", word2 = "ABC";

 112

std::cout << less_than(word1, word2) << '\n';
std::cout << less_than(word2, word1) << '\n';
}

In Code 10.2, the less_than function below tells us that the typename and
template are reserved words, and T is a type of parameter.

template <typename T>
bool less_than(T x, T y) {
return x < y;
}

The keyword template shows that the function definition which follows isn’t
the regular function definition but a template or function from which the
compiler can attempt to produce the correct function definition. Generic
function can also be known as a function template. The keyword typename
shows that the identifier follows a placeholder for a C++ type name. And the
parameter T is an identifier which can have any legal name as its variable.
Additionally, Code 10.3 is another example of a function template that
increases the flexibility of a flexible sorting program.

Code 10.3
#include <iostream>
#include <string>
#include <vector>
#include <utility> // For generic swap function
/*
* less_than(a, b)
* Returns true if a < b; otherwise, returns
* false.
*/
template <typename T>
bool less_than(const T& a, const T& b) {
return a < b;
}
/*
* greater_than(a, b)
* Returns true if a > b; otherwise, returns

 113

* false.
*/
template <typename T>
bool greater_than(const T& a, const T& b) {
return a > b;
}
/*
* selection_sort(a, n, compare)
* Arranges the elements of vector vec in an order determined
* by the compare function.
* vec is a vector.
* compare is a function that compares the ordering of
* two types that support the < operator.
* The contents of vec are physically rearranged.
*/
template <typename T>
void selection_sort(std::vector<T>& vec,
bool (*compare)(const T&, const T&)) {
int n = vec.size();
for (int i = 0; i < n - 1; i++) {
// Note: i,small, and j represent positions within vec.
// vec[i], vec[small], and a[j] represents the elements at
// those positions.
// small is the position of the smallest value we've seen
// so far; we use it to find the smallest value less
// than vec[i]
int small = i;
// See if a smaller value can be found later in the vector
for (int j = i + 1; j < n; j++)
if (compare(vec[j], vec[small]))
small = j; // Found a smaller value
// Swap vec[i] and vec[small], if a smaller value was found
if (i != small)
std::swap(vec[i], vec[small]); // Uses swap from <utility>
}
}
/*

 114

* print
* Prints the contents of a vector
* vec is the vector to print.
* The function does not modify vec.
*/
template <typename T>
void print(const std::vector<T>& vec) {
int n = vec.size();
std::cout << '{';
if (n > 0) {
std::cout << vec[0]; // Print the first element
for (int i = 1; i < n; i++)
std::cout << ',' << vec[i]; // Print the rest
}
std::cout << '}';
}
int main() {
std::vector<int> list{23, -3, 4, 215, 0, -3, 2, 23, 100, 88, -10};
std::cout << "Original: ";
print(list);
std::cout << '\n';
selection_sort(list, less_than<int>);
std::cout << "Ascending: ";
print(list);
std::cout << '\n';
selection_sort(list, greater_than<int>);
std::cout << "Descending: ";
print(list); std::cout << '\n';
std::cout << "-------------------------------\n";
std::vector<std::string> words { "tree", "girl", "boy", "apple", "dog",
"cat", "bird" };
std::cout << "Original: ";
print(words);
std::cout << '\n';
selection_sort(words, less_than<std::string>);
std::cout << "Ascending: ";
print(words);

 115

std::cout << '\n';
selection_sort(words, greater_than<std::string>);
std::cout << "Descending: ";
print(words);
std::cout << '\n';
}

Class Templates
Now that we understand how to build generic functions, it's important to note
that C++ also supports the class template as well. The class templates let us
specify the structure and pattern of a class of objects independently. The
mechanism of class templates is key to creating genetic types. Let's consider
a simple Point class that represents two-dimensional point objects.
Mathematical points objects should have approximate real-valued coordinates
with double-precision floating-point value.

On the other hand, a point on a graphical display better uses integer
coordinates. It is because screen pixels have discrete whole number locations.
So, instead of providing two separate classes, we can write one class template
to let the compiler instantiate the coordinates as the particular program
requires. Consider Code 10.4, which contains generic class.

Code 10.4
#ifndef GENERICPOINT_H_
#define GENERICPOINT_H_
template <typename T>
class Point {
public:
T a;
T b;
Point(T a, T b): a(a), b(b) {}
};
#endif
If you declare for example a Point object like:
Point<int> pixel(5, 5);

Then the compiler would have to instantiate a Point<int> class similar to:

 116

class Point {
public:
int a;
int b;
Point(int a, int b): a(a), b(b) {}
};

But if you rather declare a Point object as:

Point<double> pixel(5.0, 10.0);

Then the compiler would have to instantiate a Point<int> class similar to:

class Point {
public:
double a;
doubke b;
Point(double a, double b): a(a), b(b) {}
};

In either instantiate cases, none of them appears in any source code so users
will not see them. The compiler actually substitute the types (double or int)
for the parameterized type (T). As a more significant example, Code 10.5
contains the description of a Comparer class.

Code 10.5
#ifndef GENERICCOMPARER_H_
#define GENERICCOMPARER_H_
/*
* Comparer objects manage the comparisons and element
* interchanges on the selection sort function below.
*/
template <typename T>
class Comparer {
// The object's data is private, so it is inaccessible to
// clients and derived classes
// Keeps track of the number of comparisons
// performed int compare_count;
// Keeps track of the number of swaps performed int swap_count;

 117

// Function pointer directed to the function to
// perform the comparison bool (*comp)(const T&, const T&);
protected:
// Method that actually performs the comparison
// Derived classes may customize this method
virtual bool compare_impl(const T& m, const T& n) {
return comp(m, n);
}
// Method that actually performs the swap
// Derived classes may customize this method
virtual void swap_impl(T& m, T& n) {
T temp = m;
m = n;
n = temp;
}
public:
// The client must initialize a Comparer object with a
// suitable comparison function.
Comparer(bool (*f)(const T&, const T&)):
compare_count(0), swap_count(0), comp(f) {}
// Resets the counters to make ready for a new sort
void reset() {
compare_count = swap_count = 0;
}
// Method that performs the comparison. It delegates
// the actual work to the function pointed to by comp.
// This method logs each invocation.
bool compare(const T& m, const T& n) {
compare_count++;
return compare_impl(m, n);
}
// Method that performs the swap.
// Interchange the values of
// its parameters a and b which are
// passed by reference.
// This method logs each invocation.
void swap(T& m, T& n) {

 118

swap_count++;
swap_impl(m, n);
}
// Returns the number of comparisons this object has
// performed since it was created.
int comparisons() const {
return compare_count;
}
// Returns the number of swaps this object has
// performed since it was created.
int swaps() const {
return swap_count;
}
};
#endif

The Comparer objects in Code 10.5 swaps and compares any type of values
that are meant to be used in an array or vector sorting program.

 119

Conclusion

After taking you on a guide on ten of the must-know topics in C++, it is left
to you now to develop your skills. And one thing with languages, be in
English, French, or programming languages, practice makes perfect. The
knowledge we’ve thought you in this book can be likened to learning the
alphabet and some basic words in English. So, we’d advise you to practice
with it more. Focus your mind on understanding why we use some
statements; the result we want to obtain.

Go online, download all the necessary application that you find easy to work
with, and if you’d have to pay for it, purchase it. And when you have
everything all set and ready, pick up a project and learn. You could build
your own little project, or you could pick an already made project and try to
replicate it. If you ever get stuck anywhere, you can always go back, and
view and the programmer made the project and proceeded. But always try to
push yourself to your limit, think deep about it before checking.

It would also help you a great deal to pick up other really good books to get
different perceptions about a section in C++ to broaden your understanding of
it. Even though we can assure you of the quality of this book is sufficient to
set you on the right path to becoming a success in C++, we would
recommend you also read out other books on programming language.

Also, you could consider picking a different language other than C++ to learn
side by side with C++. Leaning a new language is an efficient way to get a
more in-depth understanding of C++. A new language brings in better
comprehension of the programming language in general. It also broadens
your mentality of solving problems, which brings out the specificities of the
main C++ language. And even though you may not use this new language
codes in C++, it would expose you to proven ideas that you can transpose
into C++. A programming language we would advise you to study alongside
C++ is Haskell. You can also study Java because it is way closer to our

 120

everyday English than C++, and it would be easier for you to understand.
You can also check out our book on Java.

Additionally, always try to stay up to date. Catch up with the modern C++
features like C++11, C++14, C++ 17, and a host of other new features in the
standard library. Some of its latest features, like lambdas, is easy to grasp. All
you need is a good resource and time, and in no time, you’d see yourself
becoming a master in them. And so, why not take a cup of tea, find a nice
relaxing spot where you find it easier to focus and get started. And just like
the famous saying goes, “a journey of a thousand miles begins with a step.”
So, take that step today, and let us be that guild that will set you on the right
path.

 121

C++

Simple and Effective Tips and Tricks to learn
C++ Programming Effectively

BENJAMIN SMITH

 122

Introduction

The main concern of this book is to explain as much of the fundamental
concepts of C++ as possible. However, to refrain from overwhelming and
discouraging the reader with unreasonably difficult concepts, the book only
addresses those programming concepts that are very basic. Even in this
beginner level’s book, the reader will see a separation of concepts based on
their level of difficulty. By keeping the most difficult parts of programming
in the end, it allows the book more room for preparing the reader with the
necessary information to understand the later topics. In this way, the book
aims at providing the best learning experience for the readers and hopes that
they build a solid conceptual foundation for learning intermediate and
advanced level programming as well. The very first chapter of the book
begins with a discussion focused on the very fundamentals of the C++
language itself, highlighting its characteristics, discussing traditional and
object-oriented programming, and so on. After this chapter, the reader will
have the necessary background knowledge to learn about functions, classes,
objects, variables, types, and type conversions, etc. throughout the later
stages of this book. However, it is recommended that the reader slow down
the reading pace of the book as it seems a bit difficult at the start to
understand. By going through the basic concepts detailed in the starting
chapters and looking up any terms you don’t understand on the internet, you
will most likely succeed in becoming a fully-fledged beginner in C++
programming.

We also recommend the reader to go over the topic and the code a few times
in case clarity of the concept is needed. The best way to ensure that you are
fully able to understand the code is when you are writing and performing the
actions simultaneously as it is being described. Other than that, we have
ensured the proper coverage of the various topics that you will find in this
book.

 123

Chapter 1

The Fundamentals of C++

In this chapter, we will go through the very basics of the object-oriented
programming language, C++. Knowing about the characteristics of a
programming language is very important for users to consolidate new
information when coding. As such, we will only go through the very
important and commonly referred to characteristics of C++. In addition, this
chapter will introduce the fundamental steps that are absolutely necessary to
create a C++ program. To iterate over these outlined steps without sounding
monotonous, we will use examples that will incorporate the information
highlighted in these steps allowing the reader to retrace through the things
they learned. Lastly, the main goal of this chapter is to make the reader
familiar with the fundamental layout of a standard C++ program.

In this chapter, we will discuss three major topics,
1. The Fundamental Characteristics of C++.
2. Discussion of Object-Oriented Programming.
3. Translation and Creation of C++ Programs.

The Fundamental Characteristics of C++
It is important to understand that C++ is not a programming language that is
purely focused on object-oriented programming. C++ is derived from the ‘C’
programming language and is a hybrid. Although C++ is different in some
aspects from the original ‘C’ programming language, it still features the
majority of the important functionalities found in the ‘C’ programming
language. In other words, the C++ language also supports the features that are
characteristic in the C programming language as well, such as:

Modular programs that can be used universally.

 124

Efficient machine programming capability.

Programs made in C++ can be easily ported over to other
platforms.

Just as how C++ comes with all the important features of the C programming
language, similarly, major contents of the code written in the C programming
language can be reused in the C++ source code as well.

Another important characteristic of the C++ programming language is that it
reinforces the concepts of C’s object-oriented programming into itself. For
instance, some object-oriented programming concepts are listed below:

Data abstraction: creating classes to define objects while
programming.

Data encapsulation: obtaining a controlled access route to the
data of the object.

Inheritance: creating classes that are derived from other classes
(classes can be even derived from multiple derived classes).

Polymorphism: using an instruction set in such a way that it can
boast different types of effect during the execution of the
program code.

The C++ language features object-oriented characteristics of the C
programming language and various elements from other programming
languages. For instance, programming elements such as templates and
exception handling offer incredible functionality when it comes to
implementing your program efficiently. Not only that, these particular
elements provide ease in your programming work while also ensuring that
you have a clearer understanding of your programs.

Object-Oriented Programming
In this section, we will discuss and build a contrast between traditional
procedural programming and object-oriented programming.

Traditional Procedural Programming

 125

The main concept of the traditional procedural programming is based on
separating the data which is supposed to be processed from the corresponding
sub-routines and procedures (also known as data and functions). This
significantly impacts the method through which a program handles data, for
instance:

It is the priority of the programmer to make sure that before the
data can be used, it is initialized with proper and suitable values.
Moreover, the programmer must also make sure that the data,
and the proper values, can be passed to a function when required.

The functions representing the data are specific. Due to this, if
the representation of the data is changed (for example, if data is
represented in the form of a record and that record is
lengthened), the function which represents this data must also be
modified accordingly.

Due to such features, this limits the productivity of the program and hinders
the support for low program maintenance requirements. Moreover, the
features of traditional procedural programming mentioned above make the
program more prone to errors.

Object-Oriented Programming
In object-oriented programming, instead of emphasizing the elements of data
and functions, the focus is primarily on the objects itself. In other words, the
programmer gives importance to the elements of a program that highlight the
main purpose of the program itself. For instance, in object-oriented
programming, a program that has been created for the handling and
maintenance of bank accounts will feature data objects such as interest rates,
balance, credit and debit calculations, transfers, and so on. Such a program
built with object-oriented programming will feature objects corresponding to
each account in the program. Each of the objects represents properties and
capacities that are crucial for the basic function of account management for
the program.

In object-oriented programming, the properties and capacities correspond to
data and functions, respectively, and these elements are then combined in the
program. This is done by using classes. A class used in a program that is

 126

based on object-oriented programming will define a type of object by directly
defining the properties and capacities of the object. Objects can also
communicate with each other through sending messages. In this way, an
object can activate another object’s capacities as well that serves multiple
advantages along with ease in building the program.

Advantages of Object-Oriented Programming
In terms of software development, there are several advantages offered by
object-oriented programming that make it more practical than traditional
procedural programming. As traditional procedural programming lacks
certain aspects that make it less likely to be used by programmers. Some of
these advantages have been listed below:

Less prone to errors: an object defined in terms of its
corresponding data can control the access attempts to this data.
In other words, an object can reject error-prone access attempts
to its data.

Ease of reuse: objects that have been created are capable of
maintaining themselves. Due to this characteristic of objects, this
makes them easier to use in other programs as building blocks
very conveniently.

Low maintenance needs: According to the situation, an object
is capable of modifying the representation of its internal data
without needing to modify the application as well. This makes it
more practical to use than traditional procedural programming.

Translating and Creating a C++ Program
Developing a C++ program is simpler than you might think. In this section,
we will discuss how we can translate a C++ program and create a simple C++
program.

Translating a C++ Program
The following diagram depicts the process of C++ translation.

 127

When translating a C++ program, three major steps are very important for the
creation and translation process. These steps have been outlined below,

1. Saving the source code of the C++ program in a text file by
using a text editor. The file which contains the source code of the
program is known as the source file. The use of one source file is
acceptable for short projects. However, for big programming
projects, it is recommended to store the source code of the
program in several source files so that they can be edited and
translated separately with ease. This approach is known as
modular programming.

 128

2. Using a compiler to translate the program. The programmer
feeds the compiler, a source file that contains the source code of
the program which he wishes to translate. If the compiling
process does not encounter any errors, then the output will be an
object file that contains machine code. Such an object file is
known as a module.

3. Using a linker to combine different modules to an object file to
create an executable file. The modules that are being added to an
object file through a linker contain functions that are either part
of the program that has been compiled before-hand or contain
functions from a standard library.

When creating a source file, it is important to note the extension which is
being applied to the filename of the source file. Generally, the type of
extension that is applied to the source file depends on the compiler being
used to create the source file. The most commonly used file extensions are
.cpp and .cc.

In some cases, the source file may require an extension file before it can be
compiled. These files are known as header files. If a source file has
corresponding header files available for the source code, then it becomes
necessary to copy the contents of the header file into the source file before
compiling it. Header files contain important data for the source file, such as
defining the types, declaring the variables, and functions. Header files may or
may not have a file extension. In cases where it does have an extension, then
it is the .h file extension.

To perform the steps and tasks mentioned previously, programs use software
known as a ‘compiler.’ Popular compilers nowadays offer an IDE along as
well to get started with programming right away.

Creating a Simple C++ Program
We will now create a standard and simple C++ program. Afterward, we will
proceed to discuss the coding elements used in this program.

Here’s the code for the C++ program:

#include <iostream>

 129

using namespace std;
int main()
{
cout << "Have a good day! << endl;
return 0;
}

The output of this program is a text; “Have a good day!”.

Before we delve into understanding the core elements of this program, here’s
a visual representation showing the structural arrangement of the program to
establish a basic understanding.

For simplification purposes, we can say that major parts of a basic C++
program are the objects and their corresponding ‘member functions and
global functions.’ These objects and functions are not part of any class. Apart
from completing the task for which it is made, a function also has the
capability of calling other functions as well. Experienced programmers have
the choice of either creating a function by themselves or use a function that is
already available in the C++ standard library. For beginner’s it’s
recommended to only use pre-built functions from the standard library as
creating a personalized function may cause complications in the code that can
be hard to work out. However, every programmer is required to create his

 130

own global function main(). This function is one of the main components of
a program’s code.

The C++ program demonstrated above contains two of the most crucial
elements of any C++ program, i.e., the main() function and the output string
(the message that is displayed as the output of the program).

If you look at the first line of the code block, then you will see a hashtag
symbol ‘#.’ This instructs the computer that this line of code is for the
preprocessor step. You can think of preprocessor as a preliminary phase
where no object is created yet, and code prepares for the upcoming
instructions in the program. For instance, if you want the preprocessor to
copy a file into the position where it is defined in the code of the source file,
then you can use the ‘#’ symbol to do so. This has also been demonstrated
below:

#include <filename>

In this way, we can include header files into the source code. By doing so, the
program will be able to access the data in the header files. In the C++
program shown above, we can see in the very first line that the header file by
the name of ‘iostream’ has been included in the source code through this
method. The data contained by this file corresponds to the conventions that
define input and output streams. In other words, the information in the
program is considered as a stream of data.

The second line of code in the program refers to a namespace known as std,
which contains predefined names in C++. To access the contents of this
namespace, we use the using argument before defining the namespace.

The execution of the program itself begins from carrying out the instruction
defined by the main() function. Hence, every C++ program needs to have the
main() function to execute an instruction set. However, although the main()
function is a global function that makes it different from other functions, the
structure of how code is implemented with the function is exactly the same as
any other typical function in C++.

In the C++ program demonstrated above, the main() function contains two
statements,

 131

1. cout << "Have a good day!" << endl;

2. return 0;

The first statement has two important components, cout and endl. Cout has
been taken from the C++ standard namespace, and it represents ‘console
output.’ Cout has been used to designate an object that will be handle
outputting the text string defined in the statement. Moreover, the ‘<<’
symbols represent the stream of the data in the program. These symbols tell
the program that the characters in the string are supposed to flow to the
output stream. In the end, endl indicates that the statement has finished and
generates a line feed.

The second statement stops the execution of the main() function, and in this
case, the program itself. This is done by returning a value of 0, which is an
exit code to the calling program. It is always recommended to use the exit
code 0 when highlighting that the program has been successfully terminated.

Creating a C++ Program that has Multiple Functions
Now that we know how a basic C++ program works and what core elements
make up a simple program, let’s proceed to understand a program that uses
several functions instead of one. An example of such a C++ program has
been shown below, also note that this program also has comments which are
notes left by the programmer detailing what a specific line of code’s purpose
is. The comments are written after two back-slash symbols ‘//’, and the
compiler doesn’t consider this as executable code and ignores it.

#include <iostream>
using namespace std;
void line(), message(); // Prototypes
int main()
{

cout << "Hey! The program starts in main()."
<< endl;

line();
message();
line();
cout << "At the end of main()." << endl;

 132

return 0;
}
void line() // To draw a
line.
{

cout << "--------------------------------" << endl;
}
void message() // To display
a message.
{

cout << "In function message()." << endl;
}

Now let’s execute this program and see what’s the output.

Hey! The program starts in main().

In function message().

At the end of main().

Through this example, we can understand the structure of a C++ program
more intricately. Notice that unlike the simple program shown previously,
which only had one function, this C++ program features several functions.
However, C++ does not restrict the user to a defined order according to
which the functions need to be defined. In other words, when working with a
C++ program, you can define functions in any order that you may choose.
For instance, you can define the message() function first, then the line()
function, and finally, the main() function or in another order that you want.

However, it is recommended that you define the main() function first. This is
because this function essentially controls the program flow. To understand
this, we need to take a look at what the main() function primarily does. It
calls those functions that haven’t been defined yet into the program where it’s
being used. The main() function does this by providing the compiler with the
prototype function. The prototype function contains all the necessary
information for the compiler to help the main() function do its job.

In addition, if you take a look at this program, you’ll find some sentences that

 133

start after ‘//’ symbol. These are strings, and the program interprets them as
comments. Comments are very useful when working on big projects that
involve writing thousands of lines of code. By using comments, the
programmer can essentially leave reminders as to what is the purpose of this
line of code or an entire block of code, making it easier to debug, or for other
users accessing the code to understand it’s structure. Moreover, comments
also make it easier for programmers to make changes to the code later on.
Hence, programmers practicing this habit often divert some hefty workload
later on in the future.

 134

Chapter 2

The Basic Data Types, Constants, and Variables
Used in C++

In any programming language, being familiar with the generally used
constants and variables is very important. In a programming language that is
more object-oriented, such as C++, it becomes even more important to learn
about at least the basics of the data types and objects that are commonly
incorporated into C++ programs. As such, this chapter will focus on the
elements mentioned above and aim to equip the reader with all the basics
necessary for them to understand and create more complex and effective C++
programs in the future.

The Fundamental Data Types
In this section, we will discuss what a type refers to in a C++ program and
understand the different fundamental data types available for use in the C++
programming language.

In programming, we have to take the different types of data into
consideration, which can be used by the program to perform a task or solve a
problem. Moreover, a computer does not work with only a single data
processing method. To make use of the computer’s ability to process and
save data through various methods, we need to know what type of data we
are dealing with or figure out the data type which is being fed into our C++
program.

Generally, there are four major categories of data types in C++. These four
data type categories are:

Boolean values
Characters

 135

Integers
Floating-point values

Each data type requires a different approach to be adopted to make it possible
for the computer to process the information they carry. That’s why it is very
important to identify the data type in the program. The purpose of a data type
is to elaborate:

The data’s internal representation
The memory value that needs to be allocated

For example, let’s consider an integer that we want to store as data. The
number -1024 needs only 2 or 4 bytes of memory as storage space. In other
words, if we want to store such an integer, we will need to allocate 2 or 4
bytes to do so. To access this data, we will need to access that part of
memory where it has been stored and to do this, we simply need to read the
corresponding byte numbers. Moreover, the program through which we are
accessing this data type must also interpret the sequence of bytes,
representing the data in memory, as an integer with a negative sign.

Here’s a chart representing the basic data types that are natively recognized
by C++.

 136

These are the fundamental data types that serve as the base for other data
types such as vectors, pointers, and classes, etc. The C++ compiler has native
support for these fundamental data types. As such, these data types are
commonly referred to as built-in types. We will now proceed to discuss each
category of data type individually.

 137

The ‘bool’ Data Type
A value obtained as a result of a logical comparison or association by using
logic gates (such as AND or gates) is known as a Boolean value and is
referred to as a bool data type. The distinguishing feature of this value is that
it can be either of one of the logical states, i.e., true or false. The internal
value of these logical representations is ‘numerical value 1’ for the ‘true
state’ and ‘numerical value 0’ for the ‘false state.’

The Character Data Types
The character data type is used to save the code, which refers to a specific
character. To be more specific, in programming, each character code is
represented by an integer that is associated with the character. For instance,
the integer associated with the character code of “A” is ‘65’. Over the years,
many character code sets have been developed to facilitate the digitization of
writing. However, some sets have different character codes representing a
particular character. So whenever a character is to be displayed on a screen
connected to a computer, the associated character code is translated by the
processor, and the resulting character is shown.

Although there are many character sets available in programming, the C++
language does not restrict the user to any particular set. However, character
sets that contain the American Standard Code for Information Interchange, or
more commonly referred to as ASCII code is preferred. This is a 7-bit
character code set, and as such, it features 32 code characters and 96 printable
characters.

In C++, the character data type features two major type containers, the char
type, and the wchar_t type. The main difference between these two types is
the storage they use to allocate the character codes. The char type uses 8-bits
(or one byte) of storage, making it suitable for extended character sets such as
the ANSI character set. At the same time, the wchar_t type uses 16-bits (or 2
bytes) of storage to allocate the character codes making it suitable for the
modern Unicode characters. This is also the reason why the whchar_t type is
referred to as the ‘wide character set.’

The Integer Data Type
There are three integral types used to represent integer data. These types are
different from each other based on the range of values they can represent.

 138

These integral data types are the following:

1. int and unsigned int

2. short and unsigned short

3. long and unsigned long

The table shown below highlights the properties of and specification (storage
space and the supported range value) of each integral data type.

Type Size Decimal Range of Values
Char 1 byte -128 to +127 or 0 to 255
Unsigned char 1 byte 0 to 255
Signed char 1 byte -128 to +127
Int 2-byte resp.

4 byte
-32768 to +32767 resp
-2147483648 to +2147483647

Unsigned int 2-byte resp.
4 byte

0 to 65535 resp.
0 to 4294967295

Short 2 byte -32768 to +32767
Unsigned short 2 byte 0 to 65535
Long 4 byte -2147483648 to +2147483647
Unsigned long 4 byte 0 to 4294967295

The int type is like a self-fitting and self-adjusting integral type. It adapts to
the register of the computer on which it is being used. For example, if the int
type is being used on a 16-bit system, then it will have the same
specifications as the short type. Similarly, if the int type is being used on a
32-bit system, then it will have the same specifications as the long type.

You might have also noticed a data type that isn’t a part of the integral data
type family. This is the char type belonging to the character data type. The
reason as to why the char type is included in this table is because C++
evaluates character codes just like any ordinary integer. Due to this,
programmers can perform calculations on variables that are stored in char

 139

and wchar_t type in the same way as they would with variables stored in int
type. However, it is important to keep in mind that the storage capacity of a
char type is only a single byte. So, depending on how the C++ compiler
interprets it (as either signed or unsigned), the range of values you can use
with it are only from -128 to +127 and 0 to 255, respectively. On the other
hand, the wchar_t type is an extended integral type as opposed to the char
type being a simple integral type and is commonly defined as unsigned
short.

Now let’s discuss the signed and unsigned modifiers in the integral type. A
signed integral has the highest valued bit as the representative of the sign of
the integer value. On the other hand, unsigned integrals do not feature the
highest bit representing the sign, and as a consequence, the values that can be
represented by unsigned integral are changed. However, the memory space
required to store the values is the same for signed and unsigned integral
types. Normally, the char type is interpreted by the compiler as ‘signed,’ and
as such, there are the modifiers result in three integral types, char, signed
char and unsigned char.

Users can take advantage of a header file named as ‘climits’ that defines the
integral constants, for instance:

CHAR_MIN, CHAR_MAX, INT_MIN, and INT_MAX.

As their name suggests, these constants represent the smallest and largest
values of their corresponding integral types. To understand integral types
better, let’s implement this header file in a C++ program and use these
constants to output the values of the int and unsigned int types.

#include <iostream>
#include <climits> // Definition of
INT_MIN, ...
using namespace std;
int main()
{

cout << "Range of types int and unsigned int"
<< endl << endl;

cout << "Type Minimum
 Maximum"

 140

<< endl
<< "--"
<< endl;

cout << "int "<< INT_MIN << " "
<< INT_MAX << endl;

cout << "unsigned int " << " 0 "
<< UINT_MAX << endl;

return 0;
}

The Floating Point Data Type
Floating-point data refers to those numbers that have a fractional portion
indicated by a decimal point. Unlike integers, floating-point values need to be
stored according to a preset accuracy. This is in accordance with how decimal
numbers are treated mathematically, i.e., the least significant numbers are
ignored or rounded off. According to the preset accuracies, there are three
floating-point types which have been listed below:

1. float: corresponds to a simple accuracy preset

2. double: corresponds to a double accuracy preset

3. long double: corresponds to a high accuracy preset

An important thing to note regarding floating-point types is that the
maximum and minimum value range along with the accuracy of a particular
type is dependent on two factors:

1. The total memory allocated by the floating-point type.

2. The internal representation of the floating-point type.

Now let’s discuss and clarify the concept of ‘Accuracy’ in floating-point
numbers. In numerical representation, the more numbers a value has after
decimal points, the more accurate it is. In other words, high accuracy means
that the floating-point value has a higher amount of numbers coming after the
decimal point. Similarly, low accuracy means that the floating-point value
has fewer numbers after the decimal point. For example, the floating-point
number 22.123456 has a higher accuracy as compared to the floating-point

 141

number 22.123.

Now we must understand how is this concept of ‘Accuracy’ leveraged by
programmers. , when we have a number that is accurate up to six decimal
places, we can store the same value as a separate and distinguishable number
as long as it differs from the original number up to at least one decimal place.
However, the same convention does not hold necessarily always hold true if
we try to store a number that is accurate up to 5 decimal places along with the
same number that is accurate up to 4 decimal places as separate numbers in a
floating-type of 6 decimal place accuracy. To clarify, there’s no guarantee
that the two numbers 22.12345 and 22.1234 will have different decimal
places when their accuracy is brought up to 6 decimal places.

In cases where it becomes crucial for your program to represent a floating-
point number in an accuracy that is strictly supported by a particular device
or system, it is recommended to first refer to the values that have been
defined in the header file named ‘cfloat.’

In conclusion, there are mathematical representations of data that are handled
primarily handled by two data types. Depending on the arithmetic nature of
the value (integer or a number with decimal points), it can be either stored in
the integral type or the floating-point type. A recap of all the corresponding
types has been listed below.

Integral Data Types

bool

char, signed char, unsigned char, wchar_t

short, unsigned short

int, unsigned int

long, unsigned long

Floating-Point Data Types

float

double

 142

long double

The Institute of Electrical and Electronic Engineering, also referred to as
IEEE, has provided the field of computer programming with a universal
format that is used to represent the floating-point types. The following table
briefly discusses this format representation.

Type Memory Range of
Values

Lowest
Positive
Value

Decimal
Accuracy

Float 4 bytes –3.4E+38 1.2E—38 6 digits
Double 8 bytes –1.7E+308 2.3E—

308
15 digits

long
double

10 bytes –1.1E+4932 3.4E—
4932

19 digits

In the following sections, we will briefly discuss the operator ‘sizeof’ and
talk about the classification of data types according to the nature of the object
they represent.

The ‘sizeof’ Operator
When we need to confirm the required memory to store a certain type of
object, we simply use the ‘sizeof’ operator for this purpose. For instance, if
we use this operator as shown below:

sizeof (name of the object)

the program will tell us the memory necessary for storing the object. In other
words, the operator ‘sizeof’ provides the object’s memory requirements while
the ‘name’ parameter defines the object itself, or it’s the corresponding type.
For instance, by inputting the proper data into the above parameter, let’s say
sizeof(int). If you remember that the int type is adjusted itself according to
the system, then you will also understand as to why the sizeof operator gives
different values depending on the system (it can be either 2 or 4). Similarly, if
we use this operator for floating-point type, i.e., sizeof(float), then we will be
given a value of 4 representing the memory required to store the object.

Classification

 143

Based on the nature of the object, we can classify two of the three
fundamental data types (integer types and floating-point types) as
arithmetic data types as we can perform arithmetic calculations on the
variables of these types using arithmetic operators.

Until now, we have discussed objects that represented values and classified
them accordingly. However, there are also those objects that do not represent
any value, for example, a function. To classify such expressions, we simply
represent them through the void type. In other words, the void type includes
those expressions that do not represent any value. As such, a typical function
call can be represented by a void type.

The Fundamental Constants
A constant is also referred to as a “literal.” We deal with constants
throughout programming, even if you don’t know about them. For instance,
we just learned about the Boolean data type. A Boolean value can be either 1
or 0, i.e., True or False. The keyword here ‘True and False’ are both Boolean
constants. Similarly, every number, character, and even a string (sequence of
characters) is a ‘constant.’

Constants are directly related to data types. The very basic purpose of a
constant is to represent values, which in turn represents the type. Hence,
depending on how the constant is being used, we can define the type of the
value accordingly.

Based on the above discussion, we can conclude that there are four
fundamental constants in C++. These constants are:

1. Boolean constants

2. Numerical constants

3. Character constants

4. String constants

We will now discuss each fundamental constant separately.

1. Boolean Constants

 144

A Boolean constant is a keyword used to represent either of the two possible
values. True and False are both Boolean constants. Boolean constants belong
to the bool type and can be used to set up conditionals within a program or
even set flags that functions to represent the two states.

2. Integral Constants

Standard decimal, octal, or even hexadecimal numbers are referred to as
integral constants. Let’s briefly discuss these three numbers and how they can
be distinguished from each other.

A decimal constant is a number belonging to the decimal number
system (base 10). A decimal number never begins with a zero.
110, 124020 are both decimal numbers.

An octal constant is a number belonging to the octal number
system (base 8). An octal number always begins with a zero as
the leading digit. For instance, 088 and 022445 are both octal
numbers and are referred to as octal constants.

A hexadecimal constant is a number belonging to the
hexadecimal number system (base 16). A hexadecimal number
always begins with a character pair. This character pair can be
either “0x” or “0X”. For instance, 0x224A and 0X21b4F are both
hexadecimal numbers. The Alphabetical numbers represent
digits greater than nine up to 15 (for example, A represents 10, B
represents 11 and F represents 15). There is no uppercase or
lower-case capitalization restriction imposed on hexadecimal
numbers.1

Usually, integral constants are assigned to the int type. However, if the
constant value turns out to be too large for the int type to handle, then a type
that is suitable to deal with that value will be used instead. Regardless, it is
important to know the ranking of the integral types:

1. int

2. long

3. unsigned long

 145

To designate either the long or unsigned long type to an integral constant, we
simply attach the first alphabetical letter of the type to the number. For
example, if we were to assign the number 15 to a long type, then we would
do so by either adding ‘L’ or ‘l’ to the number. Similarly, if we were to
assign the same number to the unsigned long type, then we would do so by
using the ‘UL’ or ‘ul’ letter. For assigning a number to the unsigned int type,
we only need to use the letter ‘U’ or ‘u.’ This has been demonstrated below:

15L and 15l correspond to the type long

15U and 15u correspond to the type unsigned int

15UL and 15ul correspond to the type unsigned long

A detailed example of all the integral constants has been demonstrated in the
table shown below.

Decimal Octal Hexadecimal Type
16 020 0x10 int
255 0377 OXff int
32767 077777 0x7FFF int
32768U 0100000U 0x8000U unsigned int
100000 0303240 0x186A0 int (32-bit)

long (16-bit)
10L 012L 0xAL long
27UL 033UL 0x1bUL unsigned long
2147483648 020000000000 0x80000000 unsigned long

From the table shown above, you can see how each value has been
represented in different ways.

Here’s an example of a program that incorporates the integral constant
concepts we have discussed so far.

// To display hexadecimal integer literals and
// decimal integer literals.
//

 146

#include <iostream>
using namespace std;
int main()
{

// cout outputs integers as decimal integers:
cout << "Value of 0xFF = " << 0xFF << " decimal"

<< endl; // Output: 255 decimal
// The manipulator hex changes output to hexadecimal
// format (dec changes to decimal format):
cout << "Value of 27 = " << hex << 27 <<" hexadecimal"

<< endl; // Output: 1b hexadecimal
return 0;

}

Floating-Point Constants
A floating-point value has two elements, an integral element, and a fractional
element. The fractional part of the number is separated from the integer by a
decimal point. That’s why although floating-point values are usually
represented as decimals, they can also be represented through exponential
notation as well. For example, a typical floating-point number that is accurate
up to one decimal place can be represented as shown below:

20.7

Similarly, if we have a number 1.5*10-2 then instead of inputting it in its
decimal form, we can simply store it in its exponential form as well, which
would be 1.8E-2. The arithmetic type used to store these objects would be the
double type by default. However, the constant can be manually designated as
a float type as well by adding ‘F’ or ‘f’ to the value. Similarly, you can
assign it to the long double type as well by adding ‘L’ or ‘l.’

The following table shows a few examples of how floating-point constants
can be represented in different ways.

7.19 16. 0.55 0.00001
0.719E1 16.0 .55 0.1e-4
0.0719e2 .16E+2 5.5e-1 .1E-4
719.0E-2 16e0 55E-2 1E-2

 147

Character Constants
A character that has been enclosed in single quotes is identified as a character
constant. Character constants are generally assigned to the char type. Each
character has a numerical code that represents the character itself. For
instance, in the ASCII code, the character ‘A’ is numerically represented by
the number ‘65’. The table shown below elaborates a few character constants
along with their decimal value in the ASCII code.

Character
Constant

Character ASCII Code
Decimal Value

‘A’ Capital Alphabet A 65
‘a’ Small Alphabet a 97
‘ ’ Blank space 32
‘.’ Dot 46
‘0’ Numerical Digit 0 48
‘\0’ Terminating Null

Character
0

String Constants
We are already familiar with string constants as we had dealt with them in the
first chapter when we were discussing the text output for the cout stream in
C++ programs. Regardless, you should remember that a sequence of
characters (such as a sentence or a phrase) enclosed within double quotes is
considered as a string constant. For example, “Press the Accept button to
proceed!” is a string constant.

It is important to note that when a string sequence is stored internally, the
double quotes are not included. Instead, a terminating null character (\0) is
placed at the end of the string sequence to indicate that the sequence has
ended. As such, apart from the bytes required to store the individual
characters, a string sequence also uses another byte to store the terminating
null character as well. That’s why string constants take up one additional byte
than their usual memory requirements. The following figure depicts this
internal representation of the string sequence “Hello!”

 148

Escape Sequences
Another aspect to consider when talking about characters in programming is
those that are non-graphic or not displayed on the screen but do have a
purpose. For example, look at your keyboard and go through the buttons that,
when pressed, display a character on a word processor. As soon as you think
about it, you’ll notice that certain characters do not display any character on
the screen when pressed, such as the ‘Tab’ button, the ‘Shift’ button, and so
on. Such non-graphic characters are referred to as ‘escape sequences’ and its
effect depends on the device on which it is being used. For example, the Tab
escape sequence (\t) depends on the default setting of the width space that has
been predefined, which is eight blanks.

In addition, note that every escape sequence has a back-slash at the start of
the character. The table shown below elaborates on several escape sequences
along with their decimal values and effects.

Character Definition ASCII Code Decimal
Value

\a alert (BEL) 7
\b backspace (BS) 8
\t horizontal tab (HT) 9
\n line feed (LF) 10
\v vertical tab (VT) 11
\f form feed (FF) 12
\r carriage return (CR) 13
\” " (double quote) 34
\’ ' (single quote) 39
\? ? (question mark) 63

 149

\\ \ (backslash) 92
\0 string terminating

character
0

\ooo (up to 3 octal
digits)

the numerical value of a
character

ooo (octal)

\xhh (hexadecimal
digits)

the numerical value of a
character

hh (hexadecimal)

Octal and hexadecimal escape sequences allow users to represent character
codes differently. For example, if you want to express the alphabet ‘A,’ then
you can convert its decimal value to an octal value and then use the octal
escape sequence to express it. In ASCII code, you will need to use the
decimal value 65; however, if you’re not using the ASCII character code set,
then you can simply use ‘\101’ to express the same alphabet. Similarly, you
will have to use ‘\x41’ if you want in the hexadecimal escape sequence to
express the alphabet ‘A.’ Although escape sequences can be used in this way,
they are primarily used to express those characters that are non-printable. For
example, if you want to represent the character ‘ESC,’ which serves as a
control sequence for printers, then you can express it by using an escape
sequence (for octal \33 and for hexadecimal \x1b).

The Fundamental Variables
Variables are commonly referred to as ‘objects,’ especially if they are part of
a class. Variables are very important in programming as they serve as
containers for data (numbers, characters, and even entire sequences).
Moreover, by using variables, the program can easily process the data. In this
section, we will discuss all the fundamental concepts about variables.

Defining Variables
A variable is an empty container that is abstract to the program until it has
been defined. By defining a variable, we mean that we are storing data inside
this abstract container by allocating memory to it, making it meaningful for
the program. So, in a sense, we specify the data type and reserve the memory,
which is to be used by the variable once it has been initialized. Once a
variable is defined, think of it as a redirection tool. When a user refers to this
variable, the program automatically fetches the corresponding data associated

 150

with the variable in the memory space in which it is allocated, so that the
program can process it. In this way, we can perform operations on this data
linked to the variable easily. A standard definition of a variable has a proper
syntax that needs to be followed. This syntax is:

typ name1 [name2 ...];

By looking at this syntax, we can see that the argument ‘typ’ is actually
mentioning the variable’s type. ‘name1’ is simply the variable’s name that the
programmer specifies. Once defined, whenever we want to specify the
variable in any part of the program, we use this particular name. In this
syntax, we can also see a square bracket that houses another variable by the
name of ‘name2’. The square brackets tell the program that the variables
mentioned inside it are not entirely necessary, and the program can ignore
this portion if it needs to. This means that we can define and store multiple
variables in one go. The following program demonstrates how we can define
variables practically:

char c;
int i, counter;
double x, y, size;

Another important thing to note is that variables can be defined in two ways.
They can be defined within the function of the program or outside the
program’s function. For example, at any portion of the program as long as it
isn’t done within the function. However, defining a variable either within or
outside a function has certain effects, respectively. These have been listed
below:

1. A variable defined outside a function has a global property
within the program. This means that all of the program’s
functions can use this variable.

2. A variable defined inside a function has a local property within
the program. This means that the variable can only be used by
the function in which it has been originally defined and not by
any other function of the program.

A local variable can be defined at any point in the function where a statement

 151

is permissible.

Initialization
The initialization of a variable essentially refers to the assigning of value to
the variable mentioned above. When a variable is being defined, it is also
initialized at the same time. Once the variable is defined, we simply assign a
value to it immediately after the definition syntax to initialize it.

A variable can be initialized by using either of the two methods

After defining the variable, putting an equal sign (=) right next to
it and inputting the desired value. For example:

char k = ‘a’;

Enclosing the desired value of the variable in round brackets
immediately after defining the variable. For example:

char k(a); Similarly float x(1.112);

A global variable that is not initialized has a default value of ‘0’. However,
this does not apply to local variables as a local variable that hasn’t been
initialized will be assigned an undefined value by default.

Here’s an example of a program incorporating the concepts we have
discussed so far.

// Definition and use of variables
#include <iostream>
using namespace std;
int gVar1; // Global variables,
int gVar2 = 2; // explicit initialization
int main()
{

char ch('A'); // Local variable being
initialized

 // or: char ch = 'A';
cout << "Value of gVar1: " << gVar1 << endl;
cout << "Value of gVar2: " << gVar2 << endl;
cout << "Character in ch: " << ch << endl;

 152

int sum, number = 3; // Local variables with
// and without initialization

sum = number + 5;
cout << "Value of sum: " << sum << endl;

return 0;
}

Upon executing this program, the computer will display a result as shown
below:

Value of gVar1: 0
Value of gVar2: 2
Character in ch: A
Value of sum: 8

Constant and Volatile Objects
In this section, we will discuss two important keywords in programming that
can heavily affect the properties of an object. These keywords are:

const (For constant objects)

volatile (For volatile objects)

Constant Objects
Let’s say we already have an object of a specific type available for use. We
can change the properties of the object by using the const keyword in place
of its type. Doing so will create an entirely new object that is specifically
‘read-only.’ As we know from our daily interaction with computers, a read-
only file can only be accessed and cannot be modified by the user. The same
is the case for a constant object. Since its properties have become read-only
(in other words, the object itself has become constant), it renders the program
helpless when it attempts to modify the object. So a constant object, once
defined and initialized, cannot be modified later on. Due to this nature, the
programmer must initialize the constant object at the same time it is defined;
otherwise, it will be a read-only object that is assigned a default value.

An example of a constant object being defined and initialized is shown
below:

 153

const double pi = 3.1415947;

By creating such an object, the program will not be able to modify the value
of this object in any scenario. Even if we introduce a statement like this into
the program:

pi = pi + 2.0; // invalid

The program will only return an error message as a result.

Volatile Objects
A volatile object is the polar opposite of a constant object. However, volatile
objects are rarely used in programs. An object created by using the keyword
volatile will have properties that allow not only the program in which it
resides but also other programs and external events as well to modify the
object. External events are usually triggered through interrupts or hardware
clocks, for instance:

volatile unsigned long clock_ticks;

In this way, even if the program does not directly modify the values of this
variable, the hardware clock definitely will. As such, the program has to
assume the value of this variable has changed since the last time it was
accessed. For this purpose, the compiler constructs a machine code that
allows it to scan and access the variable’s current value instead of outputting
the value on which it was initialized.

Another interesting point is that we can use both const and volatile keywords
at the same time on the same variable. For example, if we were to use these
keywords, then the resulting variable’s properties cannot be modified by the
program itself. Still, it can be modified by external events such as the
hardware clock. An implementation of this concept has been shown below:

volatile const unsigned time_to_live;

 154

Chapter 3

Functions and Classes in C++

In this chapter, we will be taking another important step towards exploring
the realm of C++ programming. This chapter builds upon some of the
fundamentals that were briefly discussed or displayed in the first chapter’s
C++ program. Functions and classes are integral parts of a program, and
knowing how to use them ensures that the programmer’s skills have a strong
foundation.

In this chapter, we will learn how to declare functions in a program and call a
function in a program. In addition, readers will also be instructed on how to
properly use standard classes in C++ along with header files and string
objects that belong to the string class.

Before we go into theoretical details and discussion describing the basics of
declaring functions in a program, let’s first see a demonstration and build the
concept from that. The prototype shown below depicts the structure of a
typical function that has been declared:

 155

If we analyze this function, we can see that the statement provides the
following information to the C++ compiler:

The name of the function to be used is func

We are calling upon this specific function through two
arguments. Both of these arguments are type arguments with the
first one being int and the second one being double

The value that the function will return should be a long type.

The following table highlights some of the most common and standard
mathematical functions available for use in C++.

double sin (double); //Sine

double cos (double); //Cosine

double tan (double); //Tangent

double atan (double); //Arc Tangent

double cosh (double); //Hyperbolic Cosine

double sqrt (double); //Square Root

double pow (double, double); //Power

 156

double exp (double); //Exponential Function

double log (double); //Natural Logarithm

double log10 (double); //Base-ten Logarithm

Declaring Functions
When writing a program, the compiler is like the main player who will
execute the instruction set you are writing down. Following this analogy, it
only makes sense that if we tell the compiler about a function that it does not
know, it will not be able to execute it. Hence, a programmer needs to declare
the functions and names (apart from keywords) for variables and objects;
otherwise, the compiler will simply return an error message. This is why
declaring functions is very important before we can even use them in our
program. Usually, the point where you define a function, or a variable is also
the point where they are declared as well. However, not all functions need to
be defined for them to be declared. For example, if the function you wish to
use has already been defined in a library, then you only need to declare that
function instead of defining it again in your program.

Like a variable, a function features a name along with a type. The type of
value defines the type of function it is supposed to return. In other words, if a
function is supposed to return a long type value, then the type of the function
will also be ‘long.’ Similarly, the argument’s type also needs to be properly
specified for the function to work properly. In other words, to declare a
function, we need to provide the compiler with the following information:

The function’s name and type

Each argument’s type

Such a structure makes up a function prototype. An example of a function
being declared has been shown below

int toupper(int);
double pow(double, double);

The following statement tells the compiler that the name of the function is

 157

toupper(), and its type is int. Since it is an int type function, the value it will
return will also be an int type. The argument’s type is also an int, so the
function will expect an input argument that will be of the int type.

Similarly, the second function’s name is pow(), and its type is double. It has
two arguments, and both are of the type double, meaning that when this
function is called, then it needs two arguments of the type mentioned above
to be passed to it. We can follow up such types of function prototypes with
names as well, but the names will be considered as comments by the
compiler.

Now, let’s discuss another case where a function has already been declared in
the header file included in our program. For instance the function prototype:

int toupper(int c);
double pow(double base, double exponent);

It is the same for the compiler as the function prototype that has been
demonstrated previously. If this function has already been declared in the
header file (which has been added to the program initially using the directive
#include), then we can use the function immediately without declaring it. For
example, if we include the C++ math library ‘cmath,’ then we can use the
standard mathematical functions immediately. The following program
demonstrates the inclusion of this library to use the mathematical functions
immediately.

// Calculating powers with
// the standard function pow()
#include <iostream> // Declaration of cout
#include <cmath> // Prototype of pow(), thus:

// double pow(double, double);
using namespace std;
int main()
{

double x = 2.5, y;
// By means of a prototype, the compiler generates
// the correct call or an error message!
// Computes x raised to the power 3:
y = pow("x", 3.0); // Error! String is not a number

 158

y = pow(x + 3.0); // Error! Just one argument
y = pow(x, 3.0); // ok!
y = pow(x, 3); // ok! The compiler converts the

// int value 3 to double.
cout << "2.5 raised to 3 yields: "

<< y << endl;
// Calculating with pow() is possible:
cout << "2 + (5 raised to the power 2.5) yields: "

<< 2.0 + pow(5.0, x) << endl;
return 0;

}

The output of this program will be

2.5 raised to the power 3 yields: 15.625
2 + (5 raised to the power 2.5) yields: 57.9017

Function Calls
A function call is leveraging the properties and results of a function and
passing it on to the variable calling the function mentioned above. For
example,

y = pow(x, 2.0);

In this example, the variable ‘y’ is calling upon the pow() function. The result
of the function is x2, and this exponential power is then assigned to the
variable ‘y’ calling the pow() function. In simpler terms, a function call
represents a value. Since we are simply representing a value, we can also
proceed to apply some other mathematical operations in a function call as
well, like addition, subtraction, and multiplication, etc. For instance, we can
perform an addition calculation on a function call for double values as shown
below:

cout << 2.0 + pow(5.0, x);

In this statement, the value of ‘2.0’ is added to the value returned by the
pow() function. Afterward, the cout argument displays this result as the final
output of the statement.

 159

It is important to remember that, even though any type of expression, be it a
constant or mathematical expression, can be passed to a function as the
argument, we must make sure that the argument is passed on is of a type that
the function is expecting. In other words, the type of argument being passed
should be in accordance with the type that was specified when the function
was initially defined.

To ensure that the argument’s type is indeed correct, the compiler refers to
the prototype function to double-check the type that has been specified in the
input argument. In the scenario where the compiler identifies that the type
that has been initially defined in the function prototype does correspond to
the argument’s type being inputted, the compiler tries to convert it to the
desired type. But this is not always possible, so the type conversion can only
take place if it is feasible. This has been demonstrated in the code of the
program shown previously as:

y = pow(x, 3); // also ok!

Note that the compiler expects a double type value instead of an int type
value (3). Since the argument’s type does not correspond to the prototype
function, the compiler performs a type conversion of int to double. However,
if the number of arguments being input is more or less than specified by the
function prototype or the compiler cannot perform type conversion. It will
simply return an error message. At this point, you can easily point out the
origin of the error and fix it in the program’s developmental stages, saving
you from dealing with runtime errors.

In the following example:

float x = pow(3.0 + 4.7); // Error!

The compiler identifies that the number of arguments being used does not
comply with the structure specified in the function prototype. Moreover, the
return value of the function is a double type, and it cannot be assigned to a
variable of a float type, hence making the type conversion impossible for the
compiler. In this case, the compiler will simply generate an error.

Functions Without Return Values or Arguments
In most cases, the purpose of a function call would be to use it returns for the

 160

variable calling the function. However, we can also create a function that
executes a task but does not necessarily return any particular value to the
variable calling upon this function. For such purposes, we use the void type
with these functions. In other programming languages, this is commonly
referred to as a procedure.

To demonstrate the usability of a function call without a return value, let’s
first consult the statement shown below:

void srand(unsigned int seed);

In this example, we see a function srand() being used to generate a random
number. The function does this by initializing an algorithm that produces the
random number for the output of the function. Since this function does not
return a tangible value, we assign it the void type. The arguments of this
function show that we are using an unsigned int value, which is to be passed
to the function for use. This value acts as a seed for the random numbers that
the function will produce, enabling it to generate a series of random numbers.

Now that we have discussed a function that can perform an action without
returning a value let’s discuss a function that does not expect an argument. If
we have defined a function without specifying any arguments, then the
programmer must declare this prototype function as void. Alternatively, we
can also leave the argument space empty in the parenthesis. This has been
demonstrated below:

int rand(void); // or int rand();

The program will call the function rand() without providing it with any
arguments. Since no arguments have been specified, the function simply
generates a random number between 0 and 32767 and returns it as the output
value. In this way, we can generate a series of random numbers by repeatedly
calling this function.

Header Files
, header files are those text file components in a program module that feature
declared functions and macros. For a program to make use of the data
contained within header files, they need to be added into the program’s
source code by using the #include directive. A basic chart elaborating on

 161

how to use header files has been shown below:

By understanding this diagram, we can extract the following points of
important information regarding how to use header files:

Header files containing the declared functions and macros being

 162

used in the program should always be included at the beginning
of the program’s source code. If not, the compiler will not be
able to refer to the function prototypes when executing the
functions in the program itself.

Multiple header files cannot be included with a single #include
directive. If we want to add more than one header file into the
program, then we will have to use separate #include directives to
do so, as shown in the diagram.

The name of the header file should be properly written (taking
note of the upper and lower case along with any punctuation)
when being declared by the #include directive. The header file’s
name can be either enclosed in angled brackets “<>” or in
double-quotes, as shown in the diagram.

Searching for Header Files
Usually, whenever you include a header file, it gets automatically stored in a
separate folder in your files directory. The directory where the header file that
has been added to the program is stored is known as ‘include.’ If you want to
make changes to the header file or want to access it manually to use it with
another project, then you first need to refer to the method you used to include
it into the current project. If you have used angle brackets (<>) to include the
header file, then it will be in the include directory. However, since most of
the programmers using C++ create their own header files, they usually store it
in the same folder where the project is stored. In such cases where the header
file is not in the include directory, then you will need to add it to the source
code file using double quotes (“”). Similarly, if a header file has been
included in the program’s source code using double quotes, then you need to
search the project folder itself to find the header file.

Standard Class Definitions in Header Files
By now, we know that a header file contains important data such as function
prototypes that help the programmer to code functions with ease efficiently.
However, a header file is not that one-dimensional. It can store other
important programming data as well such, as one which we will discuss in
this section, standard classes that have already been defined. Programmers
can include objects and define classes inside the header file and use them in

 163

their program just as how they would use function prototypes. So, any class
and object that has been defined in the header file, the program can access
and use this data to execute tasks.

#include <iostream>
using namespace std;

In this example, you can see two statements. Our concern is with the first
statement only, i.e., the inclusion of the istream and ostream classes in the
program. By adding the header file containing these classes, the program
becomes capable of using the cin and cout streams. This is because cin is an
object that belongs to the istream class, and similarly, cout is an object that
belongs to the ostream class.

Using Standard Header Files
The table shown below highlights some of the header files that include
standard C++ libraries.

algorithm ios map stack
bitset iosfwd memory stdexcept
iomanip locale ssstream vector
complex iostream new streambuf
functional list set valarray
dequeue istream numeric string
fstream limits queue utility
exception iterator ostream typeinfo

Since C++ can use most of the libraries used by standard C, here’s a list of
header files that include C standard libraries.

assert.h limits.h stdarg.h time.h
ctype.h locale.h stddef.h wchar.h
errno.h math.h stdio.h wctype.h
float.h setjmp.hstdlib.h ios646.h
signal.h string.h

 164

At first glance, we can see that the header files shown in the two tables have
one key difference, and that is the inclusion of the .h extension. This is
because, in C programming language, header files are indicated by the
extension ‘.h.’ However, this is not the case for C++ header files as their
declarations are all contained within their own namespace (std). However, it
is important to specify to the program that you will be using the std
namespace globally to refer to identifiers. Otherwise, the compiler will not be
able to recognize the cin and cout streams without the using directive.

#include <iostream>

In this case, the compiler cannot identify the cin and cout streams.

#include <iostream>
#include <string>
using namespace std;

By adding the using namespace std directive, the program can now easily
identify and use the cin and cout streams without the need for any syntax.
Note that this demonstration also added the string header file as well. This
will allow the program to perform string manipulation tasks in C++ easily.

C Programming Language Header Files
The C++ programming language has adopted and incorporated all of the
standard libraries of the C programming language, making them available for
use by C++ programs. As such, header files are also no exception. The header
files which were originally standardized for the C programming language
have been adopted for use by the C++ programming language as well. For
example, we can use the C programming language’s standard math library in
C++ as well by using the following statement as shown below:

#include <math.h>

Although we can use standard C libraries, there is one complication that can
cause quite a problem. When using a C header file, the identifiers declared in
this file become globally visible. This can cause complications in big
programming projects. To take care of this issue, we simply use another
header file in addition to the C header file in C++. This additional header file
declares these identifiers in the std namespace, thus solving the issue of

 165

identifier conflicts. For example, if we are using math.h library in C++, then
we will accompany it with another header file named cmath. This cmath
library features all of the data declared in the math.h library, but the
difference is that the identifiers in cmath have been declared in the std
namespace. This has been demonstrated below:

#include <cmath>
using namespace std;

An important topic to clarify while we are talking about header files is that
the string header file and string.h or cstring do not offer the same
functionality. The string header file only defines the string class while the
string.h or cstring header files declare those functions and variables that are
used to manipulate string data in C programming language. In simpler terms,
the string.h and cstring header files allow the user to access the functionality
of the C string library, while the string header file’s only purpose is to define
the string class.

Here’s an example showing the use of two header files, i.e., iostream and
string in a C++ program.

// To use strings.
#include <iostream> // Declaration of cin, cout
#include <string> // Declaration of class string
using namespace std;
int main()
{

// Defines four strings:
string prompt("What is your name: "),

name, // An empty
line(40, '-'), // string with 40 '-'
total = "Hello "; // is possible!

cout << prompt; // Request for input.
getline(cin, name); // Inputs a name in one line
total = total + name; // Concatenates and

// assigns strings.
cout << line << endl // Outputs line and name

<< total << endl;

 166

cout << " Your name is " // Outputs length
<< name.length() << " characters long!" << endl;

cout << line << endl;
return 0;

}

This example prints out the string using cout and << statements. This
program asks the user to input their name and then proceeds to display their
input name along with the total number of characters contained within their
name.

What is your name: Zoldyck Killua

Hello Zoldyck Killua
Your name is 13 characters long!

Using Classes in C++
The program shown in the above example can be seen to incorporate the
string class into its core functionality. In the standard library of C++,
multiple classes have been defined before-hand. These classes are very
important for the foundations of a C++ program. They include the stream
classes (iostream) and classes that effectively help represent strings for the
program and conditions through which an error arises.

Even though there are many classes available for use, each class is unique
with regards to their respective type that represents their properties and
capacities. Although each class is unique, whether they are predefined classes
or classes that have custom designed by the programmer, their properties and
capacities are still governed by two main aspects.

The data members of a class are responsible for defining the
properties of their corresponding class.

The class’s methods (functions belonging to a class. These
functions coordinate with the members of the class to carry out
an operation) define the capacity of a class. The method of a
class is also commonly known as its member function.

 167

Creating Objects of a Class
Objects are variables that are assigned the class type itself. For instance, if we
create an object for a string class, then the variable will have the string type
accompanying it. This has been demonstrated in the example shown below:

string s("I am an object of the string class");

Whenever an object is created, it is allocated memory for its data members
and then initialized with its corresponding values. In the example shown
above, you can see that the variable s is of the string class type. An Object is
also termed as an instance of the corresponding class it represents. Take the
statement shown above as an example. The object s can also be referred to as
an instance of the string class. The object is followed by a string constant (I
am an object of the string class) and is ultimately defined and initialized in
this way.

Calling Methods
In a class, all the methods that have been defined as ‘public’ can be called by
an object of this particular class. We must not confuse calling a public
method with calling a global function. Although both share some basic
similarities, however, there is one aspect that acts as a major differentiating
factor between methods and functions. This aspect is that unlike global
functions that can be used by multiple statements of the program in which it
is defined, a public method can only be called for one particular object at a
time only. A typical set up of a method and an object is shown below:

s.length(); // object.method();

In this statement, the length() is the method for the object s. The main
purpose of this method is to provide information regarding the total number
of characters in the string. This has already been demonstrated in the program
shown in the previous section. Instead of the s object, we can see that the
length() method is being used with the name object.

Global Functions and Classes
A function that has been defined globally can be used by some classes as
well. A global function being used by a class mainly executes certain
operations for the class’s objects, which have been passed as arguments to the
function. For example, consider the following statement, which features a

 168

global function getline(). This has been used with an object s (which has
been passed to the function as an argument):

getline(cin, s);

The global function executes an operation to store a line of keyboard input as
a string. In this way, by pressing the return key, a new line character will be
created by the ‘\n’ escape character, but this line will not be stored in a string.

 169

Chapter 4

Operators For Fundamental Types

In this chapter, we will introduce those operators that are essential for
performing calculations as well as selections for fundamental data types.
Operators are similar to functions, but their syntax is quite different.
Operators tools for performing specific operations such as arithmetic
operations, comparison operations and logical operations, etc. We will be
discussing some of the most basic operators used for fundamental
programming.

Binary Arithmetic Operators
To make a program capable of processing the data input, the operations
required for the process need to be defined. The execution of selective
operations depends on the type of data being processed, such as adding,
multiplying, or comparing numbers. However, multiplying strings would not
be logical.

The most important operators, including unary and binary operators that are
used for arithmetic processing, are discussed in the following section. Only
one operand is used in unary operators while two are specified for the binary
operators. Here’s a diagram demonstrating a typical binary operator and
operands.

 170

For further conceptual clarification, a table listing the fundamental binary
operators has been outlined below:

Operator Significance

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

Here’s a program demonstrating the use of binary operators:

#include <iostream>
using namespace std;
int main()
{

double x, y;
cout << "\nEnter two floating-point values: ";
cin >> x >> y;
cout << "The average of the two numbers is: "

<< (x + y)/2.0 << endl;
return 0;

}

When executing this program, we will be given the following result:

Enter two floating-point values: 4.75 12.3456

The average of the two numbers is: 8.5478

The system can perform calculations with the help of arithmetic operators.

In case of using integral operands to perform divisions, integral
results will be produced. For instance, the computation of 7/2
will result in 3. Furthermore, one or more than one floating-point
number operands will produce a result in the form of a floating-
point number. For example, if 7.0/2 is calculated, the exact result

 171

will be 3.5.

Integral Operands are the only ones that can make use of the
remainder division, which is used to return the remainder of an
integral division, e.g., 7%2 would produce the result 1.

Expressions
Simple expressions consist of only one constant, variable, or a function call,
but when they are used as operands of operators, they form complex
expressions. As such, an expression is usually a combination of operators and
operands.

When utilized, all of the expressions return values except for those that
feature a void type. The operands define the expressions in arithmetic
calculations.

Examples: int a(4); double x(7.9);

a * 512 // Type int
1.0 + sin(x) // Type double
x – 3 // Type double, since one

// operand is of type double

If an expression is correctly used, it can act as an operand in another
expression as well.

Example: 2 + 7 * 3 // Adds 2 and 21

When an expression is evaluated, the mathematical rules of multiplication
before addition apply. So, the operators *, /, % are given priority to + and -.
In the example provided above, the calculation 7*3 is performed first, and
then two is added to it. On the other hand, the precedence order can be
changed by inserting parentheses to the calculation that should be performed
first.

Example: (2 + 7) * 3 // Multiplies 9 by 3

Unary Arithmetic Operators
The total number of unary arithmetic operators is four:

 172

The Unary sign operator +

The Unary sign operator –

The increment operator ++

The decrement operator –

However, not all of the unary arithmetic operators feature the same level of
precedence. The precedence of the arithmetic operators has been
demonstrated in the table below:

The effects of the prefix and suffix notation of arithmetic operators have been
demonstrated in the following sample program:

#include <iostream>
using namespace std;
int main()
{

int i(2), j(8);
cout << i++ << endl; // Output: 2
cout << i << endl; // Output: 3
cout << j-- << endl; // Output: 8
cout << --j << endl; // Output: 6
return 0;

}

The Unary Sign Operators

 173

The sign operator + has no real use as it only returns the value of the operand
as it is. On the other hand, the sign operator – returns the operand value after
inverting its sign.

Example: int n = -5; cout << -n; //Output: 5

Increment and Decrement Operators
The increment operator is used to increase the value of the operand by 1. For
this reason, it cannot be used with constants.

Increment operators can be used in the form of prefix notation, or postfix
notation. Taking i as a variable, the postfix notation written as i++ and prefix
notation which is ++i both perform the function of i=i+1. The end result has
the value of I increased by one.

Despite performing the same operation, the postfix ++ and prefix ++ function
in different ways. By observing the values in both expressions, the difference
between the two can be made apparent. When ++i is used, it means the value
of i is already incremented before being applied. Conversely, in i++, the
original value that is i is retained.

++i, the value of i is first incremented, after which it is applied.

i++ the original value of i is applied and then incremented.

While it may not be as apparent in simple expressions, it makes a noticeable
difference in complex expressions. Therefore, when dealing with complex
expressions, the difference between the postfix and prefix expressions must
be noted.

The decrement operator -- changes the value of the given variable or operand
by reducing it by 1. The prefix and postfix notations can also be applied to
this operator which function in the same way as the increment notations
except it perform the operation i=i-1.

Precedence
When multiple operators are to be evaluated, their order is decided by the
operator precedence, after which the operators and operand are grouped
accordingly. If the table opposite is studied, it can be seen that the operator
++ has the highest precedence while “/” has higher precedence than “-.”

 174

Example: (val++) – (7.0/2.0)

The result is 1.5, keeping in mind the fact that val is incremented later.

If any two or more operators have equal precedence, the evaluation of the
expression is determined by column three of the table.

Example: 3 * 5 % 2 is equivalent to (3 * 5) % 2

Assignments
The process in which we assign something to an expression or variable is
known as assignment. Before we discuss the topic of assignment in detail,
let’s first see how they are used in a practical C++ program.

// Demonstration of compound assignments
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{

float x, y;
cout << "\n Please enter a starting value: ";
cin >> x;
cout << "\n Please enter the increment value: ";
cin >> y;
x += y;
cout << "\n And now multiplication! ";
cout << "\n Please enter a factor: ";
cin >> y;
x *= y;
cout << "\n Finally division.";
cout << "\n Please supply a divisor: ";
cin >> y;
x /= y;

cout << "\n And this is "
<< "your current lucky number: "

// without digits after
// the decimal point:

 175

<< fixed << setprecision(0)
<< x << endl;

return 0;
}

Simple Assignments
When assigning a variable value to an expression, the simple assignments use
the assignment operator written as =. The value is written on the right of the
assignment operator “=” while the variable the value is assigned to is on the
left side.

Example: z = 7.5;

y = z;
x = 2.0 + 4.2 * z;

As seen in the example, the variables are expressed as “x,” “y” and “z” on the
left; the values assigned to them are on the right. In order of evaluation, the
assignment operator has low precedence. This can be seen in the last example
where the expressions on the right side are evaluated first, and the result
produced by the calculation is assigned to the variable on the left side.

The assignment operator can be considered as an expression in itself, and the
value of this expression is the value assigned to the variable.

Example: sin (x = 2.5);

As shown in the example, the value of 2.5 is first assigned to the variable “x,”
which is then passed as an argument to the function.

If multiple assignment operators are used, it is possible to evaluate them from
right to left.

Example: i = j = 9;

The evaluation of the expressions in this example starts from the right, i.e.,
the value 9 is first assigned to “j” and then to “i.”

Compound Assignments
Another kind of operator besides the simple assignment is the compound
assignment operator. It is used to perform the operations of arithmetic and

 176

assignment at the same time.

Example: i += 3; is equivalent to i = i + 3;

i *= j + 2; is equivalent to i = i * (j+2);

The precedence of compound assignment is similar to simple assignment
operators and is set to be low. Hence the compound assignments are
implicitly placed in parentheses which is demonstrated in the second
example.

The binary arithmetic operators and bit operators are used for composing
compound assignment operators such as +=, -=, *=, /=, and %=.

When evaluating a complex operation, the presence of assignment operators
or increment(++)/decrement(--) operators can significantly modify a variable.
This modification is referred to as side effect and can usually lead to errors.
Therefore, the use of side effects should be avoided as much as possible so
that the program readability is not impaired.

Relational Operators
Here’s a table showing all of the relational operators available for use in C++.

Operator Significance

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

!= Unequal to

Like unary operators, relational operators also have different precedence
among themselves. This has been highlighted in the table shown below:

 177

Here’s a brief example of the use of relational operators for comparison
purposes:

Comparison Result

4 >= 5 False

1.5 > 2.3 False

2.9 > 2.2 True

2 * 10 != 18 True

The Result of Comparison
The comparison operators are bool type expressions that are used to compare
two values. The value may be “true,” which means the comparison is correct,
or it may be “false,” meaning the comparison is incorrect.

Example: length == circuit //false or true

In the given example, if the number value of both length and circuit are the
same, then the comparison is correct, and the value of this comparison
expression is “true.” On the other hand, if the length and circuit have
different values, then the value assigned to this expression will be “false.”

When comparing two individual characters, the character set must be
carefully selected because the characters are compared based on their
character codes.

 178

Example: ‘A’ < ‘a’ //true, since 65 < 97

In the example, the ASCII code is used, and hence, the value turns out to be
true.

Precedence of Relational Operators
In order of evaluation, the precedence for relational operators is
approximately in the middle. It is lower than the arithmetic operators but
higher than the assignment operators.

Example: bool flag = index < max – 1;

As seen in the example, the arithmetic expression max -1 is evaluated first.
The result is then compared with the index, and finally, the value is assigned
to the flag variable.

Example: int result;

result = length + 1 == limit;

In this case, the operation length + 1 is performed before the other
expressions and is then compared with the limit variable. The result of this
relational operation is then assigned to the result variable. Due to the result
type being int type, the value of the end result is numerical, not true or false.
So if the result is false, it is given a value of 0, and if it is true, then the value
is 1.

It is quite common to perform operations where the assignment operator is
given precedence, and the other operations follow after. It is achieved by
enclosing the assignment expression in parentheses.

Example: (result = length + 1) == limit

In this case, the value of length + 1 is first assigned to the result variable and
is compared with the limit afterward.

Logical Operators
Before we go into a detailed discussion regarding logical operators, here’s a
truth table for the logical operators alongside examples showcasing logical
expressions. This is necessary to build background knowledge.

 179

(Truth Table)

The Boolean operators AND &&, OR || and NOT ! are all a part of the logical
operators. The main use of these operators is to make compound conditions
as well as carry out conditional execution of a program while relying on the
multiple conditions set by the user. Similar to relational expressions, logical
expressions are checked to see if they are correct or incorrect, and then a
value between true or false is assigned to the end result.

Operands and Order of Evaluation

 180

The Boolean type operators usually make use of bool type operands.
However, arithmetic type operands, as well as any operands that are
convertible to bool type, are also used. As such, if the operand used has a
value of 0, it is converted to false. If its value is anything other than 0, then it
is taken as true.

The OR operator || yields the relational result true if at least one of the
operands is true. If both are false, then the result will be false as well.

Example: (length < 0.2) || (length > 9.8)

The value of OR expression given above will be true if the value of the length
is less than 0.2 or greater than 9.8.

The value in an AND operator && expression will be returned as true only if
both the operands are true and otherwise the result will be false.

Example: (index < max) && (cin >> number)

If, in the above expression, the index is proven to be less than max, and the
number is input successfully, then the result produced by the operator will be
true. On the other hand, if the index is not less than max, the number will not
be read or input by the program. The logical operators AND ‘&&’ as well as
OR ‘||’ have an order of evaluation that is fixed. C++ starts the
evaluation from left to right and ignores the unnecessary operands, such as
when the result is established while evaluating the left operand, the right
operands are not evaluated.

The logical operator ! is the NOT operator that works with only one operand
located on its right. It checks the value of the operands, and if it is true, then
it will be inverted by the NOT operator, and the Boolean value will be
returned as false. Similarly, if the value of the variable flag is false or 0, then
it will be returned as true. Therefore, NOT operator works by returning the
opposite value of the variable flag it evaluates.

Precedence of Boolean Operators
When considering the order of evaluation, the AND operator && is set to
have higher precedence than the OR operator ||. Both these logical operators
have higher precedence than the assignment operators and lower than other
previous operators.

 181

The NOT operator ‘!’, being the unary operator, among others, has higher
precedence in the evaluation order.

 182

Chapter 5

Controlling the
Flow of a Program

In a program, we need to control the flow of data and information. A program
that has a data flow in one continuous direction, i.e., the flow of data is in the
direction of the program’s structure, then the resulting program is limited and
one-dimensional. To increase the functionality and capability of a program,
we need to control its flow effectively. To do this, we need to use certain
statements such as loops (while, for, do-while), using conditional operators
(if, then, if-else, etc.) and jumps (goto, continue and break).

The ‘While’ Statement
Here’s a structural diagram of the while statement.

Similarly, let’s first observe a program demonstrating the use of the while
statement for controlling its flow and then proceed to break it down and
understand it.

// average.cpp
// Computing the average of numbers
#include <iostream>
using namespace std;

 183

int main()
{

int x, count = 0;
float sum = 0.0;
cout << "Please enter some integers:\n"

"(Break with any letter)"
<< endl;

while(cin >> x)
{

sum += x;
++count;

}
cout << "The average of the numbers: "

<< sum / count << endl;
return 0;

}

The iteration statements or loops repeat a set of instructions that are supposed
to repeat for a certain number of times. The statements or set of instructions
that are to be repeated are referred to as loops bodies. The three language
elements, namely while, do-while and for are the ones responsible for
expressing iteration statements. The controlling expression is a condition that
limits the number of times a loop is repeated, i.e., until the expression is no
longer true. The while and for statements verify whether the expression is
true or not before the loop body is executed. In contrast, the do-while
statement evaluates the controlling expression after the statement is executed
once.

The syntax of while statement is expressed as:

Syntax: while (expression)

statement // loop body

The controlling expression is evaluated before C++ enters a loop made by
any of the iteration statements. If the expression is verified to be true, the
loop body is executed once. After, the controlling expression is evaluated
again. The process is repeated if the expression is true, but if it evaluates to
false, the program exits the loop and executes the statement coming after the

 184

while statement.

The program readability can be improved by starting the coding of the loop
body from a new line in the source code and adding an indent to the
statement.

Example: int count = 0;

while (count < 10)
cout << ++count << endl;

The given example suggests that usually, Boolean expressions are used for
controlling expressions, but it is not strictly limited to only Boolean
expressions. The expressions that are convertible to bool type, as well as
arithmetic expressions, can also be used as controlling expressions in
iteration statements. If the value in these expressions is 0, it is interpreted as
false, while any other value is converted to true.

Building Blocks
When more than one statement needs to be repeated in a loop body, each
statement must be placed in parentheses. These are referred to as a block.
Whenever a statement is required in syntax, a block can be used in the
expression as a block is syntactically equal to a statement.

In the following sample program, the average of a sequence of integers is
calculated. The loop body contains two statements to be repeated in the
process. Hence, both of these statements are placed in a block marked by
parentheses.

The controlling expression in the program is ‘cin >> x’ and holds to be true
when the input is an integer. During the conversion of ‘cin >> x’ to bool type,
if the input is valid, then the result would be true, and if it is invalid, the
result is returned as false, and the loop is terminated. In the given case, a
valid input would be any integer. In contrast, an invalid integer could be a
letter that makes C++ exit the loop and execute the statement following after
the loop body.

The ‘For’ Statement
Just like in the previous section, let’s first look and understand the structural

 185

diagram of the ‘for statement’ in a program and see how it is actually
implemented in a program as well. The structure of the for statement is as
following:

Similarly, the implementation of the ‘for statement’ in a program has also
been demonstrated below:

// Euro1.cpp
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{

double rate = 1.15; // Exchange rate:
// one Euro to one Dollar

cout << fixed << setprecision(2);
cout << "\tEuro \tDollar\n";
for(int euro = 1; euro <= 5; ++euro)

cout << "\t " << euro
<< "\t " << euro*rate << endl;

return 0;
}

 186

The output of this program is as follows:

Euro Dollar
1 0.95
2 1.90
3 2.85
4 3.80
5 4.75

Initializing and Reinitializing
Example: int count = 1; // Initialization

while(count <= 10) // Controlling
{ // expression
cout << count

<< ". loop" << endl;
++count; // Reinitialization
}

The expressions or elements that control the repetition of the statements in
the loop are typically placed in the loop header. You saw this in the above
example, which can be considered as a ‘for statement.’

Example: int count;
for (count = 1; count <= 10; ++count)

cout << count
<< ". loop" << endl

Any expression can control the initialization and reinitialization of a loop in a
for statement. Hence, the for statement has the following syntax:

Syntax: for (expression1; expression2; expression3)

Statement

As seen in the syntax, expression 1 is executed only once at the beginning of
the loop so it can be initialized. The next expression 2 is evaluated before the
loop body is implemented and is the controlling expression of this statement.

In case the value of expression 2 is returned as false or 0, the

 187

loop is terminated.

In case the value of expression 2 is true, the execution of the loop
body takes place.

The loop is repeated when expression 3 reinitializes the statement and returns
to expression 2 to verify the value again.

The loop counter placed in expression 1 can only be used within the loop, and
not after the loop is terminated.

Example: for (int i = 0; i < 10; cout << i++)

;

The example given suggests that some loops may even have empty
statements because all of the required statements are located in the loop
header. Though this method works, the readability of such a loop body is
significantly worse than the one that has a line of its own in the empty
statement.

// EuroDoll.cpp
// Outputs a table of exchange: Euro and US-$
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{

long euro, maxEuro; // Amount in Euros
double rate; // Exchange rate Euro <-> $
cout << "\n* * * TABLE OF EXCHANGE "

<< " Euro – US-$ * * *\n\n";
cout << "\nPlease give the rate of exchange: "

" one Euro in US-$: ";
cin >> rate;
cout << "\nPlease enter the maximum euro: ";
cin >> maxEuro;

// --- Outputs the table ---
// Titles of columns:

 188

cout << '\n'
<< setw(12) << "Euro" << setw(20) << "US-$"
<< "\t\tRate: " << rate << endl;

// Formatting US-$:
cout << fixed << setprecision(2) << endl;
long lower, upper, // Lower and upper limit

step; // Step width
// The outer loop determines the actual
// lower limit and the step width:

for(lower=1, step=1; lower <= maxEuro;
step*= 10, lower = 2*step)

// The inner loop outputs a "block":
for(euro = lower, upper = step*10;

euro <= upper && euro <= maxEuro; euro+=step)
cout << setw(12) << euro

<< setw(20) << euro*rate << endl;
return 0;

}

In a ‘for statement,’ any from the expressions 1, 2, and 3 can easily be
omitted. The exception to this is that there must at least be two semicolons in
the loop. Thus, following this proclamation, the shortest form of a for
statement would be written as:

Example: for (; ;)

In this example, the controlling expression is the condition that expression 2
must be missing. Therefore, in this case, the value is always returned as true,
and the loop becomes infinite.

Example: for (; expression ;)

This expression of a for statement behaves in the same way as a while
statement; the loop continues as long as the controlling expression is verified
to be true.

The Comma Operator
The comma operator is used to separate two expressions, which are included
in a code where only one statement is expected. An example would be the

 189

several variables set as initializers in a looping header of a ‘for statement.’
The comma operator has the following syntax:

Syntax: expression1, expression2 [, expression3 ...]

The set of expressions is evaluated from left to right, and when they have to
be evaluated for a single value, only the right-most expression is considered.

Example: int x, i, limit;

For (i=0, limit=8; i < limit; i += 2)
x = i * i, cout << setw (10) << x;

The comma operator separates the different calculations in the above
example. The assignments for i and limit are comma-separated, followed by
the calculation and output of the value of x all in a single statement.

The precedence of the comma operator in the order is the lowest, placing
even lower than the assignment operator. Hence, the use of parentheses is not
needed, as in the example above.

The last expression in a statement containing commas determines the type
and value of a comma operator.

Example: x = (a = 3, b = 5, a * b);

The expressions starting from the left are evaluated first, and then the value
of a * b is assigned to x.

The ‘do-while’ Statement
The structure of the do-while statement is as follows:

 190

The practical implementation of the do-while statement in a program to
control its flow has been demonstrated below:

// tone.cpp
#include <iostream>
using namespace std;
const long delay = 10000000L;
int main()
{

int tic;
cout << "\nHow often should the tone be output? ";
cin >> tic;
do
{

for(long i = 0; i < delay; ++i)
;

cout << "Now the tone!\a" << endl;
}
while(--tic > 0);
cout << "End of the acoustic interlude!\n";

return 0;
}

In the do-while statement, the loop is always executed at least once, and the
controlling expression is evaluated after the loop. Therefore, this iteration
statement is controlled by its footer as opposed to the other two statements,
which are controlled by their headers.

 191

Syntax: do

statement
while (expression);

The do-while evaluates the controlling expression after the loop body has
been executed once, and if the value of the expression is returned as true, the
loop is repeated again; meanwhile, the false result will terminate the loop.

Nesting Loop
Nesting loops mean that a different loop is nested inside the loop body, i.e., a
loop inside a loop. At most, 256 levels of nesting are allowed in C++
according to the ANSI standard.

The sample program, as shown, gives an output of several tones as
determined by the user input.

There are two loops in the given program where one loop is nested in
another. Whenever the outer loop (do-while statement) is repeated, a short
break occurs during the process during which the inner loop (for statement) is
executed. In the inner loop, the value of i is incremented from 0 to delay
value.

The output of this program is text and a tone, which is generated by
outputting the control character BELL (ASCII code 7). This control character
is characterized as the escape sequence /a. The do-while statement used in the
program outputs the tone even if the input is a 0 or a negative number.

Selections of ‘If-Else’ Statements
The structural diagram of the if-else statement is as follows:

 192

Similarly, the implementation of the if-else statement has been demonstrated
in the program shown below:

// if_else.cpp
// Demonstrates the use of if-else statements
#include <iostream>
using namespace std;
int main()
{

float x, y, min;
cout << "Enter two different numbers:\n";
if(cin >> x && cin >> y) // If both inputs are
{ // valid, compute

if(x < y) // the lesser.
min = x;

else
min = y;

cout << "\nThe smaller number is: " << min << endl;
}
else

cout << "\nInvalid Input!" << endl;
return 0;
}

The if-else statement is used when a choice is to be made between two

 193

statements, based on the conditions they fulfill.

Syntax: if (expression)

statement1
[else

statement2]

The expression is evaluated first to verify whether the condition is fulfilled.
The result is returned as true or false. If it is true, then the statement1 is
executed, and statement2 is processed in other cases only if an else branch
exists. In case the result is false, then statement1 is ignored, and statement2 is
executed. However, if there is no else statement or it is also false, then the
control skips to the statement following after the if-else statement.

Nested if-else statements
Considering the situation where more than one if-else statements are used in
a program, multiple if-else statements can be nested in each other. Some ‘if
statements’ do not have an ‘else’ branch associated with them. So, the ‘else’
branches are set to be associated with the nearest preceding ‘if statement’ that
does not have an else branch.

Example: if (n > 0)
if (n%2 == 1)

cout << " Positive odd number ";
else

cout << "Positive even number";

As visible from the example, the else branch is associated with the second if
statement, which is indented. In case the else branch needs to be redefined
and associated with another if statement, a code block is used.

Example: if (n > 0)
{ if (n%2 == 1)

cout << " Positive odd number \n";
}
else

cout << " Negative number or zero\n";

 194

Defining variables in if statements
A variable can be defined within the if statement and used for initialization. If
the variable is converted to a bool type and returns the value true, then the
expression in if statement will also be true.

Example: if (int x = func ())
{ . . . } // Here to work with x.

The variable x in the example is initialized by the result of the function func (
). For any value other than 0, the statement in the block is evaluated and
executed. Once the program leaves the if statement, the variable x is no
longer used.

Else-If Chains
The structural implementation of the else-if statement is as follows:

The implementation of the else-if statement has been demonstrated in the
sample program shown below:

// speed.cpp
// Output the fine for driving too fast.
#include <iostream>

 195

using namespace std;
int main()
{

float limit, speed, toofast;
cout << "\nSpeed limit: ";
cin >> limit;
cout << "\nSpeed: ";
cin >> speed;
if((toofast = speed – limit) < 10)

cout << "You were lucky!" << endl;
else if(toofast < 20)

cout << "Fine payable: 40,-. Dollars" << endl;
else if(toofast < 30)

cout << "Fine payable: 80,-. Dollars" << endl;
else

cout << "Hand over your driver's license!" << endl;
return 0;

}

Layout and Program Flow
If a program has multiple options to choose from, they can be executed
selectively with the help of else-if chains, which are a series of if-else
statements embedded within. The layout of these chains are:

if (expression1)
statement1

else if (expression2)
statement2

.

.

.
else if (expression(n))

statement(n)
[else statement (n+1)]

During the execution of the else-if chain, the expressions starting from the
first one (expression1) are evaluated one by one as specified in the order. The
first expression is verified, whether if it is true or false. If it is true, then the

 196

statement following it is performed, and the chain is terminated, but if it is
false, the next expression is verified and so on.

If none of the expressions return the value true, then the else branch
associated with the last ‘if statement’ is executed. In case this branch is left
out, the program exits the else-if chain, and the statement coming afterward is
evaluated.

The Sample Program
It can be seen in the following sample program that an else-if chain is used in
the coding to calculate the penalty of driving the vehicle over the speed limit.
The result of this calculation is the penalty fine, which is displayed as the
output on the screen.

The vehicle’s speed limit and the actual speed are input via the keyboard into
the code. If the actual speed exceeds the speed limit, such as a car was seen to
have the actual speed of 97.5 while the speed limit is 60, the first two
expressions in the else-if chain are returned as false, and the last else branch
is executed. This statement displays the message “Hand over your driver’s
license” as the output on the screen

The Conditional Operators
The structural implementation of a conditional expression in a program is as
follows:

 197

A sample program demonstrating the implementation of conditional
operators and expressions has been shown below:

// greater.cpp
#include <iostream>
using namespace std;
int main()
{

float x, y;
cout << "Type two different numbers:\n";
if(!(cin >> x && cin >> y)) // If the input was
{ // invalid.

cout << "\nInvalid input!" << endl;
}

else
{

cout << "\nThe greater value is: "
<< (x > y ? x : y) << endl;

}
return 0;

}
The output of this program is:
Type two different numbers:

173.2
216.7
The greater value is: 216.7

Conditional operators (?:) can be used as a concise alternative to the if-else
statements. This selection mechanism is based on the fact that one of the two
given values in a statement is selected as the output depending on the value
of the associated condition.

The value selected and produced in this kind of expression depends on
whether the value of condition is returned as true or false, and so, it is
referred to as conditional expression.

Syntax: expression ? expression1 : expression2

The value of the conditional expression will either be expression1 or

 198

expression2. The expression or given condition is evaluated first. If the result
value is returned as true, then expression1 is selected and evaluated, but if the
result is false, then expression2 is chosen for evaluation.

Example: z = (a >= 0) ? a : -a;
The variable z in the given expression is to be assigned an absolute value of
a. The first condition is that if the value of a is positive such as 12, then the
variable z is assigned the number 12. But if it is a negative number like -8,
the value of z would be 8.

The value obtained from the conditional expression is stored in the variable z,
and hence, it can be considered to the if-else statement shown below:

if (a > 0)
z = a;

else
z = -a;

Precedence
The only operator that uses three operands in the C++ language is the
conditional operator. The brackets visible in the first example can be removed
because the precedence of a conditional operator is higher than assignment
operators and comma operators and lower than the rest.

The result produced by the evaluation of a conditional statement can be used
directly without having to assign it. This can be understood by the following
example, which has the condition that x should be greater than y. If x is a
greater value, then the value of x is displayed as the output. Otherwise, the
value of y will be printed.

For complex expressions, it would be better to use a variable to which the
value of the conditional expression will be assigned so that the readability of
the program can be increased.

The ‘Switch’ Statements
The structural implementation of a switch statement in a program is as
follows:

 199

A sample program demonstrating the implementation of switch statements
and expressions has been shown below:

// Evaluates given input.
int command = menu(); // The function menu() reads

// a command.
switch(command) // Evaluate command.
{

case 'a':
case 'A':

action1(); // Carry out 1st action.
break;

case 'b':
case 'B':

action2(); // Carry out 2nd action.
break;

default:
cout << '\a' << flush; // Beep on

} // invalid input

Just as the else-if chain evaluates multiple statements in sequence, the switch
statement also chooses between numerous alternatives. The difference is that
it compares the expression given in the beginning with all the other constants
or statements.

switch (expression)

 200

{
case const1: [statement]

[break;]
case const2: [statement]

[break;]
.
.
.

[default : statement]
}

Before implementation of the switch statement, it is mandatory to consider
whether the expression that needs to be evaluated and the constants to which
it will be compared to are all of the integral type (such as Boolean values or
character constants). Then the result of the expression evaluation is compared
to const1, const2, and so on, written in the case labels. Each of these
constants must be different.

When the result value finds a match among the multiple case constants, the
program moves on to the selected case label and continues onwards. After
this step, the case labels are not required anymore.

The unnecessary execution of case labels after the switch statement is
implemented is prevented by putting the break statement after each constant
statement. This makes the program leave the statement unconditionally.

In case the expression result value does not match with any of the constants,
the program branches to the default label, which may not necessarily be the
last label. If additional case labels need to be added to the switch statement,
they can be placed after the default label. If the default label is not defined,
then nothing happens, and the program moves on to execute the next
operator.

Differences between the switch and else-if chains
In terms of versatility and usefulness, else-if chains are better than switch
statements because every kind of selection can be programmed using the
else-if chain. The disadvantage to the else-if chain is that the integral values
of the expressions need to be constantly compared to several possible values.
So, for cases like this, it is better to use a switch statement.

 201

Comparing the readability of the else-if chain and the switch statement is the
given example, it is clear that switch statements are easier to read and hence
should be used wherever it is possible.

 202

Chapter 6

Arithmetic Data Type Conversions

In programming, it is very common to have arithmetic types which are
different from each other. Just as the types are different, it’s a given that we
cannot perform mathematical operations on inputs belonging to two different
arithmetic types. When dealing with such types, we need to convert one of
them into the same type as the other. In this chapter, we will learn all about
these conventions and rules to arithmetic types of conversions.

However, be mindful when going through this chapter, as you will often find
yourself dealing with different data types (especially arithmetic). In such
cases, it is important to know how to deal with them. Moreover, data type
conversions are a very important and very fundamental skill when it comes to
C++ programming. This is because big programming projects often involve
huge amounts of data streams from different sources and are very intricately
intertwined. This means that the inputs and outputs of such a complex
program begin to form an ecosystem of their own as they are used and reused
by different classes, objects, and functions. As such, it is not always the case
that such data being circulated through the program is going to be the correct
type. This is why implementing data type conversions is very important to
allow the program to work efficiently.

In this chapter, we will chiefly learn about implicit type conversions and
briefly discuss some additional type conversions at the end of this chapter.

Implicit Type Conversions
Before we go into the main discussion, we need to set up the context. The
following figures that have been shown below highlight the integer
promotion and hierarchy of int type respectively:

 203

(Integer Promotion)

 204

(int type hierarchy)

In many of the C++ programs, we will occasionally see a single expression
containing different arithmetic types. This mixed-up arithmetic types within
the same expression mean that the operands of the corresponding operator
belong to the different types that have been highlighted in the expression. The
reason why this does not cause an error in the program while it tries to
perform the corresponding operation is due to the compiler performing an
implicit type conversion by itself.

In an implicit type conversion, the requirement of the operation which needs
to be performed is first considered. This means that we first check the type
needed for the operation to proceed. This type that is determined is a
common ground between the two different types between which we are

 205

performing the implicit type conversion. Once a common type through which
we can perform the required operation is decided, the values for both
operands are assigned this type.

A general rule in implicit type conversion is that a ‘smaller’ type is the one
which is subject to conversion. The smaller type is generally converted to the
larger type of the two operands. However, there is an operator that is exempt
from this rule, and this operator is the assignment operator. We will discuss
the assignment operator in the upcoming sections of this chapter in detail.

If an arithmetic operation is performed, then the result obtained will be in the
same type as the one which was specified for the operation to be performed.
Note, however, that no arithmetic operation can be performed on one value,
there at least needs to be two values. On the other hand, regardless of the type
of operands used, a comparison expression will always be a bool type.

Now let’s talk about the two figures shown at the beginning of this section.

Integer Promotion
In this type of conversion, the main focus is to conserve the value of the
original type when it is converted into the int type. For instance, a bool type
containing a value which is either a True or False value, when converted
through integer promotion, will have its values changed to “1 for True” and
“0 for False”. In this way, the original value is preserved coming into the int
type.

Moreover, the integer promotion type conversion is performed on
expressions that are:

bool, short, signed char and unsigned char. Expressions
containing these types are converted to the int type.

If an expression is an unsigned short type, then it is converted to
the int type only if it is bigger than the unsigned short. If the int
is not greater than the unsigned short type, then it will be
converted to unsigned int as well as in other cases.

In short, C++ will always prioritize the int type values in operations that
involve calculations. For example, let’s say that we are comparing a char

 206

variable f and the value ‘b,’ these values will be first converted to the int type
before performing a calculation such as:

c < 'a'

Performing Some of the Usual Arithmetic Type Conversions
In some cases where we end up with operands that differ in arithmetic types
even after performing integer promotion type conversion, we will need to
perform an implicit type conversion using int type hierarchy. The diagram
highlighting this implicit type conversion has already been shown previously,
here’s a reminder of what hierarchy type conversion refers to.

When further performing an implicit type conversion using type hierarchy
after integer promotion, we mainly convert the two operands into a type that
holds the highest position in the hierarchy. When these two implicit type
conversions (integer promotion and type hierarchy) are performed, they are
collectively known as “Usual Arithmetic Type Conversions.” For example,

 207

carefully assess the type conversion shown below:

short size(512); double res, x = 1.5;
res = size / 10 * x; // short -> int -> double

In this example, we are performing two mathematical operations, i.e.,
division, and multiplication. The original type of the size variable is short.
Before we can perform the division operation in size/10, the type of the size
variable is promoted from short to int. Once we obtain the result of this
operation (which would be 50), the type of this result is further converted to
the double type by implicit type conversion of hierarchy. Once the type of
the result is converted to double, only then can we perform the multiplication
operation with x. This is because the value of x is of a double type, and the
resulting value of the integer division is of the int type.

Generally, ‘Usual Arithmetic Type Conversions’ are most often sought to be
performed on conditional operators such as (?:) and all of the binary
operations. However, the only condition specified for the Usual Arithmetic
type conversions is that the corresponding operands should be of the
Arithmetic type.

Now let’s discuss a few cases where we can apply the Usual Arithmetic Type
Conversions.

1. Converting Signed Integers

As we know that an integer can refer to either a positive number or a negative
number, hence we will need to address both states of signed integer
conversions. The figure shown below accurately demonstrates and elaborates
on the conversion of a positive number.

 208

For the conversion of negative numbers (integers), for instance, -10, we first
need to calculate this binary number’s bit pattern and then generate a
corresponding binary complement. This process has been demonstrated
below:

It is important to remember that the interpretation of the value of a negative
number is subject to change if the type is unsigned. In the following sections,
we will discuss the varying procedures for type conversions relative to
specific types.

2. Conversion of an Unsigned Type to a Larger Integral Type

For converting an unsigned type to a larger integral type, we will need to

 209

perform a process known as ‘Zero extension.’ In zero extension, we take the
number that we want to convert and calculate its bit pattern. Once the bit
pattern has been calculated, we simply expand the bit pattern to make it
match the type in which it is being converted. This is done by simply adding
zeroes to the bit pattern from the left-hand side. In other words, the zero
extension process involves the expansion of a number’s bit pattern by adding
zeroes to it, to make its size match the destination type. For example,

unsigned char to int or unsigned int

3. Conversion of a Signed Type to a Larger Integral Type

First, we will talk about the case where the new type is also signed. To
represent signed integers, we need to generate a binary complement of the
corresponding numbers. To preserve the original value of the numbers in
such cases, we need to perform a process known as ‘Sign extension.’ In the
sign extension process, we expand the integer’s original bit pattern by
padding the sign bit from the left direction. For example

char to int, short to long

In this way, the bit pattern is expanded to match the length of the destination
type. This process has also been depicted in the figures shown previously.

Now let’s talk about the scenario where the new type is unsigned. When
dealing with such integers, the original value of the negative number cannot
be preserved or retained. However, if the type in which we want to convert
the number has a bit pattern that is of the same length, then the bit pattern is
retained as there is no need to perform bit pattern extensions. But even if the
bit pattern is retained, this does not mean that it will be interpreted the same
way. In such cases, the sign bit will become insignificant, i.e., it will lose its
significance. So, if the type convert destination is longer than the original
type, then a sign extension is performed to generate a new bit pattern, and
this bit pattern is then interpreted as unsigned. For example

char to unsigned int, long to unsigned long

4. Conversion of an Integral Type to a Floating-Point Type

In this type of conversion, the original value of the number is preserved while

 210

being converted into a floating-point number featuring an exponent.
However, there are cases where the original number may be rounded-off
during conversion. This is evident when converting a value of the long or
unsigned long type to a float type value. For example.

int to double, unsigned long to float

5. Conversion of a Floating-Point Type to a Bigger Floating-Point
Type

The core process remains the same; we are simply converting the float type
to a double type or the double type to an even larger type, such as the long
double type, as shown below.

float to double, double to long double

Throughout this type of conversion, the original value of the number is
retained.

Implicit Type Conversions with Assignment Operators
Even if we are not familiar with assignment operators, everybody has come
across these operators when exploring programming. We have even used
assignment operators in the C++ programs shown in this book. An
assignment operator allows you to assign a value to a variable. There are
several shorthands and operands of this tool in programming, but the most
common one is the equal sign (=).

In this section, we will be discussing how implicit type conversions can be
performed during assignments. You might find it interesting that during
assignments, arithmetic types can also be brought into the process. In a sense,
the compiler acts as a mediator balancing out the left and right-hand sides of
the assignment operands. In other words, the value’s type on the right-hand
side of the assignment operator is adjusted to match the value’s type on the
left-hand side of the assignment operator.

However, not all assignments are as simple as x = 2. Assignments can also
have multiple statements (including many calculation operations, etc.) and a
complex structure. Such assignments are termed as ‘compound assignments.’
Hence, in compound assignments, the process is carried out by first dealing

 211

with the required calculations using the general arithmetic type conversions.
Once that has been dealt with, then the type conversion is performed.

Regardless, there are two particular scenarios out which a programmer will
most likely face one during type conversions in assignments. These have
been listed below:

1. In an assignment, if the variable’s type is seen to be higher or
bigger than the type of the value to which it is supposed to be
assigned, then the value’s type must be promoted to match the
variable’s type. For this type of conversion, we follow the rules
that are defined in the Usual Arithmetic Types Conversion
process. For example:

int i = 100;
long lg = i + 50; // Result of type int is

// converted to long
2. In an assignment, if the type of the value is seen to be higher or

bigger than the type of the variable to which it is being assigned
to, instead, of promoting the variable’s type, we must demote the
value’s type accordingly. Depending on individual
circumstances, the following procedures cover most of the
encounters in this type of conversion during assignments:

a. For converting an integral type to a smaller type, we must
consider the two different cases for signed and unsigned int type
conversions. Firstly, for converting an int type to a smaller type,
we simply eliminate the most significant byte(s) from the bit
pattern. If the resulting type is also unsigned, then the resulting
bit pattern will be interpreted as unsigned. If the resulting type is
signed, then the bit pattern will be simply interpreted as ‘signed.’
However, the original value of the number will only be retained
if the new type is capable of representing it. An example of this
process has been shown below:

long lg = 0x654321; short st;
st = lg; //0x4321 is assigned to st.

 212

However, if we are converting an unsigned type into a signed type, then the
original bit pattern remains the same as before, and this bit pattern is simply
interpreted as ‘signed.’ For example

int i = –2; unsigned int ui = 2;
i = i * ui;
// First the value contained in i is converted to
// unsigned int (preserving the bit pattern) and
// multiplied by 2 (overflow!).
// While assigning the bit pattern the result
// is interpreted as an int value again,
// i.e. –4 is stored in i.

b. For converting a floating-point type to an integral type, we
simply need to remove the decimal portion of the floating-point
value. For instance, if we want to convert the floating-point
number 2.9, then we simply remove the .96 part and round off
the original number. Rounding off can be done by simply adding
0.5 to the floating-point number if it is positive and subtracting
0.5 from the floating-point number if it is negative. So, in the
case of this example, by removing the decimal portion, we are
left with the integer 2. However, after rounding it off (2.9 + 0.5),
then the floating-point value is converted to an integer 3.
However, the result of this type of conversion can be
unpredictable at times, especially when the resulting value of int
type is either too large or too small for the type itself. This is
evident when converting a negative floating-point type value to
an unsigned int type. For example

double db = –4.567;
int i; unsigned int ui;
i = db; // Assigning –4.
i = db – 0.5; // Assigning –5.
ui = db; // –4 is incompatible with ui.

c. We will now discuss the case where a programmer wants to
perform type conversion on a value belonging to the floating-
point type into a smaller type. In such a type of conversion, there

 213

can be two results. One is that if the value of the floating-point
number corresponds to the specified range of this destination
type, then the original value of this number will be preserved at
the cost of the number’s accuracy. On the other hand, if the
floating-point number is outside the range of the destination type
(i.e., the value can be too large for the type to be able to
represent it), then the end result will be unpredictable. An
example of the conversion of a floating-point type to a smaller
type has been shown below:

double d = 1.23456789012345;
float f;
f = d; // 1.234568 is assigned to f.

Some Other Type Conversions
Until now, we have chiefly discussed implicit type conversions, and while
their use is more prevalent for fundamental C++ programming, there are
other types of conversions as well that are worth discussing. In this section,
we will talk about implicit type conversions in terms of function calls and a
new type of conversion, which we haven’t discussed up till now, Explicit
type conversion.

Using Implicit Type Conversions in Function Calls
We have already discussed function calls in the 2nd chapter of this book, if
there is something that you do not understand in this section about function
calls, please refer to the topic that addresses this concept.

Implicit type conversion in a function call actually works pretty similarly to
how implicit type conversions in assignments are processed. This is because,
in function calls, the arithmetic types of the arguments being passed to the
function are converted into the types specified in the function prototype. In
this way, the parameters of the prototype function are followed and retained.
For example:

void func(short, double); // Prototype
int size = 1000;
// . . .
func(size, 68); // Call

 214

In this example, you can see that the func() function has two arguments
whose parameters have already been defined in the function prototype at the
beginning. These arguments are supposed to be of short and double types.
However, in the actual function call, you can see that the arguments being
used are both int types. In such cases, implicit type conversion is performed
to convert the int value size to a double type, and the integer 68 is converted
to a double type value. Note that when an implicit type conversion takes
place for this specific example, the compiler will issue a warning. The main
purpose of this warning is to remind the user that since the int type is being
converted to a short type, there are chances for data loss. To avoid such
warnings, we have the option of performing an explicit type conversion.

Explicit Type Conversion
Just as the name suggests, in this type of conversion, we explicitly convert
the expression types by leveraging the functionality of the cast operator
(type). In other words, we use the cast operator to perform an explicit type
conversion. The syntax for this has been shown below

(type) expression

According to this syntax, we are directly converting the value assigned to the
expression to a specified type. As such, explicit type conversion is also
commonly referred to as ‘casting,’ even the operator is named after this
process.

Since the cast operator (type) is, by nature, a unary operator, it holds a
higher level of precedence than the traditional arithmetic operators in C++.
Let’s understand explicit type conversions with the help of an example.

int a = 1, b = 4;
double x;
x = (double)a/b;

In this example, we can see that the value assigned to the variable ‘a’ has
been explicitly converted from an int type to a double type. Explicit type
conversion wasn’t performed on the other variable because it’s type would
automatically be converted to match the double type by the compiler through
implicit type conversion. After the implicit type conversion is performed, the

 215

floating-point division operation is then carried out by the compiler, and the
exact result obtained is 0.25. This value is finally assigned to the x variable
by using the assignment operator. Note that if we did not perform casting in
this example, then the program would have performed a simple integer
division operation, and the result it would have given would be 0, which is
obviously incorrect.

The cast operator discussed in this section for explicit type conversion is for
general purposes. In C++, there are other operators (for example,
dynamic_cast<>) available as well that can be used for explicit type
conversion, but those are used for specific cases only.

 216

Chapter 7

The Use of References
and Pointers in C++

In this chapter, we will learn about references and pointers, their use as
parameters as well as the values returned by functions in programming. The
discussion of references and pointers will mainly focus on passing by
references and read-only access arguments.

Defining References
A variable or object that already exists in a specific location in the memory is
given another name or alias, which is its reference. This variable can thus be
accessed by using its original name or reference. Defining a reference for an
object does not mean that it’ll occupy extra memory in the program. The
defined references execute operations along with the object to which it refers.
A particular use of references is that they are used as parameters which
process the result of functions and return their values.

Defining References
References are denoted by the ampersand symbol &, and so T& would be the
reference to type T.

Example: float x = 10.7;

float & rx = x; // or: float & rx = x;

 217

Here it is clearly shown that rx is used as another way to express the variable
x, and this type of reference is called the “reference to float.”

Example: --rx; // equivalent to --x;

In the above example, it is elaborated that the operations involved with rx
will also affect the variable x. The ampersand character & used for indicating
references is related only to declarations and is not the same as the one in the
address operator that is &!. The address operator is used to evaluate and
return the address of any object. If it is used as a combination with the
reference, it ends up returning the address of the object with a reference.

Example: &rx // Address of x, thus is equal to &x

When defining the reference for an object, it must be initialized before the
declaration and cannot be modified at a later stage. So, it is impossible to
reuse a reference to define a different variable afterward.

Read-only references
If a constant variable is to be defined for a reference, a const keyword should
be used so that the modification of the object by the reference can be avoided.
However, a non-constant object can also have a constant keyword reference.

Example: int a; const int & cref = a; // ok!

The reference ‘cref ‘is a read-only identifier that gives read-only access to a
variable such as “a” in the preceding example.

As compared to the normal references, a read-0nly identifier can be
initialized by a constant.

 218

Example: const double& pi = 3.1415927;

The constants do not occupy the memory, and hence, the temporary objects
generated by the compilers are referenced.

References as Parameters
A variable or object that already exists in a specific location in the memory is
given another name or alias, which is its reference. This variable can thus be
accessed by using its original name or reference. Defining a reference for an
object does not mean that it’ll occupy extra memory in the program. The
defined references execute operations along with the object to which it refers.
A particular use of references is that they are used as parameters which
process the result of functions and return their values.

References as Return Values

Returning references
When a function’s return type is used as a reference type, the function call
will represent an object and will act as an object as well.

Example: string& message() // Reference!
{

static string str = " Today only cold cuts! ";
return str;

}

In the function shown above, the reference is returned to a static string, which
is not a normal auto variable present in the function message (). It would be a
critical error to declare it as such because then the string would be destroyed
after the program leaves the corresponding function, and the reference would
then refer to an object that does not exist any longer. Thus, it is important to
keep in mind that after leaving a function, the object in which the return value
references must not be destroyed.

Calling a Reference Type Function
The function message () is defined as the type that implies a reference to
string, and so string type object is represented by the calling message ().

 219

Some valid statements with the function message () are:
message() = "Let's go to the beer garden!";
message() += " Cheers!";
cout << "Length: " << message().length();

Judging by the example given, the object which is referenced by the function
call has the first new value assigned to it. After a new string is appended, the
string is then written as an output in the third statement.

By defining the function type as a read-only reference, the modification of
the object that is referenced can be prevented.

Example: const string& message(); // Read-only!

When the operators are overloaded, the type of reference chosen is the return
type. An appropriately chosen function carries out the operations an operator
executes when working with a user-defined type. Although overloading
operators will not be discussed here, some examples of standard class
operators will be provided.

Expressions with Reference Types

Example: Operator << of class ostream
cout << "Good morning" << '!';

All the expressions found in C++ are of a specific type, and if the expression
is not void, they can give out a value as well. Expressions also belong to the
reference types.

The Stream Class Shift Operators
Some operators can return the reference value to an object such as the <<
operator, which is used for stream input and the >> operator, which is
specific to stream output.

Example: cout << " Good morning "

In this expression, the void types are not used, but instead, it is a reference to
the object cout and represents that object. Hence, the << operator can be used
on the expression repetitively.

 220

cout << "Good morning" << '!'

This statement or expression is equal to:

(cout << " Good morning ") << '!'

By order of precedence, the expressions involving << operators are composed
of the left.

Similarly to the << operator, the stream cin is represented by the expression
cin >> variable and can also be used repeatedly.

Example: int a; double x

cin >> a >> x ; // (cin >> a) >> x;

Other Reference Type Operators
The simple assignment operator = and compound assignments like += and *=
are also used as reference type operators and the operand located on their left
side receives the returned reference value.

Consider the following expression:

a = b or a += b

The variable “a” will be taken as the object and expression represent this
object “a.” This can also be possible for the objects of a class type that is
referred by an operator. But the available operators are specified by class
definitions, such as the example where assignment operators = and += are
defined in standard class string.

Example: string name ("Johnny ");

name += "Depp"; //Reference to name

It is possible to pass this expression as an argument to a function calling by
reference because it is the type that represents an object.

Defining Pointers
// pointer1.cpp
// Prints the values and addresses of variables.

 221

// --
#include <iostream>
using namespace std;
int var, *ptr; // Definition of variables var and ptr
int main() // Outputs the values and addresses
{ // of the variables var and ptr.
var = 100;
ptr = &var;
cout << " Value of var: " << var
<< " Address of var: " << &var
<< endl;
cout << " Value of ptr: " << ptr
<< " Address of ptr: " << &ptr
<< endl;
return 0;
}

The Output of the Sample Program
Value of var: 100 Address of var: 00456FD4
Value of ptr: 00456FD4 Address of ptr: 00456FD0

A program running efficiently usually does not manipulate the data and
simply accesses the addresses of the data in the program’s memory. Some
examples include the linked lists and trees in which the elements are
generated as they are needed during runtime.

Pointers
The concept of pointers is actually very simple and easy. By nature, pointers
are variables, but they’re not to be confused for any ordinary variable. These
special variables have a value stored within them that points to an object
while also detailing some of the object’s features as well, such as its address
and type. When we use a standard ‘Address Pointer’ (&) with an object, it
creates something like a road map whose destination points to the object
itself.

Example: &var // Address of the object var

In the above example, we can see a pointer (&) being used with a variable
‘var.’ Since we are using a pointer, this allows us to create a virtual mind map

 222

for the program to refer to when finding the details of the ‘var’ variable, such
as its address and its type.

Pointer Variables
The example shown above is using a pointer as a ‘constant.’ As we discussed
before, pointers can be used as variables as well. Defining a pointer variable
is actually pretty similar to defining a standard variable. The value that is
assigned to such a variable is the memory address of a particular object we
want to point to. An example has been shown below:

Example: int * ptr; // or : int * ptr;

In this example, we can see that we have a variable ‘ptr,’ which is of the int
type. Notice the use of an asterisk as well. This particular character is special
in defining pointer variables. When declaring this variable, the asterisk tells
us that the ‘ptr’ variable points to an int type object. We call this asterisk as
the ‘indirection operator.’

The type that can be assigned to a pointer variable also has a general form as
well. This general form is ‘T*”. The character T refers to a data type (for
instance, int, double, short, char, etc.), and you already know what the
asterisk does.

Example: int a, *p, &r = a; // Definition of a, p, r

So when declaring a ‘pointer variable,’ we need to specify an address as well.
The following example shows how to declare a pointer variable properly:

ptr = &var;.

References and Pointers
The similarity between references and pointers is that both refer to an object
that is stored in the memory. Pointers differ in the aspect that they are not just
an alias set for the object they reference but are individual objects with an
identity of their own. Although the address for the pointer is already made, it
can be changed by pointing it to a new address resulting in the pointer
referencing another object.

The Indirection Operator

 223

Using the indirection operator

Address and values of the variables x and px

Notes on Addresses in a Program
The memory space that each pointer variable occupies does not
depend on the type of object it refers to and is the same because
it only stores the address of every object. The pointer variables
on a 32-bit computer would typically occupy four bytes.

Logic addresses are used in the program, which is allocated to
physical addresses with the help of the system. In this way, the
management of storage can be made efficient, and memory
blocks not being used in the current time are swapped to the hard
disk.

When a valid address in C++ shows the value of 0, it indicates an
error because no address has the value 0. In the standard header
files, pointers use the symbolic constant NULL instead of 0, and
these pointers are called NULL pointers.

Using Pointers to Access Objects

 224

When a variable is pointing to an object, we can access this object by using
the asterisk (the indirection operator). But we should not confuse the variable
and the object with each other. ‘ptr’ is the variable, and ‘*ptr’ is the object.

Example: long a = 10, b, // Definition of a, b
*ptr; // and pointer ptr.

ptr = &a; // Let ptr point to a.
b = *ptr;

In the example shown above, we can see that the ‘ptr’ is pointing to a
variable ‘a.’ Also, notice that in the beginning, the value of ‘a’ is being
assigned to another variable ‘b.’ Hence, at the end, we can also substitute the
variable ‘b’ with ‘a’ as they both represent the same thing, i.e., the object ‘a.’

long *ptr;

The above expression means that ptr is long* type, which is a pointer to long.
Similarly, it can also be said that *ptr is a long type.

L-values
L-value in C++ is the type of expression that specifies a memory location to
identify an object. The L-value is derived from an assignment operator and
occurs in the compiler error messages. So, it is important that the left operand
in the assignment = operator always specifies an address stored in the
memory.

The expressions other than L-values, which cannot have a value assigned to it
appear only on the right side of the assignment operator = and are termed as
R-values.

In a statement, the variable would be the L-value, while constants and
expressions such as x+1 are the R-values. L-values are also returned as
results by using the indirection operators. Consider a pointer variable “p,”
then p and *p would both be L-values because *p is the object that variable
“p” points to.

Pointers as Parameters
The following program demonstrated shows the implementation of pointers

 225

as parameters.

Objects as Arguments
When a function is called, and an object is passed over as an argument to the
required function, the possible situation that may occur would be:

The function parameter is of the same type as the object which
was passed to it as the argument. Thus, the function that is called
receives a copy of the object (passing by value).

The function parameter is a reference that means the said
parameter is an alias for the argument. The function that is called
then manipulates the object which was passed to it by the calling
function (passing by reference).

In the passing by value, it is clear that the function that was passed over the

 226

argument cannot manipulate it, but it is possible when using a ‘passing by
reference.’ On the other hand, a third situation related to passing by reference
is passing the pointers to the required function.

Pointers as Arguments
When a function parameter is declared as a pointer variable, it is possible to
declare a function in a way that an address can be passed as an argument to
the function.

For example, by using the statement:

Example: long func(int *iPtr)

{
// Function block

}

The parameter iPtr is declared as an int pointer, so the address of an int value
can be passed to the function func () as an argument.

A function can access and manipulate an object with the help of the
indirection operator only if it knows the memory address of that object.

The function swap () shown in the sample program is used to swap the values
given by the variables x and y within the calling function. The addresses of
the variables &x and &y are already passed to the function as arguments,
which enables the function to access these variables and manipulate them.

The swap function () contains two parameters “p1” and “p2” which are
declared as float pointers. These pointers are initialized with the addresses of
variables x or y by the given statement.

swap (&x, &y);

By manipulating the expression *p1 and *p2, the function can access variable
x and y available in the calling function. In this way, their values can be
exchanged.

 227

Chapter 8

The Basics of File Input
and File Output in C++

In the first few chapters of this book, we briefly discussed the iostream
library, also known as the library, to feature sequential file access stream
classes. In this chapter, we will build our discussion on this fundamental
concept and explore it in more detail and depth. Understanding file streams
are very important in programming as they are a gateway for practicing
portable file handling techniques. Moreover, file operations are one of the
very foundational tasks on which C++ programs are built upon. Just as how
functions, classes, objects, and variables all come together to make up the
basic structure of a program, file streams provide a structural representation
of storing data within a program to an external storage device. This is a very
important process because a program primarily stores its data in the volatile
system memory. Hence, when we close a program, the data in this volatile
storage is immediately lost. That’s why we need certain techniques to not
only output data from a program to permanent storage but also input data into
the program as well.

The Basic Concept of Files
Before we discuss file streams, we must first understand the concepts of file
operations and file positions.

File Operations
Just as how lone characters or an entire string of characters can be displayed
on a screen as an output, such characters can also be written to a text file as
well as representing this data. Now let’s talk a bit about records. Record is an
umbrella term for referring to a file that houses data forming logical units.
Generally, records are stored in files. This is achieved by the write

 228

operation, which handles the process of virtually storing a specified record
to a specified file. If the file already has an existing record, the write
operation either updates the already present record or simply adds in a new
record to the file alongside the pre-existing one. When we want to access the
contents of the record stored in a file, we are issuing a read command which
takes the contents of the record and copies it to the program’s defined data
structure.

Similarly, objects can also be stored in the permanent storage of the system
instead of the volatile storage. However, the process isn’t entirely the same as
storing and reading record files, as we need to do more than just store the
internal data of the object itself. When storing objects, we need to make sure
that the object, along with its data, is accurately reconstructed when we issue
a read command. For this purpose, we not only need to store the object’s type
information, but we also need to store the included references to other objects
as well.

It is important to keep in mind that all of the external storage devices (for
instance, a hard disk) have a block-oriented storage structure. This block-
oriented nature of storage means that the data is stored into the device in
blocks, and the sizes of these blocks are always multiples of 512 bytes.

Efficient and simple file management simply refers to the concept of taking
the data you need to store and transferring it to the temporary storage of the
main memory, which is also known as ‘file buffer.’ Here’s a visual
representation of this concept.

 229

File Positions
In a C++ program, a file is interpreted as a large array of bytes. Keeping this
in mind, the structural elements of this file is solely the responsibility of the
programmer to handle. How much flexibility the file’s structure provides the
programmer is dependent on how he structured the file itself.

In a file, there are many characters represented by bytes. Each byte in a file
holds a specific position. For instance, the first byte of the file will be
assigned the position 0, the next byte will be assigned the position 1 and this
trend continues. As a consequence of this feature of files, a very important
term arises, which is known as ‘current file position.’ This refers to the
position that will be assigned to the upcoming byte, which is going to be
written or read from the file. So, whenever a new byte is added to a file, the
current file position is displaced positively (increased) by the value of 1.

In sequential access, things are a little different. As we know that the word
‘sequential’ means ‘in a sequence or following a sequence,’ the data that is
being written or read to file is done in a fixed and defined order. In other
words, there is a defined sequence in which the programmer can read or write
data, and it is not possible to deviate from this sequence. So if you execute
the very first read operation on a file, the program will begin reading the file
from the very beginning. This means that if you want to access a specific
piece of information located within the file, you will have to go through the
entire sequence, i.e., start from the beginning and scrolling through the

 230

contents of the file until you find what you’re looking for. In terms of write
operations, they have a little more freedom compared to read operations as
they can easily create new files, overwrite existing files, or add new data to
an existing file.

In contrast, random file access means that we can access or read any part of
the file without having to follow through a sequence at any given time. This
allows for instantaneous access to the contents of the file. The concept of
providing easy access to files refers to this technique of random access, and
programmers have the freedom of specifying current file positions per their
needs.

File Stream Classes
In C++, there are several classes standardized for file management purposes.
These classes are commonly referred to as ‘file stream classes’ and offer easy
file handling functionality for the program. Here’s a flow-chart highlighting
some of the most commonly used file stream classes and their hierarchy
relative to each other.

 231

Although, as a programmer, you need to consider the file management
classes and implement them properly, what you don’t need to worry about
regarding file management during programming is buffer management or
even the system specifics.

In C++, the major file stream classes have already been standardized,
allowing programmers the freedom and capability of developing portable
C++ programs. By portable, we do not mean easy to carry around like a
laptop or a smartphone. Portable in programming means that this particular
program can be easily ported over to other platforms such as Windows or
Unix. Hence, standardized file stream classes make it easier for programmers
to develop programs that can be easily ported to other platforms. All it takes
is a simple recompilation of the program for each platform it’s being used on.

 232

File Stream Classes Belonging to the iostream Library
If you refer to the flow-chart shown in the previous section highlighting the
hierarchy of the file stream classes, we can see that this family of classes
have something known as ‘base classes.’ A base class is a class from which
other classes are derived. In other words, we can understand base classes by
remembering them as ‘parent classes’ from which other classes can be
created; however, ‘base class’ is the official programming term. We have
already used some of these base classes in the programs demonstrated in this
book as well. Here’s an explanation of what class has been derived from
which parent class:

istream is the parent class for the ifstream class. In other words,
the ifstream class has been derived from the istream class. The
purpose of the ifstream class is to allow the operations of file
reading.

The ostream class is the parent class for ofstream. In other
words, the ofstream class is created from the ostream class, and
its purpose is to support writing operations for files.

The iostream class is the parent class for fstream. In other
words, the fstream class is created from the iostream class, and
its purpose is to support operations such as reading and writing
for files.

So an object that is part of the file stream class is referred to as a ‘file
stream.’ The standardized file stream classes are defined in a header file
known as fstream, and to use these classes in a program, we must add this
header file into the program using the #include directive.

Functionalities of the File Stream Classes
Whenever we create a file stream class from a base class, the newly derived
class inherits all of the functionalities of its parent class as well. In this way,
class functionalities such as methods, operators, and even manipulators for
cin and cout are available to these classes as well. Hence, every file stream
class comes with the following functional features:

Methods that have been defined for operations such as non-
formatted reading or writing specifically for single characters

 233

and data blocks.

Operators (‘<<’ and ‘>>’) that are used for formatted read and
write operations to or from files.

The methods and manipulators that have been defined for
formatting character sequences.

The methods that have been defined for tasks such as state
queries.

Creating Files through a C++ Program
Let’s see a program demonstrating the creation of file streams and then break
it down and understand the fundamentals of this concept.

// showfile.cpp
// Reads a text file and outputs it in pages,
// i.e. 20 lines per page.
// Call: showfile filename
// --
#include <iostream>
#include <fstream>
using namespace std;
int main(int argc, char *argv[])
{

if(argc != 2) // File declared?
{

cerr << "Use: showfile filename" << endl;
return 1;

}
ifstream file(argv[1]); // Create a file stream

// and open for reading.
if(!file) // Get status.
{

cerr << "An error occurred when opening the file "
<< argv[1] << endl;

return 2;
}

 234

char line[80];
int cnt = 0;
while(file.getline(line, 80)) // Copy the file
{ // to standard

cout << line << endl; // output.
if(++cnt == 20)
{

cnt = 0;
cout << "\n\t ---- <return> to continue ---- "

<< endl;
cin.sync(); cin.get();

}
}

if(!file.eof()) // End-of-file occurred?
{

cerr << "Error reading the file "
<< argv[1] << endl;

return 3;
}
return 0;

}

Opening a File
Before we can proceed to manipulate a file in a program, we first need to
open and access it. To open a file, we need to perform two fundamental
actions:

State the name of the file along with its directory or path where it
is located on the system’s permanent storage.

Define a file access mode that corresponds to the file we want to
open.

If the file we want to open does not have a directory or a path that is stated
explicitly, it means that the file should be in the current directory of the
program. The file access mode specifies the read and write permissions
granted to the user for the file. This means that if the file access mode is
defined as read-only, then we can only access the contents of the file but

 235

cannot modify it. When a program is terminated, all the open files that are
associated with it are closed as well.

Defining the File Stream
When we create a file stream, we can also open the file at the same time as
well. To do so, all we have to do is state the file’s designated name. The
program demonstrated at the beginning of this section uses default values for
defining the file access mode.

ifstream myfile("test.fle");

In this statement, since we have not specified any particular directory or path
for the file ‘test.file,’ this tells the program that the file must be located in the
same directory. The file is opened by the constructor of the ifstream class to
perform a read operation. Once a file has been opened in a program, the
current file position is specified at the start of the file.

Also note that if you specify a write-only file mode access, then it’s no longer
necessary for the actual file to even exist in the system. If there is no file
corresponding to the file name for write-only access mode, then the program
will create a new file with this specified name. However, if a file with the
name specified actually exists, then the write-only access mode will delete
this file.

In this line of code

ofstream yourfile("new.fle");

We are creating a new file with the name of ‘new.fle.’ Once this file has been
created, the program opens the file to perform the write function. Just as we
recently discussed, if the directory has an existing file with the same name,
then it will be first deleted before the new file is created.

We can also create a file stream which does not necessarily refer to any
particular file. This file can be opened later by using the open() method. For
example

ofstream yourfile;
yourfile.open("new.fle");

 236

These two statements perform the same task as the “ofstream
yourfile("new.fle");” line. To elaborate, the open() method opens the file by
using the same set of values, which are also used by the default constructor
for the file stream class.

Usually, fixed file names aren’t always used by experienced programmers in
every instance. If we analyze the program shown at the beginning of this
section, we will see that the name of the file we want to manipulate is stated
in the command line instead. If we do not provide a suitable file name for the
program to operate on, then it will simply generate an error message and
close. Another alternative route of defining file names is to leverage the
interactive user input feature in programs.

Modes when Opening Files
In this section, we will discuss open modes that can be used with constructors
as well as the open() method. But before we dive into this concept, let’s first
understand the different flags for the open mode of a file. A table showing the
open mode flags along with their corresponding functions have been
displayed below:

Flag Function

ios::in Opens an existing file for input

ios::out Opens a file for output. This flag implies
ios::trunc if it is not combined with one
of the flags ios::in or ios::app or ios::ate

ios::app Opens a file for output at the end-of-file

ios::trunc An existing file is truncated to zero
length

ios::ate Open and seek to end immediately after
opening. Without this flag, the starting
position after opening is always at the
beginning of the file

ios::binary Perform input and output in binary mode.

 237

(Explanation of the flags referenced from ‘A Complete Guide To
Programming in C++ by Ulla Kirch-Prinz and Peter Prinz)

It is important to note that all of the flags mentioned above are already
defined in the ios base class (which is a parent class to all other file stream
classes). Moreover, all of these file stream classes are of the ios::openmode
type.

The Default Settings of an Opened File
Whenever we open a file, the default values used by the constructor of the
file stream class and the open() method are:

Class Flags

Ifstream ios::in

Ofstream ios::out | ios::trunc

Fstream ios::in | ios::out

If you want to open a file without the default values assigned to its
constructor and open() method, then we will need to supply the program with
two things; the file name and the open mode. This is an absolute requirement
to open a file that already exists in the directory in a write-only access mode
without deleting the original file.

Understanding the Open Mode Flags
We can pass an additional argument to the open mode alongside the file name
to both the constructor of the file stream class as well as the open() method.
This is because the open mode of the file is dependent on flags.

In programming, a flag is represented by a single bit. If the flag is raised, then
it will have a ‘1’ value, and if the flag is not raised, then it will have a ‘0’
value.

Another important element in flags is the bit operator “|.” This operator is
commonly used to combine different flags. However, in all of the cases, one
of the two flags, ‘ios::in’ or ‘ios::out,’ should be stated. This is because if the
ios::in flag is raised when opening the program, it tells the system that the file
already exists and vice versa. If we do not use the ios::in flag when opening a

 238

file, the program will create this file if it doesn’t exist in the directory.

In the following statement:

fstream addresses("Address.fle", ios::out | ios::app);

We are opening a file by the name of ‘Address.fle,’ and if it does not exist
within the directory, then it will be created. According to the flags and file
stream class being used in this statement, the file is being opened for a write
operation at the end of the file. After the completion of each write operation,
the file will grow automatically.

There’s also an update mode which allows us to open a file to append data
into its existing contents or update the existing data and is often used in
random file access mode. This is done by using the default mode for the
fstream class, which is (ios::in | ios::out), allowing the user to open a file that
already exists for read and write operations.

Error Handling
Encountering errors when opening files is a common phenomenon. This can
be due to various reasons, with the most common ones being that you either
don’t have the required privileges to access the file or the file simply does not
exist. To handle any error that may occur, we implement a flag failbit that
monitors the state of the operation. This flag is from the base class ios, and if
an error does occur, this flag is raised. Querying the flag is also very simple.
We can either use the fail() method to directly query the flag or check the
status of the file stream by using the if conditional to query the flag
indirectly. For example

if(!myfile) // or: if(myfile.fail())

The failbit flag is also raised when an error occurs in the read or write
operations. However, not every error indicates a critical malfunction or of
some sort. For instance, if the program encounters a read error, then this may
mean that the program has read through all the file’s contents, and there’s
nothing left to read. In such cases, we identify the nature of the read error
properly by using an end-of-file method, which is actually referred to as
eof(). We can separate such types of normal read errors from other types of
hindering read errors by querying the eof bit as shown below:

 239

if(myfile.eof()) // At end-of-file?

Closing Files
It is recommended that whenever we are done working with files or
completed the file manipulation tasks, we must always close the files. The
effectiveness of this practice is widely supported due to two main reasons:

If a program is not properly terminated, then the file opened by
the program may experience data loss.

A program is not capable of opening numerous files at the same
time; there’s a limit to the files that can be opened
simultaneously. As such, we should properly close the files we
are not working with to avoid any errors in the program.

A program that is properly terminated will automatically close any open files
that are associated with it. However, there are cases where a program is not
properly terminated. To avoid those unforeseeable cases, it is important
always to close the files directly once they are not being used.

Here’s a program that demonstrates the concepts discussed up till now.

// fcopy1.cpp : Copies files.
// Call: fcopy1 source [destination]
// --
#include <iostream>
#include <fstream>
using namespace std;
inline void openerror(const char *file)
{

cerr << "Error on opening the file " << file << endl;
exit(1); // Ends program closing

} // all opened files.
void copy(istream& is, ostream& os); // Prototype
int main(int argc, char *argv[])
{

if(argc < 2 || argc > 3)
{ cerr << "Call: fcopy1 source [destination]"

 240

<< endl;
return 1; // or: exit(1);

}
ifstream infile(argv[1]); // Open 1st file
if(!infile.is_open())

openerror(argv[1]);
if(argc == 2) // Just one sourcefile.

copy(infile, cout);
else // Source and destination
{

ofstream outfile(argv[2]); // Open 2nd file
if(!outfile.is_open())

openerror(argv[2]);
copy(infile, outfile);
outfile.close(); // Unnecessary.

}
infile.close(); // Unnecessary.
return 0;

}
void copy(istream& is, ostream& os) // Copy it to os.
{

char c;
while(is.get(c))

os.put(c); // or: os << c ;
}

The close() And is_open() Methods
Notice that each of the file stream classes used in the program demonstrated a
method defined as a void type. This is the close() method, and as its name
suggests, it’s purpose is to terminate the file which is occupied by the stream
in which the method is used. For example:

myfile.close();

Even though the file on the specified file stream is terminated, the file stream
itself is left untouched. This means that by closing a file on a particular file
stream, we can open another file immediately on the same stream. To check
whether a file is currently occupying a file stream, we use the is_open()

 241

method to do so. For instance,

if(myfile.is_open())
{ /* . . . */ } // File is open

The exit() Function
When using the global exit() function, files that are open and being accessed
by the program are closed. The main reason for using this global terminating
function as opposed to the close() method is that we are not only closing the
open files, but we are also terminating the program itself as well. In this way,
the program is properly closed, and a status error code is returned to the
corresponding calling process. The prototype of the exit() function is shown
below:

void exit(int status);

The reason for returning a status error code to the calling process is because
the calling process evaluates the status. Usually, the calling process in such
cases is the command-line interpreter itself, for example, Unix shell. When a
program is successfully terminated without any problems, it returns an error
code ‘o’. Similarly, in the main() function, the two statements return n and
exit(n) are equivalent to each other.

In the program shown in the next section, you will see a program that is
instructed to copy the contents of a file to and paste it to a destination file.
The file is stated in the command line, and the program proceeds to copy it. If
the user does not specify the destination file, then the original file is simply
copied to the program’s standard output.

Read and Write Operation on Blocks
All of the file stream classes are capable of utilizing the public operations
that have been originally defined in their parent classes, otherwise known as
base classes. Hence, by using appropriate file stream classes for a program,
we can easily perform write operations for transferring formatted or
unformatted data to a specified file. Similarly, we can also perform a read
operation to go through the data contents of the file in either entire blocks at a
time or one character at a time.

Here’s a program demonstrating the use of read and write operations for

 242

blocks of data.

// Pizza_W.cpp
// Demonstrating output of records block by block.
// ---
#include <iostream>
#include <fstream>
using namespace std;
char header[] =
" * * * P I Z Z A P R O N T O * * *\n\n";
// Record structure:
struct Pizza { char name[32]; float price; };
const int MAXCNT = 10;
Pizza pizzaMenu[MAXCNT] =
{

{ "Pepperoni", 9.90F }, { "White Pizza", 15.90F },
{ "Ham Pizza", 12.50F }, { "Calzone", 14.90F } };

int cnt = 4;
char pizzaFile[256] = "pizza.fle";
int main() // To write records.
{

cout << header << endl;
// To write data into the file:
int exitCode = 0;
ofstream outFile(pizzaFile, ios::out|ios::binary);
if(!outFile)
{

cerr << "Error opening the file!" << endl;
exitCode = 1;

}
else

{
for(int i = 0; i < cnt; ++i)

if(!outFile.write((char*)&pizzaMenu[i],
sizeof(Pizza)))

{ cerr << "Error writing!" << endl;
exitCode = 2;

 243

}
}
if(exitCode == 0)
cout << "\nData has been added to file "

<< pizzaFile << "\n" << endl;
return exitCode;

}

Formatted and Unformatted Input and Output
In the programs demonstrated up until now in this chapter, we have seen the
use of some important methods get(), getline() and put() to instruct the
program to perform read or write operations to and from text files. Data that
is formatted, such as numerical values, require the ‘<<’ and ‘>>’ operators
for input and output. In addition, we also need specific formatting methods
and proper manipulators to handle formatted data. For example:

double price = 12.34;
ofstream textFile("Test.txt");
textFile << "Price: " << price << "Dollar" << endl;

In these lines of code, we can understand that the actual test.txt file itself will
have a line that will correspond to “Price ..” and this line will match exactly
with the output shown on the screen.

Transferring Blocks of Data
Transferring entire data blocks is mostly done by issuing a write operation
through the write() method. This method belongs to the ostream class and
transfers the number of bytes specified by the user from the system’s main
memory to the destination file. The prototype of this method has been shown
below:

ostream& write(const char *buf, int n);

Since the write() method gives a reference value to the corresponding file
stream, we can use this to check if the write operation completed successfully
or if it wasn’t able to transfer the total bytes of data completely. The
following statements show how this can be done:

if(! fileStream.write("An example ", 2))

 244

cerr << "Error in writing!" << endl;

When the program tries to perform a write operation to transfer the first two
characters, “An,” then it will issue a warning if the write operation encounters
an error; otherwise, everything will go smoothly.

We can also perform a read operation by using the read() method belonging
to the istream class to read the blocks of data within a specified file. When a
read operation is performed, the read() method takes a data block from the
source file and transfers it to the buffer memory of the program to read it.
Once the data block has been read, the buffer memory of the program is
cleared, and the next data block is transferred until we reach the end-of-line
of the file. The prototype method of the read operation is shown below:

istream& read(char *buf, int n);

It is important to note and remember that the read() and write() methods are
primarily used with records that are of a fixed length. Moreover, the data
block we want to transfer can have more than one record as well. Last but not
least, the buffer in the system’s main memory can have two possible
structures: a simple structure variable or an entire array whose elements are
part of the structure type itself. When accessing the main memory for a data
block, we must specify the address referring to the specific area of memory in
which the data block is found to the argument (char *). The implementation
of the read() and write() methods have been demonstrated in the following
program:

Creating a Class Account
// Class Account with methods read() and write()
// ---
class Account
{

private:
string name; // Account holder
unsigned long nr; // Account number
double balance; // Balance of account

public:

 245

. . . // Constructors, destructor,
// access methods, ...

ostream& Account::write(ostream& os) const;
istream& Account::read(istream& is)

};

Implementing the read() and write() methods.
// write() outputs an account into the given stream os.
// Returns: The given stream.
ostream& Account::write(ostream& os) const
{

os << name << '\0'; // To write a string
os.write((char*)&nr, sizeof(nr));
os.write((char*)&balance, sizeof(balance));
return os;

}
// read() is the opposite function of write().
// read() inputs an account from the stream is
// and writes it into the members of the current object
istream& Account::read(istream& is)
{

getline(is, name, '\0'); // Read a string
is.read((char*)&nr, sizeof(nr));
is.read((char*)&balance, sizeof(balance));
return is;

}

 246

Conclusion

It’s a delight that you have finally reached the end of this book, and we hope
that you had as much fun reading the book as we did writing the book. We
hope that you followed the guidelines properly on how to approach each
chapter in this book and have learned a lot. The starting chapters of this book
have laid the foundation for upcoming and technical concepts such as
performing arithmetic type conversions, handling input and output file
streams, using references and pointers, and controlling the flow of C++
programs using control-flow operators. If you have properly understood and
digested the information laid out in the starting chapters, then the relatively
complicated topics should also be understandable.

While journeying through the chapters, we have come across some very basic
concepts and some that act as a base for the concepts in the intermediate and
advanced level of programming. However, challenging oneself in learning
and polishing your skills for an even higher skill cap in programming is what
defines a programmer. Relentless and stubborn efforts are the key qualities
that enable programmers to create state-of-the-art programs and innovate
with their brilliant ideas. Aspiring for such goals should be your main
concern when learning to program as it will not only bring you to even bigger
heights but also open a world of infinite possibilities in the realm of
computers. It is our deeply sought after wish that this book was up to the
standards of the reader and that this book served as the perfect starting point
for the reader’s journey in programming.

 247

References

1). A Complete guide to programming in C++ by author: Ulla Kirch-Prinz
& Peter Prinz.

 248

C++

Advanced Guide to Learn C++ Programming
Effectively

BENJAMIN SMITH

 249

Introduction

I want to thank you for choosing this book, ‘C++ - Advanced Guide to Learn
C++ Programming Effectively,’ and I hope you find the book informative.

If you have read the previous book, you have gathered a basic idea of some
concepts in C++ and how you can use loops and conditional statements to
address different problems. This, however, does not mean you have mastered
the art of programming in C++. You need to have more information to help
you write robust programs and applications. This book will shed some light
on some advanced topics in C++, which will enhance your understanding of
C++.

The book will shed some light on the references and pointers in C++ and
their importance. It also provides information on data structures and how you
can use them in C++. Since object-oriented programming (OOP) is an
important concept in most programming languages, this book sheds some
light on what it is and the various concepts in OOP.

In this book, you will learn more about how you can optimize the
performance of your code. When you write any code, you need to test it to
determine if it runs correctly. You need to find the errors in your code and
find a way to overcome those errors. So, what are you waiting for? Grab a
copy of this book now and get started. By the end of the book, you will learn
how to write code and improve it, so there are no errors and issues when you
compile the code.

 250

Chapter 1

Using Pointers in C++

Pointers make it easier to perform specific types of tasks in C++. They are
easy to use, and it is best to use them to perform activities or tasks, such as
dynamic memory allocation. We have looked at the basics of memory
allocation in the previous book. This chapter will shed some light on how
best you can use pointers in C++.

Every variable you enter into a program or code will be stored in a memory
location. Each location has its own address, and these addresses can be
accessed in the code using the ‘&’ operator. This operator denotes that
section in the memory where the variable is stored. Let us look at the
following example to see how you can print the location or every variable
defined in the code.

#include <iostream>
using namespace std;
int main () {

int var1;
char var2[10];
cout << "Address of var1 variable: ";
cout << &var1 << endl;
cout << "Address of var2 variable: ";
cout << &var2 << endl;
return 0;

}

When you compile the code written above, you obtain the following output:

Address of var1 variable: 0xbfebd5c0
Address of var2 variable: 0xbfebd5b6

 251

The terms 0xbfebd5c0 and 0xbfebd5b6 are the locations in the memory
where these variables are stored.

Introduction to Pointers
Before we look at how you can use pointers, let us first understand what a
pointer is. Pointers are variables that take the address of a different variable in
the code. The syntax of a pointer is as follows:

type *var-name;

The keyword type in the above syntax is the data or base type of the pointer.
Make sure the type is a valid data type in C++. The value var-name is the
pointer’s name. You need to use the asterisk in the syntax when you define
the pointer. C++ throws an error if you forget to use it. The following are
some methods to define pointers.

//The following statements are used to define or declare integer, double,
float, and character pointers.

int *ip;
double *dp;
float *fp;
char *ch;

Pointers will only take hexadecimal values since they only take the values of
the variables you point them to. You can define a pointer as an integer,
double, character, string, etc., but it only represents an address in the
memory. The only difference is that when you assign a data type to a pointer
when you define it, you indicate to the compiler that you are pointing to a
variable with the same data type.

How to Use Pointers in C++
You can perform different operations in C++ using pointers:

1. Defining a pointer variable

2. Assigning the pointer with a variable whose address it stores

3. Accessing the value present in the memory location stored in the

 252

pointer

You can perform these operations using the operator ‘*’ which indicates to
the compiler that it needs to return the value of the variable stored at the
memory location or address indicated by the pointer. The following example
uses these operations:

#include <iostream>

using namespace std;

int main () {
int var = 20; // actual variable declaration.
int *ip; // pointer variable

ip = &var; // store address of var in pointer variable

cout << "Value of var variable: ";
cout << var << endl;

// print the address stored in ip pointer variable
cout << "Address stored in ip variable: ";
cout << ip << endl;

// access the value at the address available in pointer
cout << "Value of *ip variable: ";
cout << *ip << endl;

return 0;
}

When you run the code and compile it, you obtain the following output:

Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20

Types of Pointers
It is easy to understand how you can use pointers in C++. Having said that, if
you make mistakes when you use them in your code, you will receive

 253

multiple errors. The following are some concepts to bear in mind when it
comes to pointers:

S. No. Concept Description

1 Null Pointers You can use null pointers in C++.
This pointer is a constant variable
that has a value of zero defined in
numerous libraries used in C++.

2 Pointer
Arithmetic

You can use the following operators
on pointers:

1. ++
2. +
3. –
4. - -

3 Pointer vs.
arrays

There is a very close relationship
between arrays and pointers.

4 Arrays of
pointers

If you do not want to introduce
numerous variables for pointers,
you can create an array to store the
same data type pointers.

5 Pointer to
pointer

C++ allows you to use one pointer
to indicate to another pointer.

6 Passing a
pointer as an
argument in a
function

You can pass pointers as arguments
in functions using either a reference
or address. These allow the
compiler to pass the pointer as the
argument in the function.

7 Returning
pointers from
functions

You can use a function to indicate a
local variable to store the value of
the pointer. You can use:

1. A static variable
2. A local variable

 254

3. Dynamically allocated
memory

 255

Chapter 2

References in C++

Unlike pointers, references are used as aliases in C++. a reference is used to
refer to a variable present in the existing code. When you initialize a
reference and assign it to a variable in the code, you can use the variable itself
or the reference variable to call the value stored in the variable if you need to
use it in a different function.

Difference Between References and Pointers
People often confuse themselves when it comes to references and pointers.
There are three differences between the two:

1. As mentioned in the previous chapter, you can have a null
pointer, but you cannot have a null reference in your code. Make
sure the reference is always tagged to a variable or function
which has a return value.

2. When you initialize and assign a reference to a specific object,
you cannot change its value to another object in the code at any
point. You can use pointers to look at different objects at varied
points in the code.

3. Every reference needs to be initialized before it is tagged to any
variable. Unlike pointers, you cannot initialize a reference in any
line of the code.

How to Create References
From the first book, you know that every variable has a name. Let us assume
that this name is the label attached to the location of the variable’s value in
the memory. When you tag a reference to the variable, it becomes the second

 256

label attached to the location. Therefore, you can refer to the value in the
memory location using either the reference or the original variable name. Let
us consider the following example:

// Initialize a variable ‘i’ and assign it a value
int i = 4;
float j = 2.8;
// Declare a reference variable in your code for the above variable
int &r1 = i;
float &r2 = j;

The ampersand (&) in the above line is your reference. Read the above two
lines of code as follows:

1. The integer reference, r1, has been initialized and tagged to the
variable i

2. The integer reference, r2, has been initialized and tagged to the
variable j

In the following example, we look at how you can use references on variables
with the data types double and int.

#include <iostream>
using namespace std;
int main () {

// The following statements are used to declare the simple variables
in the code

int i;
double d;
// The following statements are used to declare and assign the

reference variables to the simple variables
int& r = i;
double& s = d;
i = 5;

cout << "Value of i : " << i << endl;
cout << "Value of i reference : " << r << endl;
d = 11.7;

cout << "Value of d : " << d << endl;

 257

cout << "Value of d reference : " << s << endl;
return 0;

}

When you compile the above code, you will obtain the following output:

Value of i : 5
Value of i reference : 5
Value of d : 11.7
Value of d reference : 11.7

Coders often use references as function return values or argument lists. The
following are two points to bear in mind when you write code in C++:

S. No. Concept Description
1 Using references as

function parameters
You can pass references
as parameters in
functions. It is safer to use
them as parameters
instead of using simple
variables

2 Using references as
function values

References can be used
like other parameters or
data types as return values

 258

Chapter 3

Introduction to Data Structures in C++

C++ allows you to use different variables and structures, such as arrays and
lists. We have looked at these in brief in the first book. This chapter
introduces the different ways you can use these data structures to perform
different activities in C++. You can use arrays to define different variables or
combine different elements across the program or code into one variable, as
long as they fall into the same category. A structure, however, allows you to
combine different variables and data types. You can use a structure to define
or represent records. Let us assume you want to track the books on your
bookshelf. You can use a structure to track various attributes of every book
on your shelf, such as:

1. Book ID

2. Book title

3. Genre

4. Author

The Struct Statement
You need to use the struct statement to define a structure in your code. This
statement allows you to develop or define a new data type for your code. You
can also define the number of elements or members in the code. The syntax
of this statement is as follows:

struct [structure tag] {
member definition;
member definition;
...

 259

member definition;
} [one or more structure variables];

It is not mandatory to use the structure tag when you use the statement. When
you define a member in the structure, you can use the variable definition
method we discussed in the previous book. For instance, you can use the
method int i to define an integer variable. The section before the semicolon in
the struct syntax is also optional, but this is where you define the structure
variables you want to use. Continuing with the example above, let us look at
how you can define a book structure.

struct Books {
int book_id;
char book_title[50];
char genre[50];
char author[100];

} book;

How to Access Members
Once you define the structure, you can access it using a full stop, which is
also called the member access operator. This operator is used as a period or
break between the structure member and the variable name. Make sure to
enter the variable name you want to access. You can define the variable of
the entire structure using the struct keyword. Let us look at an example of
how you can use structures:

#include <iostream>
#include <cstring>
using namespace std;
struct Books {

int book_id;
char book_title[50];
char genre[50];
char author[100];

};
int main() {

struct Books Book1; // This is where you declare the variable Book1
in the Book structure

 260

struct Books Book2; // This is where you declare the variable Book2
in the Book structure
// Let us now look at how you can specify the details of the first
variable

Book1.book_id = 120000;
strcpy(Book1.book_title, "Harry Potter and the Philosopher’s

Stone");
strcpy(Book1.genre, "Fiction");
strcpy(Book1.author, "JK Rowling");

// Let us now look at how you can specify the details of the second
variable

Book2.book_id = 130000;
strcpy(Book2.book_title, "Harry Potter and the Chamber of

Secrets");
strcpy(Book2.genre, "Fiction");
strcpy(Book2.author, "JK Rowling");

// The next statements are to print the details of the first and second
variables in the structure

cout << "Book 1 id: " << Book1.book_id <<endl;
cout << "Book 1 title: " << Book1.book_title <<endl;
cout << "Book 1 genre: " << Book1.genre <<endl;
cout << "Book 1 author: " << Book1.author <<endl;
cout << "Book 2 id: " << Book2.book_id <<endl;
cout << "Book 2 title: " << Book2.book_title <<endl;
cout << "Book 2 genre: " << Book2.genre <<endl;
cout << "Book 2 author: " << Book2.author <<endl;
return 0;

}
The code above will give you the following output:
Book 1 id: 120000
Book 1 title: Harry Potter and the Philosopher’s Stone
Book 1 genre: Fiction
Book 1 author: JK Rowling
Book 2 id: 130000
Book 2 title: Harry Potter and the Chamber of Secrets
Book 2 genre: Fiction
Book 2 author: JK Rowling

 261

Using Structures as Arguments
You can use structures as arguments in a function similar to how you pass a
pointer or variable as part of the function. You need to access the variables in
the structure in the same way as we did in the example above.

#include <iostream>
#include <cstring>
using namespace std;
void printBook(struct Books book);
struct Books {

int book_id;
char book_title[50];
char genre[50];
char author[100];

};
int main() {

struct Books Book1; // This is where you declare the variable Book1
in the Book structure

struct Books Book2; // This is where you declare the variable Book2
in the Book structure
// Let us now look at how you can specify the details of the first
variable

Book1.book_id = 120000;
strcpy(Book1.book_title, "Harry Potter and the Philosopher’s

Stone");
strcpy(Book1.genre, "Fiction");
strcpy(Book1.author, "JK Rowling");

// Let us now look at how you can specify the details of the second
variable

Book2.book_id = 130000;
strcpy(Book2.book_title, "Harry Potter and the Chamber of

Secrets");
strcpy(Book2.genre, "Fiction");
strcpy(Book2.author, "JK Rowling");

// The next statements are to print the details of the first and second
variables in the structure

printBook(Book1);

 262

printBook(Book2);
return 0;

}
void printBook(struct Books book) {

cout << "Book id: " << book.book_id <<endl;
cout << "Book title: " << book.book_title <<endl;
cout << "Book genre: " << book.genre <<endl;
cout << "Book author: " << book.author<<endl;

}
When you compile the code written above, you receive the following
output:
Book 1 id: 120000
Book 1 title: Harry Potter and the Philosopher’s Stone
Book 1 genre: Fiction
Book 1 author: JK Rowling
Book 2 id: 130000
Book 2 title: Harry Potter and the Chamber of Secrets
Book 2 genre: Fiction
Book 2 author: JK Rowling

Using Pointers
You can also refer to structures using pointers, and you can use a pointer
similar to how you would define a pointer for regular variables.

struct Books *struct_pointer;

When you use the above statement, you can use the pointer variable defined
to store the address of the variables in the structure.

struct_pointer = &Book1;

You can also use a pointer to access one or members of the structure. To do
this, you need to use the -> operator:

struct_pointer->title;

Let us rewrite the example above to indicate a member or the entire structure
using a pointer.

 263

#include <iostream>
#include <cstring>
using namespace std;
void printBook(struct Books *book);
struct Books {

int book_id;
char book_title[50];
char genre[50];
char author[100];

};
int main() {

struct Books Book1; // This is where you declare the variable Book1
in the Book structure

struct Books Book2; // This is where you declare the variable Book2
in the Book structure
// Let us now look at how you can specify the details of the first
variable

Book1.book_id = 120000;
strcpy(Book1.book_title, "Harry Potter and the Philosopher’s

Stone");
strcpy(Book1.genre, "Fiction");
strcpy(Book1.author, "JK Rowling");

// Let us now look at how you can specify the details of the second
variable

Book2.book_id = 130000;
strcpy(Book2.book_title, "Harry Potter and the Chamber of

Secrets");
strcpy(Book2.genre, "Fiction");
strcpy(Book2.author, "JK Rowling");

// The next statements are to print the details of the first and second
variables in the structure

printBook(Book1);
printBook(Book2);
return 0;

}

// We will now use a function to accept a structure pointer as its parameter.

 264

void printBook(struct Books *book) {
cout << "Book id: " << book->book_id <<endl;
cout << "Book title: " << book->book_title <<endl;
cout << "Book genre: " << book->genre<<endl;
cout << "Book author: " << book->author <<endl;

}

When you write the above code, you obtain the following output:

Book id: 120000
Book title: Harry Potter and the Philosopher’s Stone
Book genre: Fiction
Book author: JK Rowling
Book id: 130000
Book title: Harry Potter and the Chamber of Secrets
Book genre: Fiction
Book author: JK Rowling

Typedef Keyword
If the above methods are a little tricky for you, you can use an alias type to
define a structure. For instance,

typedef struct {
int book_id;
char book_title[50];
char genre[50];
char author[100];

} Books;

This is an easier syntax to use since you can directly define all the variables
in the structure without using the keyword ‘struct.’

Books Book1, Book2;

You do not have to use a typedef key only to define a structure. It can also be
used to define regular variables.

typedef long int *pint32;
pint32 x, y, z;

 265

The type long ints point to the variables x, y and z.

 266

Chapter 4

Introduction to Object-Oriented Programming in
C++

The objective of the development of C++ was to add the concept of object-
oriented programming to the C programming language. The classes used in
C++ programming are the variables or structures used in object-oriented
programming. These classes are often termed as user-defined data types.
These concepts were discussed in brief in the previous chapter.

Classes are used to define the form and type of object used in the code. This
data type uses both data methods and representation to manipulate the data
present in the memory into one package. The functions and data within these
classes are termed as class members.

Definition of Classes
Since classes are user-defined data types, you can define how the data type
should be structured. When you do this, you do not define the data to be
stored in the class, but you define the name of the class. You will also define
the objects used in the class and the operations you can perform on the class's
objects.

Use the keyword class when you define the class in your code. This keyword
is followed by the class name and the body of the class. You enclose these
data in curly braces. You can end a class declaration with a semicolon or list
of data types, declarations, and functions. The following example defines a
class named triangle.

class Triangle {
public:

double length; // This variable denotes the length of the triangle

 267

double height; // This variable denotes the height of the triangle
double breadth; // This variable denotes the breadth of the triangle

};

When you use the keyword ‘public,’ it denotes that different functions in the
program can access the class's attributes or members. All you need to do is
call the members accurately when you want to use the values in the function.
If you do not want the values of the members in the class to change, you
should use the keyword ‘private.’ We will discuss this in detail in this
chapter.

Defining Class Objects
You can use a class to provide the detail of how an object should be defined
in the program. Every object in the class is defined in the same way you
define simple variables in the code. The following statements are examples of
how to declare objects in a class. We are going to declare two objects for the
class Triangle.

//The following lines of code are used to declare the objects Triangle1
and Triangle2 in the class Triangle
Triangle Triangle1;
Triangle Triangle2;

Now, each of these objects will have the same members (length, breadth, and
height), which we declared while defining the class Triangle.

How to Access the Class Members
If the members in the class are public members, you can access them
anywhere in the code using the access operator (.).

#include <iostream>
using namespace std;
class Triangle {

public:
double length; // This variable denotes the length of the triangle
double height; // This variable denotes the height of the triangle
double breadth; // This variable denotes the breadth of the triangle

};

 268

int main() {
//The following lines of code are used to declare the objects Triangle1
and Triangle2 in the class Triangle
Triangle Triangle1;
Triangle Triangle2;
//The objective of the code is to calculate the area of the triangle. We
will now initialize a variable ‘area’ with the data type double and
assign it the value 0.0
double area = 0.0

// We will now specify the parameter values for each of the class
members

Triangle1.height = 5.0;
Triangle1.length = 6.0;
Triangle1.breadth = 7.0;
Triangle2.height = 10.0;
Triangle2.length = 12.0;
Triangle2.breadth = 13.0;

// We now define the function to us to calculate the area of the
triangles.

volume = Triangle1.height * Triangle1.length * Triangle1.breadth;
cout << "Area of the first triangle: " << volume <<endl;
volume = Triangle2.height * Triangle2.length * Triangle2.breadth;
cout << "Area of the second triangle: " << volume <<endl;
return 0;

}

When you execute the above code, you receive the following output:

Area of the first triangle: 105
Area of the second triangle: 780

Note that you cannot access protected and private class members using the
access operator (.). We will discuss how you can access protected and private
class members in the code.

Classes and Objects
You now have a brief idea of what classes and objects in C++ are and how
you can access the class members and objects. We will look at other aspects

 269

of object-oriented programming in further detail later in the book. Before we
move onto the next chapter, let us look at some points you need to keep in
mind when you work on object-oriented programming.

S. No. Concept Description

1 Class members
and functions

You can define member functions
in classes similar to the way you
define member data types or
variables.

2 Class access
modifiers

The keywords public, private, and
protected are termed as class access
modifiers. If you have not defined
the access modifier for the class
members, the compiler takes the
value as ‘private.’

3 Constructors
and destructors

Class constructors are special
functions in C++, and these can
only be used within classes,
especially when you create a new
class object. A destructor is another
function created when you delete
an object from the class.

4 Copy
constructor

This function creates another object
in the class by initializing and
declaring the object using another
object in the same class.

5 Friend
functions

If defined as such in the code,
Friend functions can access
protected and private members
present in the class.

6 Inline functions An inline function is one that
instructs the compiler to expand the
entire code in the class using the
details of the function without

 270

using a call to access the function.

7 This pointer Objects in classes are assigned
pointers, and every object has only
one pointer assigned to it. This
pointer only points to the memory
location of the object.

8 Pointer to
classes

Any pointer in a class works the
same as a pointer to a structure
does. It is important to note that a
class is only a structure with
different members, objects, and
functions.

9 Static class
members

Both function members and data
members defined in a class can
always be static class members.

 271

Chapter 5

Differences Between Classes
and Structures

We have looked at data structures and classes in detail in the last two
chapters. Let us now understand the difference between a data structure and
classes.

Structures and classes have similar characteristics, but there are some
important differences to bear in mind. One of the most important differences
is one surrounding security. Data structures are not secure, and you cannot
hide any variables or members in the structure from the user. This means you
cannot use data abstraction to hide any implementation details of the data,
variables, and members in the structure. On the other hand, a class is secure
since you can use specific keywords, such as protected and private, to hide
the implementation details of the members. The following are some ways to
understand this difference: The data and function members in a class are
created as private members by default. Any variable or data in a structure is
the default. Consider the following examples. The first program gives you a
compilation error while the second one compiles accurately.

Program 1
// Program 1
#include <stdio.h>

class Test {
int x; // x is private

};
int main()
{

Test t;
t.x = 20; // compiler error because x is private

 272

getchar();
return 0;

}

Program 2
// Program 2
#include <stdio.h>
struct Test {

int x; // x is public
};
int main()
{

Test t;
t.x = 20; // works fine because x is public
getchar();
return 0;

}

When you choose to derive structures from another structure or class, the
base structure's access specifier or class is public. When you derive a class
from a structure or class, the default access modifier is specified as private by
the compiler.

Program 3
// Program 3
#include <stdio.h>
class Base {
public:

int x;
};

class Derived : Base { }; // is equivalent to class Derived : private Base
{}
int main()
{

Derived d;
d.x = 20; // compiler error because inheritance is private

 273

getchar();
return 0;

}

Program 4
// Program 4
#include <stdio.h>

class Base {
public:

int x;
};

struct Derived : Base { }; // is equivalent to struct Derived : public
Base {}

int main()
{

Derived d;
d.x = 20; // works fine because inheritance is public
getchar();
return 0;

}

 274

Chapter 6

Encapsulation in C++

Every C++ program has two elements:

● Code or program statements: This part of the program has many
statements or actions that the compiler should perform. It holds
different statements, such as methods, functions, calls to functions,
etc.

● Program data: This section of the program is the information
relevant to the program. This information in the program gets
affected by different program functions and methods.

Encapsulation is another method of object-oriented programming that binds
various functions and data together. These functions manipulate the different
variables and data stored in the program. Encapsulation also ensures that the
data is safe from external factors and interference. This concept is directly
related to the concept of data hiding. Data encapsulation is the concept of
combining the data and functions using the data.

C++ allows you to encapsulate the data and hide it from external factors by
creating user-defined data types, known as classes. We have looked at the
different access modifiers in the previous chapters. As mentioned earlier,
every item in a class is labeled private by default. For instance,

class Box {
public:

double getVolume(void) {
return length * breadth * height;

}
private:

double length; // Length of a box

 275

double breadth; // Breadth of a box
double height; // Height of a box

};

In the above code, the variables breadth, length, and height are termed as
private variables. It also means these variables can only be accessed by
members in the same class. They cannot be accessed by any other function or
section of the program. This is one of the easiest ways to encapsulate data. If
you want to make any section of the code public, or accessible to various
sections of the code, you need to declare that these variables are public. Any
variable you declare after this keyword is accessible to every section of your
code. If you allow one class to access the data and functions in another class,
you reduce the encapsulation in the code. The objective is to ensure that the
elements in the class are private.

Example
When you write code using both public and private data members and
functions, you are using both data abstractions and encapsulation. Let us look
at the following example:

#include <iostream>
using namespace std;
class Adder {

public:
// constructor
Adder(int i = 0) {

total = i;
}
// interface to outside world
void addNum(int number) {

total += number;
}
// interface to outside world
int getTotal() {

return total;
};

private:
// hidden data from outside world

 276

int total;
};
int main() {

Adder a;
a.addNum(10);
a.addNum(20);
a.addNum(30);
cout << "Total " << a.getTotal() <<endl;
return 0;

}

When you run the above code, you receive the following output:

Total 60

 277

Chapter 7

Understanding Inheritance

Inheritance is an important concept in object-oriented programming. Using
this characteristic, you can define a new class in terms of an existing class in
the code. This makes it easy for you to create, maintain, and update any
application. Inheritance also allows you to reuse code and its functionality,
thereby reducing implementation time when you develop new applications.
When you create a class, you do not have to create or write a new class with
new function members and data members. As a programmer, you can choose
to let a new class inherit members present in an existing class. This class,
known as the base class, is used by the derived class.

The objective of inheritance is to create a relationship between the base and
derived classes. Consider the following statements:

1. Mammals are animals.

2. Dogs are mammals.

What do you infer from these statements? Dogs are animals. You can develop
such relationships in different parts of the code.

Introduction to Base and Derived Classes
You can derive classes from one or more classes in the existing code. This
means a class can inherit data, variables, class members, and function
members from numerous base classes. You need to use a class derivation list
to specify the child or derived class’s base classes. The class derivation list
has the following syntax:

class derived-class: access-specifier base-class

 278

In the above syntax, the access specifier is the access specifier modifiers we
discussed in the previous chapter – private, public, or protected. The base
class is the name of an existing class in the code. If you do not use an access-
specifier, then the compiler chooses the private access modifier as the default.

Consider the following example where we are using a Shape class to derive
the class Rectangle.

#include <iostream>
using namespace std;
// Base class
class Shape {

public:
void setWidth(int w) {

width = w;
}
void setHeight(int h) {

height = h;
}

protected:
int width;
int height;

};
// Derived class
class Rectangle: public Shape {

public:
int getArea() {

return (width * height);
}

};
int main(void) {

Rectangle Rect;
Rect.setWidth(5);
Rect.setHeight(7);
// Print the area of the object.
cout << "Total area: " << Rect.getArea() << endl;
return 0;

}

 279

When you run the above code, you obtain the following output:

Total area: 35

Inheritance and Access
When you use a base class to create a new class, the derived class can access
every public and protected member in the base class. If you do not want a
derived class to access a specific member in the base class, you should
declare those variables should be declared as private members. The following
table lists the different forms of access modifiers used in base classes and
who can access those members.

Access Modifier Public Protected Private
Same class Yes Yes Yes
Derived class Yes Yes No
Outside classes Yes No No

From above, you can see that a derived class can inherit the different
members in the base class as long as they are defined as public, except for the
following:

1. Friend functions present in the base class

2. Overloaded operators present in the base classes

3. Destructors, constructors, and copy constructors defined in the
base class

Inheritance Types
The access modifiers public, private, and protected can be used to determine
what members or characteristics the derived class can derive from the base
class. Most programmers do not use the access modifiers protected and
private when they create derived classes. They prefer to use the public access
modifier since this makes it easier for the derived class to obtain the base
class's members and characteristics. You need to apply the following rules
when you use inheritance in your code:

 280

Public Inheritance
If you use a public base class to create a derived class, the members in the
base class become the members of the derived class. These members will still
be public members of the derived class. The derived class also obtains the
protected members in the base class, and they remain protected members
even in the derived class. If the base class has any private members, the
derived class cannot access those members. Having said that, you can use
calls to functions to access the private members through protected and public
members in the base class.

Protected Inheritance
When you create a derived class from a protected base class, the protected
and public members in the base class are accessible to the derived class. They
become the protected members of the derived class.

Private Inheritance
When you derive members from a private base class, every member of the
base class becomes a private member in the derived class.

Multiple Inheritance
A class in your code can inherit members from one or more classes in the
code. You can use the following syntax for the same:

class derived-class: access baseA, access baseB...

The word access in the above syntax is the access modifier (private, public,
or protected), and you need to use this keyword against any base class you
create in the code. You can separate the base classes in the code using a
comma. Look at the following example to understand the same:

#include <iostream>
using namespace std;
// Base class Shape
class Shape {

public:
void setWidth(int w) {

width = w;
}

 281

void setHeight(int h) {
height = h;

}
protected:

int width;
int height;

};
// Base class PaintCost
class PaintCost {

public:
int getCost(int area) {

return area * 70;
}

};
// Derived class
class Rectangle: public Shape, public PaintCost {

public:
int getArea() {

return (width * height);
}

};
int main(void) {

Rectangle Rect;
int area;
Rect.setWidth(5);
Rect.setHeight(7);
area = Rect.getArea();
// Print the area of the object.
cout << "Total area: " << Rect.getArea() << endl;
// Print the total cost of painting
cout << "Total paint cost: $" << Rect.getCost(area) << endl;
return 0;

}
When you run the above code, you receive the following output:
Total area: 35
Total paint cost: $2450

 282

Chapter 8

Overloading in C++

C++ also allows you to use function overloading and operator overloading in
the code. You can specify more than one operator in the scope of the same
function or give different definitions to a function name. When you call an
overloaded operator or function in the code, you are giving the compiler the
liberty to choose the function name definition or operator in the current
section of the code. The compiler does this based on the parameters used in
the function and its definition. This process where the compiler chooses the
appropriate overloaded operator or function is called overload resolution.

Introduction to Function Overloading
You can always define a function name in different ways in the same code or
scope. If you want to use function overloading in your code, you need to
define the function differently in the code. You can do this by using different
parameters or arguments in the function and types. It is important to note that
you cannot use overload function declarations only by adding a different
return type. The following is an example where we are using the print()
function to look at different data types in the code:

#include <iostream>
using namespace std;
class printData {

public:
void print(int i) {

cout << "Printing int: " << i << endl;
}
void print(double f) {

cout << "Printing float: " << f << endl;
}

 283

void print(char* c) {
cout << "Printing character: " << c << endl;

}
};
int main(void) {

printData pd;
// Call print to print integer
pd.print(5);
// Call print to print float
pd.print(500.263);
// Call print to print character
pd.print("Hello C++");
return 0;

}

When you compile the above code, you receive the following output:

Printing int: 5
Printing float: 500.263
Printing character: Hello C++

Introduction to Operator Overloading
C++ allows you to overload or redefine most operators built-in in the code.
Therefore, as a programmer, you can use different operators even if you have
user-defined types. An overloaded operator is a type of function with a
special name – the keyword ‘operator.’ You need to define the operator's
symbol after the keyword to define the overloaded operator. When you define
an overloaded operator, you also need to define the parameter list and return
type. Consider the following example:

Triangle operator+(const Triangle&);

In the above example, we are declaring the addition operator you can use to
add two triangle objects. It then returns the output for the Triangle object.
You can define an overloaded operator as an ordinary non-member function.
Alternatively, you can define the operator using a class member function. In
case you want to define the above function using a non-member function in
the class, you need to pass two arguments in the following manner:

 284

Triangle operator+(const Triangle&, const Triangle&);

The following is an example of how you can use operator overloading using
member functions. We pass an object as an argument in a function, and the
function accesses the properties of the argument using the object. The object
will then call the operator, and this object can be accessed using the operator.

#include <iostream>
using namespace std;
class Triangle {

public:
double getArea(void) {

return 0.5*length * breadth * height;
}
void setLength(double len) {

length = len;
}
void setBreadth(double bre) {

breadth = bre;
}
void setHeight(double hei) {

height = hei;
}
// In this section, we are looking at the overload addition operator

to add two triangle objects.
Triangle operator+(const Triangle& b) {

Triangle;
triangle.length = this->length + t.length;
triangle.breadth = this->breadth + t.breadth;
triangle.height = this->height + t.height;
return triangle;

}
private:

double length; // Length of a triangle
double breadth; // Breadth of a triangle
double height; // Height of a triangle

};
// Main function for the program

 285

int main() {
//The next three statements are used to declare three triangle objects

Triangle Triangle1;
Triangle Triangle2;
Triangle Triangle3;
double area = 0.0; // We are declaring the variable area which will

be used to store the area of the three objects.
// We will now specify the values for the variables defined for each

of the objects
Triangle1.setLength(6.0);
Triangle1.setBreadth(7.0);
Triangle1.setHeight(5.0);

Triangle2.setLength(12.0);
Triangle2.setBreadth(13.0);
Triangle2.setHeight(10.0);
// Let us now calculate the area of the two objects

area = Triangle1.getArea();
cout << "Area of the first triangle: " << area <<endl;
area = Triangle2.getArea();
cout << "Area of the second triangle: " << area <<endl;
// We will now add the area of the first two triangles and store it in a

third triangle
Triangle3 = Triangle1 + Triangle2;
// The area of the third triangle is calculated as follows
Area = Triangle3.getArea();
cout << "Area of the third triangle: " << area <<endl;
return 0;

}

When you run the above code, you will receive the following output:

Area of the first triangle: 105
Area of the second triangle: 780
Area of the third triangle: 2700

Non-Overloadable or Overloadable Operators

 286

The following are some operators that you can use for operator overloading.

+ - * / % ^
& | ~ ! , =
< > <= >= ++ --
<< >> == != && ||
+= -= /= %= ^= &=
|= *= <<= >>= [] ()
-> ->* new new [] delete delete []

The following are some operators you cannot overload in your code:

:: .* . ?:

Example of Operator Overloading
The following are some examples of operator overloading to help you
understand the concept of operator overloading:

Unary Operator Overloading
A unary operator, as the name suggests, can only operate on one operand in
the code. The following are some example of unary operators:

● The decrement and increment operators, -- and ++ respectively

● The not (!) logical operator

● The minus (-) unary operator

You can use these unary operators to work on specific objects. The operator
always appears on the left of the object, as in ++obj, --obj, !obj, and -obj.
You can also use the operators on the right side of the object if needed. The
following is an example where we overload a minus operator.

#include <iostream>
using namespace std;
class Distance {

private:
int feet; // 0 to infinite
int inches; // 0 to 12

 287

public:
// required constructors
Distance() {

feet = 0;
inches = 0;

}
Distance(int f, int i) {

feet = f;
inches = i;

}
// method to display distance
void displayDistance() {

cout << "F: " << feet << " I:" << inches <<endl;
}
// overloaded minus (-) operator
Distance operator- () {

feet = -feet;
inches = -inches;
return Distance(feet, inches);

}
};
int main() {

Distance D1(11, 10), D2(-5, 11);
-D1; // apply negation
D1.displayDistance(); // display D1
-D2; // apply negation
D2.displayDistance(); // display D2
return 0;

}

When you run the above code, you will obtain the following output:

F: -11 I:-10
F: 5 I:-11

You can use the above example if you want to overload any of the unary
operators mentioned above.

 288

Binary Operator Overloading
A binary operator takes two variables or arguments. The following are some
examples of binary operators:

- Addition (+)

- Subtraction (-)

- Division (/)

The following is an example of how you can use the different operators
mentioned above.

#include <iostream>
using namespace std;
class Triangle {
//The following are the data members or variables of the class triangle

double length;
double breadth;
double height;

public:
double getArea(void) {

return 0.5 * length * breadth * height;
}

void setLength(double len) {
length = len;

}
void setBreadth(double bre) {

breadth = bre;
}
void setHeight(double hei) {

height = hei;
}
// We are now going to use the addition operator to perform an

overload on the existing values in the classes
Triangle operator+(const Triangle& t) {

Triangle triangle;
triangle.length = this->length + t.length;
triangle.breadth = this->breadth + t.breadth;

 289

triangle.height = this->height + t.height;
return triangle;

}
};
// Main function for the program
int main() {
//Declare the three objects Triangle1, Triangle2 and Triangle3

Triangle Triangle1;
Triangle Triangle2;
Triangle Triangle3;

//Declaring the variable area to store the area of the triangle
double area = 0.0;
// We will now specify the 1 specification

Triangle1.setLength(6.0);
Triangle1.setBreadth(7.0);
Triangle1.setHeight(5.0);
Triangle2.setLength(12.0);

Triangle2.setBreadth(13.0);
Triangle2.setHeight(10.0);
area = Triangle1.getVolume();

cout << "Area of the first triangle: " << area <<endl;
area = Triangle2.getVolume();

cout << "Area of the second triangle: " << area <<endl;
// We will now calculate the area of the third triangle using the

binary operator
Triangle3 = Triangle1 + Triangle2;
area = Triangle3.getArea();

cout << "Area of the third triangle: " << area <<endl;
return 0;

}

When you run the above code, you obtain the following output:

Area of the first triangle: 105
Area of the second triangle: 780
Area of the third triangle: 2700

Relational Operator Overloading

 290

C++ supports different relational operators, such as:

- Greater than (>)

- Less than (<)

- Greater than or equal to (>=)

- Less than or equal to (<=)

- Equal to (==)

You can overload the above operators in C++ and use them to compare the
values of one object in a class to another. The following example shows you
how you can use the less-than operator and overload it. You can similarly
overload the other relational operators:

#include <iostream>
using namespace std;
class Distance {

private:
int feet; // 0 to infinite
int inches; // 0 to 12

public:
// required constructors
Distance() {

feet = 0;
inches = 0;

}
Distance(int f, int i) {

feet = f;
inches = i;

}
// method to display distance
void displayDistance() {

cout << "F: " << feet << " I:" << inches <<endl;
}
// overloaded minus (-) operator
Distance operator- () {

 291

feet = -feet;
inches = -inches;
return Distance(feet, inches);

}
// overloaded < operator
bool operator <(const Distance& d) {

if(feet < d.feet) {
return true;

}
if(feet == d.feet && inches < d.inches) {

return true;
}
return false;

}
};
int main() {

Distance D1(11, 10), D2(5, 11);
if(D1 < D2) {

cout << "D1 is less than D2 " << endl;
} else {

cout << "D2 is less than D1 " << endl;
}

return 0;
}

When you run the above code, you receive the following output:

D2 is less than D1

Input and Output Operator Overloading
You can use the stream extraction operator (>>) and stream insertion operator
(<<) to use built-in data types as inputs and outputs. C++ allows you to
overload these operators and perform different input and output operations on
the different classes and user-defined objects. That said, you need to convert
the operator overloading function into a friend function for the class since
you call it without having to create the object. The following is an example of
how you can use the insertion and extraction operator and overload it.

 292

#include <iostream>
using namespace std;
class Distance {

private:
int feet; // 0 to infinite
int inches; // 0 to 12

public:
// required constructors
Distance() {

feet = 0;
inches = 0;

}
Distance(int f, int i) {

feet = f;
inches = i;

}
friend ostream &operator<<(ostream &output, const Distance

&D) {
output << "F : " << D.feet << " I : " << D.inches;
return output;

}
friend istream &operator>>(istream &input, Distance &D) {

input >> D.feet >> D.inches;
return input;

}
};
int main() {

Distance D1(11, 10), D2(5, 11), D3;
cout << "Enter the value of object : " << endl;
cin >> D3;
cout << "First Distance : " << D1 << endl;
cout << "Second Distance :" << D2 << endl;
cout << "Third Distance :" << D3 << endl;
return 0;

}

When you compile and execute the above code, you obtain the following

 293

result:

$./a.out
Enter the value of object :

70
10
First Distance : F : 11 I : 10
Second Distance :F : 5 I : 11
Third Distance :F : 70 I : 10

Assignment Operator Overloading
C++ allows you to overload the assignment operator in the same way you
overload other operators in C++. You can use the overloaded object to create
an object in the same way you use a copy constructor for the same. The
following is an example of how you can overload an assignment operator in
C++.

#include <iostream>
using namespace std;
class Distance {

private:
int feet; // 0 to infinite
int inches; // 0 to 12

public:
// required constructors
Distance() {

feet = 0;
inches = 0;

}
Distance(int f, int i) {

feet = f;
inches = i;

}
void operator = (const Distance &D) {

feet = D.feet;
inches = D.inches;

}
// method to display distance

 294

void displayDistance() {
cout << "F: " << feet << " I:" << inches << endl;

}
};
int main() {

Distance D1(11, 10), D2(5, 11);
cout << "First Distance : ";
D1.displayDistance();
cout << "Second Distance :";
D2.displayDistance();
// use assignment operator
D1 = D2;
cout << "First Distance :";
D1.displayDistance();
return 0;

}

On running the above code, you obtain the following output:

First Distance : F: 11 I:10
Second Distance :F: 5 I:11
First Distance :F: 5 I:11

Function Call Operator Overloading
You can overload the function call operator on any object in the class. When
you overload the function operator, you create a new way to call the function
and create a new operator function using which you can pass numerous
arbitrary parameters. The following is an example of how you can overload
the operator:

#include <iostream>
using namespace std;
class Distance {

private:
int feet; // 0 to infinite
int inches; // 0 to 12

public:
// required constructors

 295

Distance() {
feet = 0;
inches = 0;

}
Distance(int f, int i) {

feet = f;
inches = i;

}
// overload function call
Distance operator()(int a, int b, int c) {

Distance D;
// just put random calculation
D.feet = a + c + 10;
D.inches = b + c + 100 ;
return D;

}
// method to display distance
void displayDistance() {

cout << "F: " << feet << " I:" << inches << endl;
}

};
int main() {

Distance D1(11, 10), D2;
cout << "First Distance : ";
D1.displayDistance();
D2 = D1(10, 10, 10); // invoke operator()
cout << "Second Distance :";
D2.displayDistance();
return 0;

}

When you run the above code, you will obtain the following result:

First Distance : F: 11 I:10
Second Distance :F: 30 I:120

Subscript Operator Overloading
A subscript operator is used to access different elements in an array. You can

 296

overload this operator to enhance or improve the functionality of arrays in
C++. The following is an example of how you can overload the operator:

#include <iostream>
using namespace std;
const int SIZE = 10;
class safearay {

private:
int arr[SIZE];

public:
safearay() {

register int i;
for(i = 0; i < SIZE; i++) {

arr[i] = i;
}

}
int &operator[](int i) {

if(i > SIZE) {
cout << "Index out of bounds" <<endl;
// return first element.
return arr[0];

}
return arr[i];

}
};
int main() {

safearay A;
cout << "Value of A[2] : " << A[2] <<endl;
cout << "Value of A[5] : " << A[5]<<endl;
cout << "Value of A[12] : " << A[12]<<endl;
return 0;

}

On running the above code, the output received is:

Value of A[2] : 2
Value of A[5] : 5
Index out of bounds

 297

Value of A[12] : 0

 298

Chapter 9

Polymorphism in C++

Polymorphism is a concept in C++ which allows classes to have multiple
forms. This only occurs when you have numerous classes in the code related
through inheritance. Polymorphism in C++ means that the object determines
the type of function to be executed by the compiler. When you call a function
within a class, the compiler will look at the object type being used as an
argument or parameter in the function before it invokes the function relevant
to the object. In the example, we will look at how we can derive a base class
based on two other classes.

#include <iostream>
using namespace std;
class Shape {

protected:
int width, height;

public:
Shape(int a = 0, int b = 0){

width = a;
height = b;

}
int area() {

cout << "Parent class area :" <<endl;
return 0;

}
};
class Rectangle: public Shape {

public:
Rectangle(int a = 0, int b = 0):Shape(a, b) { }
int area () {

 299

cout << "Rectangle class area :" <<endl;
return (width * height);

}
};
class Triangle: public Shape {

public:
Triangle(int a = 0, int b = 0):Shape(a, b) { }
int area () {

cout << "Triangle class area :" <<endl;
return (width * height / 2);

}
};
// This is the main function of the program
int main() {

Shape *shape;
Rectangle rec(10,7);
Triangle tri(10,5);

// The variable shape is used to store the values for the rectangle
shape = &rec;
// This statement is used to call the function to calculate the area of

the rectangle
shape->area();

// The variable shape is used to store the values for the triangle
shape = &tri;
// This statement is used to call the function to calculate the area of

the triangle
shape->area();

return 0;
}

When the above code is run, the following is the output you will receive on
your screen:

Parent class area :
Parent class area :

This is not the output we want. If you are unable to identify the reason for
this incorrect output, let me tell you what change needs to be made to the

 300

code. Look at how the function area() is being called. We have defined this
function in the base class, and the compiler uses this version. This method of
linking functions is termed as static linkage or resolution. The call of this
function should be fixed before you execute the program. This process is
termed early binding. The compiler will set this function when it debugs the
program. Let us now make a slight change to the above program. We will
declare the area function within the Shape class itself. We will also use the
virtual keyword. The updated code is as follows:

class Shape {
protected:

int width, height;
public:
Shape(int a = 0, int b = 0) {

width = a;
height = b;

}
virtual int area() {

cout << "Parent class area :" <<endl;
return 0;

}
};

When you make this modification to the code, you will receive the following
output:

Rectangle class area
Triangle class area

The compiler will now look at the pointer and the contents of the variable it is
pointing to. It will no longer look at the data type. The compiler calls the area
function since the rec and tri class objects are not stored in shape but stored in
*shape. Every child class in the above code has its own implementation of
the area function. This is how programmers use the polymorphism concept in
C++. The above code has different classes, and each class has the same
function. The functions also take the same parameters, but the
implementation of the function is different in each case.

 301

Understanding Virtual Functions
When you define a function using the virtual keyword, it becomes a virtual
function. C++ allows you to define a virtual function in the base class and a
different version of the virtual function in the derived class. This only signals
to the compiler that you do not want any link to exist between the functions.
The only thing you need to be aware of is the position of the function you
want to call in the code. To do this, you need to ensure the function selected
by the compiler is based on the object you want to use it on. This type of
connection or link is termed as late binding or dynamic linkage.

Pure Virtual Functions
You can include virtual functions in the base class and use that in a derived
class. It is important to note that these functions can be redefined in the
derived classes, so the functions suit the objects present in the derived class.
There is, however, no meaningful definition you can give the function in the
class. The following example shows you how you can change a virtual
function in the base class.

class Shape {
protected:

int width, height;
public:

Shape(int a = 0, int b = 0) {
width = a;
height = b;

}
// pure virtual function
virtual int area() = 0;

};

We see that the virtual function area() has been assigned the value zero in the
above code. This indicates to the compiler that the function does not have a
body. This is an example of a pure virtual function.

 302

Chapter 10

Abstraction in C++

Data abstraction is the process of hiding details or information in the code
from other functions or classes in the code. The objective of data abstraction
is to only present the details relevant to the other classes without sharing the
actual details present in the class. Abstraction is a design and programming
technique that relies only on two aspects – interfaces and implementation.

Consider the following example. When you use a television, you can switch
it on and off, switch between channels, add speakers and other external
devices, such as DVDs and VCRs or even increase or decrease the volume.
You can do this using a remote, but you do not know what happens inside the
device for you to be able to do this. You do not know how the signals pass
through the cables or air or how the television interprets those signals before
it displays them on the screen. Therefore, we can definitively state that a
television will separate the interface's internal functionalities or
implementation. You can use a remote to play with the external interface
without learning anything about the internal components.

C++ gives every class you define some level of abstraction. When you define
a class, you can determine the different class methods that the other classes in
the code can use. This allows those classes to manipulate the data members
and function members in the class without knowing how the base class
works. For instance, you can use the sort function anywhere in your code
without knowing what the function does or the algorithm it uses. Bear in
mind that the functionality and algorithm used in the sort function will vary
from one release to the next. If the interface being used still stays the same,
any call made to the function will work in the code.

You can define abstract data types (ADTs) in the classes defined in the code.
You can also use the cout object from the ostream class to move data into

 303

standard output files.

#include <iostream>
using namespace std;
int main() {

cout << "Hello C++" <<endl;
return 0;

}

From the above code, it is clear you do not have to worry about how the
function cout works. You know it is used to display the output on the screen.
It is only important for you to know the public interface used since the
implementation of the cout function or keyword can change.

Benefits
There are two advantages of using abstraction in your code:

● The internal members of the class are always protected from any
errors which users are bound to make. This prevents the corruption of
objects in the classes.

● The implementation of classes and functions can evolve or change
over time in response to the needs or requirements that constantly
change. The developers may also make fixes or implementation
changes in case of any bug report.

When you define data members or function members in the class, especially
in private sections in the class, you can make any changes to the data as the
author of the class. If the implementation changes, you only need to examine
the code written in the class to see how the implementation affects the
classes. If the data used in the classes is public, then a function related to the
data or function members in the class may break in case of an implementation
change.

How to Enforce Abstraction
In C++, you can use different access labels to define the interfaces in the
class where you want to protect the data. Any class you define can contain
zero, one, or more labels.

 304

● When you define a class member using the public label, you allow
that member to be accessible to any function in the program. Public
members determine how the members in the class are viewed.

● If you define members using the private or protected labels, these
values will not be accessible to any function or class in the code. The
implementation of the members will always remain hidden.

C++ does not restrict the number of times you use an access label in your
code. Every access label used in the code specifies the level of access every
member in the firm has. The specific access level will always remain in effect
until the compiler comes across another access level in the code.

Example
When you write a code with private or public class members, you are using
the concept of data abstraction.

#include <iostream>
using namespace std;
class Adder {

public:
// constructor
Adder(int i = 0) {

total = i;
}
// interface to outside world
void addNum(int number) {

total += number;
}
// interface to outside world
int getTotal() {

return total;
};

private:
// hidden data from outside world
int total;

};
int main() {

 305

Adder a;
a.addNum(10);
a.addNum(20);
a.addNum(30);
cout << "Total " << a.getTotal() <<endl;
return 0;

}

When you run the above code, you will obtain the following output:

Total 60

In the above code, we add two numbers and return the sum of those numbers.
We have two public members in the code:

1. addNum

2. getTotal

The compiler uses these members as the interface to the outside world. A
user only needs to know how to work with the class.

The private member in the code is total, and this is a value the user does not
know about. The class, however, needs this variable for it to function.

Why Use Abstraction?
Through abstraction, you can separate the code into two parts –
implementation and interface. When you design any code or program
component, make sure the interface and implementation are independent.
This is the only way you can ensure that any change made to the
implementation would not affect the interface. This helps you control the
functioning of any program to ensure there is no impact on the component
and application because changes are made to the implementation.

 306

Chapter 11

Abstract Classes or Interfaces

You may need to describe or use classes in your programs or code without
committing or linking the class to a specific type of implementation. You can
do this using an interface. You can implement interfaces in C++ using a
concept termed as an abstract class. Do not confuse an abstract class with the
concept of data abstraction. The latter is a concept used in object-oriented
programming wherein the code's implementation details are kept away or
apart from the interface and data used in the code.

You can make any class abstract by declaring a pure virtual function. We
discussed this in an earlier chapter. a pure virtual function is one where the
value of the function is equated to zero. For example:

class Box {
public:

// pure virtual function
virtual double getVolume() = 0;

private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

};

Most programmers use an abstract class as a base class using which they
create derived classes. An abstract class is one type of class using which you
cannot create, declare, assign, or initialize an object. These classes only serve
the purpose of an interface. If you try to create an object and instantiate it in
an abstract class, it only leads to compilation errors. Therefore, if you want to
instantiate a subclass or object in an abstract class, you need to implement
numerous virtual functions. Virtual functions can support any interface

 307

created or declared within an abstract class. If you do not override a pure
virtual function in any derived class and declare or instantiate an object in the
class, it will lead to an error. These mistakes are very small but hard to detect
in the code. You can also create a concrete class to instantiate and declare
objects.

Example
The following is an example of how you can use abstract classes to
implement functions. In the example below, we will look at how you can
implement the function getArea().

#include <iostream>
using namespace std;
// Base class
class Shape {

public:
// pure virtual function providing interface framework.
virtual int getArea() = 0;
void setWidth(int w) {

width = w;
}
void setHeight(int h) {

height = h;
}

protected:
int width;
int height;

};
// Derived classes
class Rectangle: public Shape {

public:
int getArea() {

return (width * height);
}

};
class Triangle: public Shape {

public:

 308

int getArea() {
return (width * height)/2;

}
};
int main(void) {

Rectangle Rect;
Triangle Tri;
Rect.setWidth(5);
Rect.setHeight(7);
// Print the area of the object.
cout << "Total Rectangle area: " << Rect.getArea() << endl;
Tri.setWidth(5);
Tri.setHeight(7);

// Print the area of the object.
cout << "Total Triangle area: " << Tri.getArea() << endl;

return 0;
}

When you run the above code, you receive the following output:

Total Rectangle area: 35
Total Triangle area: 17

In the above example, we see how you can use an abstract class to define an
interface using the function getArea(). We also saw how you could
implement this function in two other classes in the code. Each of these
classes, however, uses a different algorithm to calculate the area of the shape.

When you develop an application using object-orientation, you may need to
use an abstract class to provide a standard and common interface. This
interface will be appropriate for any external class, application, or function
you may want to use. Through inheritance, the derived classes obtain the
necessary methods and data from the abstract base class. The functions,
classified as public in the abstract class, should be pure virtual functions.
These pure functions can only be used in the derived classes, which
correspond to the specific functions and methods used in the application.

This makes it easier for you, as a programmer, to add new objects and
applications to the existing code even after you have defined the system.

 309

Chapter 12

Constructors in C++

As mentioned earlier, a constructor is a function created in a class when you
create an object. This function is used to initialize the object in a class. A
constructor is termed as a member function in every class. Before we look at
the details of what constructors are, let us understand the difference between
constructors and member functions. The following are some differences
between constructors and member functions in a class:

● A constructor, unlike a member function, will have the same name as
the class

● There is no return type for a constructor

● When you create an object in a class, the compiler automatically
creates a constructor. You need to create a member function
separately if you want to perform any operations.

● You need not define any constructor in the code since the compiler
automatically generates one with no body or parameters

Let us understand what a constructor is better using an example. Let us
assume you went to the store to purchase a pen. Do you consider all the
options available when you choose to buy a pen? The first thing you do is
think about the store you want to go to. Once you reach the store, you ask the
shopkeeper to give you a pen. When you ask for just a pen, it indicates you
have not thought about the brand you want to use or which color you prefer.
The shopkeeper will hand you a pen or give you a pen that people have
bought frequently. This is exactly what a default constructor in your class is.

The other option you have is to go to the store and let the shopkeeper know
you want a blue color pen sold by ABC brand. When you mention this to

 310

him, he will hand the exact product to you. The shopkeeper knows what you
want because you gave him the parameters. This is an example of a
parameterized constructor.

The last option is to take a pen you have at home and show the shopkeeper a
physical copy of the pen and ask for the same thing. The shopkeeper will give
you exactly that pen. This new pen is a copy of the pen you own. This is how
a copy constructor works.

Constructor Types
The following are the types of constructors we discussed previously.

Default Constructors
A default constructor is one that does not use any parameters or arguments.
There is also no function or operation defined within this constructor.

Consider the following example:

// This program is an example of a default constructor
#include <iostream>
using namespace std;
class construct
{
public:

int a, b;
// Default Constructor
construct()
{

a = 10;
b = 20;

}
};
int main()
{

// Default constructor called automatically
// when the object is created
construct c;
cout << "a: " << c.a << endl

 311

<< "b: " << c.b;
return 1;

}

On compiling the code, you will receive the following output:

a : 10
b : 20

It is important to note that the compiler always defines a constructor in the
code when you create an object in the class.

Constructors with Parameters
Constructors are like functions in the sense that you can pass arguments or
parameters. These parameters or arguments allow you to declare and
initialize an object in the class when you create it. If you want to create a
constructor that accepts parameters and arguments, you need to add them to
the constructor, similar to how you would add them to functions. When you
define the body of the constructor, you should use the parameters or
arguments to initialize or instantiate the objects in the class.

Consider the following example:

// This example is used to create a constructor with parameters and
arguments
#include <iostream>
using namespace std;
class Point
{
private:

int x, y;
public:

// Parameterized Constructor
Point(int x1, int y1)
{

x = x1;
y = y1;

}
int getX()

 312

{
return x;

}
int getY()
{

return y;
}

};
int main()
{

// Constructor called
Point p1(10, 15);
// Access values assigned by constructor

cout << "p1.x = " << p1.getX() << ", p1.y = " << p1.getY();
return 0;

}

When you run the above code, you will obtain the following output:

p1.x = 10, p1.y = 15

When you use a parameterized constructor to create or declare an object, you
need to pass the values you want to assign the object as an argument or
parameter in the function. The compiler will not allow you to declare and
assign a value to an object normally. Therefore, you need to call a
constructor, and you can either do this implicitly or explicitly.

Consider the following example:

Example e = Example(0, 50); // Explicit call

Example e(0, 50); // Implicit call

Uses of Parameterized Constructors
Parameterized constructors can be used for the following:

1. You can use this constructor to initialize different data elements
in the code with different objects. Each of these objects can be
assigned different values depending on when they are created.

 313

2. You can use this function for constructor overloading. This
method is similar to the process of overloading discussed above.

Copy Constructors
Copy constructors are member functions using which you can initialize an
object in the classes. You can do this by using other objects in the same class.
We will look at these in further detail later in the book.

When you define more than one constructor in the class with parameters, you
also need to declare a default constructor without parameters. This should be
declared explicitly in the class. The compiler will not create a default
constructor if you have defined a constructor in the code. It is, however, not
required for you to always declare a default constructor. However, this is the
best practice.

// Example to create a copy constructor
#include "iostream"
using namespace std;
class point
{
private:

double x, y;
public:

// Non-default Constructor &
// default Constructor
point (double px, double py)
{

x = px, y = py;
}

};
int main(void)
{

// Define an array of size
// 10 & of type point
// This line will cause error
point a[10];
// Remove above line and program
// will compile without error

 314

point b = point(5, 6);
}

The following is the output when the code above is compiled:

Error: point (double px, double py): expects 2 arguments, 0 provided

 315

Chapter 13

Copy Constructors in C++

We looked at the different types of constructors in the previous chapter. In
this chapter, we will look at a copy constructor in further detail.

Definition
A copy constructor, like other constructors, is a member function in the class.
This constructor is a copy of an existing member function or constructor in
the class. You can use this function to initialize an object in the same class.
Every copy constructor has the general syntax:

ClassName (const ClassName &old_obj);

The following is an example of how you can create or use copy constructors.

#include<iostream>
using namespace std;
class Point
{
private:

int x, y;
public:

Point(int x1, int y1) { x = x1; y = y1; }
// Copy constructor
Point(const Point &p2) {x = p2.x; y = p2.y; }
int getX() { return x; }
int getY() { return y; }

};
int main()
{

 316

Point p1(10, 15); // Normal constructor is called here
Point p2 = p1; // Copy constructor is called here
// Let us access values assigned by constructors
cout << "p1.x = " << p1.getX() << ", p1.y = " << p1.getY();
cout << "\np2.x = " << p2.getX() << ", p2.y = " << p2.getY();
return 0;

}

When you run the above code, you receive the following output:

p1.x = 10, p1.y = 15
p2.x = 10, p2.y = 15

When Do You Call a Copy Constructor?
The following are the instances when you can call a copy constructor.

1. When the member functions in the class return the object as a
value

2. When you pass the object as a parameter or argument in a
function instead of declaring it in the class

3. When you construct an object using a different object present in
the same class

4. When the compiler uses the constructors and member functions
to create temporary objects

However, you do not have to create a copy constructor or use it in any of
these situations since C++ lets the compiler take the decision to save the
memory. The compiler can choose to update and monitor the way a copy
constructor is called, and objects and functions are copied.

When Should You Define a Copy Constructor?
If you do not define the copy constructor, the compiler will create a default
constructor for every class. This does not necessarily have to be a copy made
as per the member functions and data. The compiler then creates a copy
constructor, which will work fine in general. When a compiler creates a copy

 317

constructor, it works like every other copy constructor. If you want to define
a copy constructor for a certain function, make sure the object has a pointer
attached to it.

If you let the compiler create a copy constructor, it will only be a shallow
copy of the constructor. You can only ensure that the object or class is fully
copied by creating a user-defined copy constructor. In these constructors, you
can define the references and pointers of copied objects to every location.

Assignment Operators Versus Copy Constructors
From the example below, which statement do you think will call the
assignment operator and which one will call the copy constructor?

MyClass t1, t2;
MyClass t3 = t1; // ----> (1)
t2 = t1; // -----> (2)

The compiler will call the copy constructor when you create a new object in
the code from an existing object. It only calls the constructor since you create
a copy of the existing copy. It calls the assignment operator when you assign
a value to an existing object in the code. In the example above, the first
statement will call the copy constructor, and the second constructor will call
upon the assignment operator.

Example Where You Use Copy Constructors
The example below shows how you can use copy constructors in C++. We
will define a copy constructor in the String class.

#include<iostream>
#include<cstring>
using namespace std;

class String
{
private:

char *s;
int size;

public:

 318

String(const char *str = NULL); // constructor
~String() { delete [] s; }// destructor
String(const String&); // copy constructor
void print() { cout << s << endl; } // Function to print string
void change(const char *); // Function to change

};
String::String(const char *str)

{
size = strlen(str);
s = new char[size+1];
strcpy(s, str);

}
void String::change(const char *str)

{
delete [] s;
size = strlen(str);
s = new char[size+1];
strcpy(s, str);

}
String::String(const String& old_str)

{
size = old_str.size;
s = new char[size+1];
strcpy(s, old_str.s);

}
int main()

{
String str1("GeeksQuiz");
String str2 = str1;

str1.print(); // what is printed ?
str2.print();

str2.change("GeeksforGeeks");
str1.print(); // what is printed now ?

str2.print();
return 0;

}

 319

The output of this code is:

GeeksQuiz
GeeksQuiz
GeeksQuiz
GeeksforGeeks

What Happens When You Remove a Copy Constructor From
the Code?
When you remove copy constructors from the code above, you will not
receive the output. The changes you make to variable str2 will reflect the
value in str1, which is not the expected outcome.

#include<iostream>
#include<cstring>
using namespace std;
class String
{
private:

char *s;
int size;

public:
String(const char *str = NULL); // constructor
~String() { delete [] s; }// destructor
void print() { cout << s << endl; }
void change(const char *); // Function to change

};
String::String(const char *str)
{

size = strlen(str);
s = new char[size+1];
strcpy(s, str);

}
void String::change(const char *str)
{

delete [] s;

 320

size = strlen(str);
s = new char[size+1];
strcpy(s, str);

}
int main()
{

String str1("GeeksQuiz");
String str2 = str1;
str1.print(); // what is printed ?
str2.print();
str2.change("GeeksforGeeks");
str1.print(); // what is printed now ?
str2.print();
return 0;

}

The output of the above code is:

GeeksQuiz
GeeksQuiz
GeeksforGeeks
GeeksforGeeks

Can Constructors be Made Private?
You can make copy constructors private variables in the code. It is important
to bear in mind that every object or member of the class can no longer be
copied. It is useful to do this only when the class you define the constructor
in has pointers, or the resources are allocated memory space dynamically. In
these situations, you can write a copy constructor like the above example.
You can also make the constructor private so that a user will receive a
compiler error instead of runtime errors.

Passing Arguments in Copy Constructors
You can only pass arguments in a copy constructor in the form of a reference.
When you pass an argument using a value in the copy constructor, a call to
the constructor will lead to an error since the compiler only looks at the
constructor and not the values of the arguments passed as parameters.

 321

Chapter 14

Destructors in C++

Now that we have looked at what a constructor is let us learn more about
destructors. A destructor is another member function that is created by the
compiler when you delete any object in the existing class. The syntax used
for a destructor is as follows:

~constructor-name();

Properties
The following are properties of destructors:

● A destructor function is created by the compiler when you delete an
object in a class

● You cannot declare a constant or static member function

● C++ does not allow you to enter any arguments

● The destructor does not have any return type. You cannot enter void
as a return type

● If you have an object in a destructor class, it does not become a
member of the class

● Destructors can only be declared in the public section of any class

● You do not have access to the address of the destructor function

When Do You Call a Destructor?
The compiler calls a destructor function when the object is no longer out of
scope.

 322

1. The program ends

2. The function ends

3. An object is deleted using the delete operator

4. A block containing the local variable will end

Difference Between Destructors and Member Functions
A destructor will have the same name as the class where an object has been
deleted. The only way to differentiate between a destructor and class is the
presence of a tilde (~). a destructor does not take arguments or parameters
and cannot return any value.

Consider the following example:

class String {
private:

char* s;
int size;

public:
String(char*); // constructor
~String(); // destructor

};
String::String(char* c)
{

size = strlen(c);
s = new char[size + 1];
strcpy(s, c);

}
String::~String() { delete[] s; }

Can You Have More Than One Destructor?
Most people wonder if you can have multiple destructors in a class. If you
delete more than one object, the compiler is bound to create more than one
destructor, right? This, however, is not a correct assumption. There can only
be one destructor in a class since the function takes the name of the class.
There will be no parameters or functions within the destructor.

 323

When Should You Define a Destructor?
The compiler creates a destructor automatically in the code if you do not
declare one. It is okay to use the default destructor if none of the objects are
allocated memory space dynamically. A default destructor does not work the
way it should if you have a pointer. When classes contain pointers, the
memory allocated to the class object will first need to be removed before you
delete the instance. This is the only way to prevent a memory leak.

Can You Define Virtual Destructors?
Experts recommend that you describe a virtual destructor. We will look at
virtual destructors in detail in the following chapter.

 324

Chapter 15

Virtual Destructors in C++

You can create a derived class where the objects use pointers to obtain the
information of relevant objects from the base class. If you delete such objects
using a non-virtual destructor, it will lead to runtime errors. To improve or
rectify this situation, you need to define a virtual destructor in the base class.
If you were to compile the code in the example below, it would result in an
error in the code.

// This program is an example of how a class without a virtual
destructor leads to runtime errors in the code
#include<iostream>

using namespace std;
class base {
public:

base()
{ cout<<"Constructing base \n"; }
~base()
{ cout<<"Destructing base \n"; }

};
class derived: public base {
public:

derived()
{ cout<<"Constructing derived \n"; }
~derived()
{ cout<<"Destructing derived \n"; }

};
int main(void)

{
derived *d = new derived();

 325

base *b = d;
delete b;
getchar();
return 0;

}

The above code's output may be slightly different between different C++
instances depending on the compiler used. If you use the Dev-CPP compiler,
you will obtain the following output:

Constructing base
Constructing derived
Destructing base

When you create a virtual destructor in the base class in the code, it indicates
to the compiler that the object in the derived class, when deleted, will be
removed correctly from the code. These lines of code ensure that both the
derived and base class destructors are called when you run the code. For
instance,

// This program is an example of how you can use a virtual destructor
to avoid a runtime error
#include<iostream>
using namespace std;
class base {

public:
base()
{ cout<<"Constructing base \n"; }
virtual ~base()
{ cout<<"Destructing base \n"; }

};
class derived: public base {

public:
derived()
{ cout<<"Constructing derived \n"; }
~derived()
{ cout<<"Destructing derived \n"; }

};

 326

int main(void)
{

derived *d = new derived();
base *b = d;
delete b;
getchar();
return 0;

}

You will receive the following output when you run the above code:

Constructing base
Constructing derived
Destructing derived
Destructing base

If you use a virtual function in your class, you need to add a virtual destructor
to the code immediately, regardless of whether or not you use it. This is the
only way you can prevent any runtime errors.

Pure Virtual Destructors
You can create a pure virtual destructor in C++ if you need to. When you
define these functions in a class, you need to add a body to the destructor.
This contradicts the definition of a virtual function, doesn’t it? Why does a
virtual function need a body? We need to do this since the compiler does not
override the destructor. The compiler calls a pure virtual destructor in the
reverse order when a class is derived. This indicates that a destructor in a
class is invoked first by the compiler. It is only after this that the compiler
calls the destructor in the class.

If you do not define a pure virtual destructor in the code, what function or
statements will the compiler call upon when it needs to destroy or delete an
object? It is only when you define the right objects that the linker and
compiler in the code enforce the presence of the function body. Consider the
example below:

#include <iostream>
class Base

 327

{
public:

virtual ~Base()=0; // Pure virtual destructor
};
class Derived : public Base
{
public:

~Derived()
{

std::cout << "~Derived() is executed";
}

};
int main()

{
Base *b=new Derived();
delete b;
return 0;

}

The linker in the code will give you the following error:

test.cpp:(.text$_ZN7DerivedD1Ev[__ZN7DerivedD1Ev]+0x4c):
undefined reference to `Base::~Base()'

If you define a pure virtual destructor in the code, the program will compile
the code without any errors.

#include <iostream>
class Base
{
public:

virtual ~Base()=0; // Pure virtual destructor
};
Base::~Base()
{

std::cout << "Pure virtual destructor is called";
}
class Derived : public Base

 328

{
public:

~Derived()
{

std::cout << "~Derived() is executed\n";
}

};
int main()
{

Base *b = new Derived();
delete b;
return 0;

}

The output of the above code is:

~Derived() is executed
Pure virtual destructor is called

Bear in mind that a class in your code becomes an abstract class if you have
pure virtual destructors. Consider the program below. Write it in your C++
window and see how it runs.

#include <iostream>
class Test
{
public:

virtual ~Test()=0; // Test now becomes abstract class
};
Test::~Test() { }
int main()
{

Test p;
Test* t1 = new Test;
return 0;

}

 329

When you run the above code in the compiler, you receive the following
messages:

[Error] cannot declare variable ‘p’ to be of abstract type ‘Test’
[Note] because the following virtual functions are pure within ‘Test’:
[Note] virtual Test::~Test()
[Error] cannot allocate an object of abstract type ‘Test’
[Note] since type ‘Test’ has pure virtual functions

If you make the changes indicated in the error to the code, the program
compiles without any errors.

 330

Chapter 16

Introduction to Private Destructors

// This program is an example of a private destructor
#include <iostream>
using namespace std;

class Test {
private:

~Test() {}
};
int main()
{
}

If you run the above code, you will see it compile with no errors. Therefore,
you can say that there is no compiler error in the code, which indicates that
the compiler does not throw an error when it comes across a private
destructor. Consider the program below:

// This program is used to explain how a private destructor functions
#include <iostream>
using namespace std;
class Test {
private:

~Test() {}
};
int main()
{

Test t;
}

When you run the above code, you will receive a compile error. The compiler

 331

notes that you have declared a variable ‘t’ and it cannot delete it from the
class or code since the destructor you have defined is private. What do you
think happens in the following code?

// Code to understand private destructors
#include <iostream>
using namespace std;

class Test {
private:

~Test() {}
};
int main()
{

Test* t;
}

When you run the above code, you do not receive any error. There is no
object constructed as part of the code, and the compiler uses the pointer.
Therefore, there is no use of a destructor. Now, what about the following
program?

// Example of a private destructor
#include <iostream>

using namespace std;
class Test {

private:
~Test() {}

};
int main()
{

Test* t = new Test;
}

When you run the above code, you will not receive any error in the code.
Why do you think this is the case? The above code uses dynamic memory
allocation to store the variables. Therefore, it is your duty to delete the object
stored in the dynamic memory. It is for this reason why the compiler does not
care.

 332

In case you create a destructor and label it as a private member function, you
can also create another instance in the class using the malloc() function
(memory allocation). Consider the following example:

// Example of a private destructor
#include <bits/stdc++.h>

using namespace std;
class Test {

public:
Test() // Constructor
{

cout << "Constructor called\n";
}

private:
~Test() // Private Destructor
{

cout << "Destructor called\n";
}

};
int main()

{
Test* t = (Test*)malloc(sizeof(Test));
return 0;

}

You do not receive any output when you run the code. The following code
fails to compile accurately.

// Example of a private destructor
#include <iostream>
using namespace std;
class Test {
private:

~Test() {}
};
int main()
{

Test* t = new Test;

 333

delete t;
}

When you create a class with a private destructor, a dynamic object is created
for those classes. The following example is one where you can create a class
using a private destructor. You can also create a friend function in the class.
This function is only used to delete objects.

// Example of a private destructor
#include <iostream>

// a class with private destructor
class Test {
private:

~Test() {}
friend void destructTest(Test*);

};
// Only this function can destruct objects of Test

void destructTest(Test* ptr)
{

delete ptr;
}

int main()
{

// create an object
Test* ptr = new Test;

// destruct the object
destructTest(ptr);

return 0;
}

When you want to control or monitor the destruction or deletion of objects in
a class, you need to make the destructor private. If you use dynamically
created objects in your classes, you can delete the object by passing pointers
in the function as arguments or parameters. These functions delete the objects
in the code. It is important to note that a reference to an object after the
function is called will lead to a dangler.

 334

Chapter 17

Exception Handling in C++

C++ is very different from C in terms of exception handling. An exception is
any abnormal condition or a runtime error in the code. These are anomalies
the compiler encounters when it executes the lines of code written. The
following are the types of exceptions you may encounter when the compiler
runs the program:

1. Synchronous

2. Asynchronous

An asynchronous error is beyond the compiler's control and the code written
in the application. If you want to prevent the occurrence of an asynchronous
error, you can use the following keywords:

1. Try: If you add this keyword at the beginning of a block of code,
you can indicate to the compiler that this block of code may
throw an error or exception

2. Catch: This keyword depicts that block of code that should be
executed when the compiler throws a specific error

3. Throw: This keyword throws an exception or lists the different
exceptions the block of code may throw. The compiler can
ignore these errors and avoid handling them if it chooses to.

Importance of Exception Handling
The following are the reasons why you need to use or include error handling
code or keywords in your program:

 335

Separation of Normal Code From Error Handling Code
If you use traditional methods to write error handling codes, you can include
if-else functions and other conditional statements to handle any errors. This
only leads to confusion since the error handling code gets mixed with the
normal flow, which makes it difficult for you to read the code. It also
becomes difficult to maintain the code. If you use try-catch blocks of code in
your program, you can separate the normal code from the error handling
code.

Methods and Functions Can Choose How to Handle Exceptions
Functions and methods have different operations within the body, which may
throw some exceptions, but these functions and methods can choose to
handle these exceptions differently. If the function is called elsewhere in the
program, the compiler can choose how to handle the other exceptions in the
code. If the function caller does not care about the exceptions or misses them,
then the caller of the caller will need to handle the error in the code.

When you write code in C++, you can write the throw keyword against the
statements where you think there will be an error. The caller of the function
with this keyword will need to identify a way to handle the exceptions. It can
either catch the error or specify it again to the compiler.

Grouping Errors
Exceptions in C++ can either be objects or basic types of member functions
and variables. You can write a few lines of code by creating a hierarchy of
certain exception objects. You can group these objects based on their classes
and namespaces and then categorize them based on their type.

Exception Handling Examples
The following is an example of how you can use exception handling in C++.
This program's output will explain how the try-catch blocks of code are used
by the compiler.

#include <iostream>
using namespace std;
int main()
{

 336

int x = -1;
// Some code
cout << "Before try \n";
try {

cout << "Inside try \n";
if (x < 0)
{

throw x;
cout << "After throw (Never executed) \n";

}
}
catch (int x) {

cout << "Exception Caught \n";
}
cout << "After catch (Will be executed) \n";
return 0;

}

The following is the output of the code:

Before try
Inside try
Exception Caught
After catch (Will be executed)

C++ also allows you to use a specific type of exception handler called the
‘catch-all’ block. You can use this function to catch any exceptions in the
code. For instance, the following program throws an exception as an integer
value. There is, however, no way to catch the error. In this case, the catch(…)
block of code will be executed by the compiler.

#include <iostream>
using namespace std;
int main()
{

try {
throw 10;

}

 337

catch (char *excp) {
cout << "Caught " << excp;

}
catch (...) {

cout << "Default Exception\n";
}
return 0;

}

The output of the following code is: Default Exception.

As mentioned in the first book, you cannot convert primitive data types in the
code. This means you cannot use implicit type conversions in the code.
Consider the following example where we are trying to convert a character
into an integer.

#include <iostream>
using namespace std;
int main()
{

try {
throw 'a';

}
catch (int x) {

cout << "Caught " << x;
}
catch (...) {

cout << "Default Exception\n";
}
return 0;

}

You receive the following output when you run the code: Default Exception.

If the compiler throws an exception that is not caught anywhere in the code,
the program will end. For instance, the following program throws a char
exception since there is no catch block or exception handling code to catch
this error.

 338

#include <iostream>
using namespace std;
int main()
{

try {
throw 'a';

}
catch (int x) {

cout << "Caught ";
}
return 0;

}

The output of the above code is:

terminate called after throwing an instance of 'char'

This application has requested the Runtime to terminate it in an

unusual way. Please contact the application's support team for

more information.

You can change the way the code behaves by writing blocks of code to
indicate unexpected functions.

There are instances when you may receive an error in the derived class block
of code. It is important to ensure the compiler can catch the error in this code
before it looks at the base class exception. Therefore, you should first write
exception handling code in the derived class. C++, like Java, is built with a
library of exceptions that caters to all forms of base or standard exceptions.
Any standard exception in your code can be caught by the compiler using this
type.

It is unfortunate that the exceptions in C++ are left unchecked by the
compiler. The compiler does not care if the exception in the code is identified
or not. C++ does not require the compiler to specify the exceptions caught in
the code or program. It is recommended that the exceptions are identified.
Consider the following example. You receive an output with no exceptions,
but the function fun() should have listed a set of unchecked exceptions.

 339

#include <iostream>
using namespace std;
// This function signature is fine by the compiler, but not
recommended.
// Ideally, the function should specify all uncaught exceptions and
function
// signature should be "void fun(int *ptr, int x) throw (int *, int)"
void fun(int *ptr, int x)
{

if (ptr == NULL)
throw ptr;

if (x == 0)
throw x;

/* Some functionality */
}
int main()
{

try {
fun(NULL, 0);

}
catch(...) {

cout << "Caught exception from fun()";
}
return 0;

}
The output: Caught exception from fun().

It is better to write the above code in the following manner:

#include <iostream>
using namespace std;
// Here we specify the exceptions that this function
// throws.
void fun(int *ptr, int x) throw (int *, int)
{

if (ptr == NULL)
throw ptr;

if (x == 0)

 340

throw x;
/* Some functionality */

}
int main()
{

try {
fun(NULL, 0);

}
catch(...) {

cout << "Caught exception from fun()";
}
return 0;

}

The output of the above code is: Caught exception from fun().

You can also use try-catch blocks and nest them in the code if you want to re-
throw exceptions in the output:

#include <iostream>
using namespace std;
int main()
{

try {
try {

throw 20;
}
catch (int n) {

cout << "Handle Partially ";
throw; // Re-throwing an exception

}
}
catch (int n) {

cout << "Handle remaining ";
}
return 0;

}
The output is: Handle Partially Handle remaining

 341

You can also use the ‘throw’ keyword if you want to re-throw an exception.
The function can then handle a part of the exception and let the caller handle
the other part. When the code throws an exception, every object created in the
class or try block will be removed from the code before the compiler moves
back to the code's catch block.

#include <iostream>
using namespace std;
class Test {
public:

Test() { cout << "Constructor of Test " << endl; }
~Test() { cout << "Destructor of Test " << endl; }

};
int main()
{

try {
Test t1;
throw 10;

}
catch (int i) {

cout << "Caught " << i << endl;
}

}

The following is the output of the code:

Constructor of Test
Destructor of Test
Caught 10

 342

Chapter 18

Stack Unwinding

You can remove functions in the code using an option known as stack
unwinding. Using stack unwinding, you can remove function arguments,
parameters, operators, and objects from the function's call stack. Stack
handling is closely related to exception handling. When the compiler
identifies an error in the code, it will look at the entire call stack to identify
the error. The compiler looks for the exception handler in the code and the
different entries associated with the handler. It will then remove the entire
function with the exception handler code block from the function stack. This
indicates that stack unwinding is a part of the exception handling process,
especially since it relates to a function that is not handled in the same
function.

Consider the following program:

#include <iostream>

using namespace std;

// a sample function f1() that throws an int exception
void f1() throw (int) {

cout<<"\n f1() Start ";
throw 100;
cout<<"\n f1() End ";

}

// Another sample function f2() that calls f1()

 343

void f2() throw (int) {
cout<<"\n f2() Start ";
f1();
cout<<"\n f2() End ";

}

// Another sample function f3() that calls f2() and handles exception
thrown by f1()
void f3() {

cout<<"\n f3() Start ";
try {

f2();
}
catch(int i) {
cout<<"\n Caught Exception: "<<i;

}
cout<<"\n f3() End";

}

// a driver function to demonstrate Stack Unwinding process
int main() {

f3();

getchar();
return 0;

}

The following is the output of the code:

f3() Start
f2() Start
f1() Start
Caught Exception: 100
f3() End

Let us look at the different functions in the code. When the first function

 344

[f1()] throws an exception in your output, the entry is removed from the call
stack. The compiler does this since the function with the error does not
contain an exception handler code. The second function [f2()] does not have
an exception handler code in it. Therefore, the compiler will remove the code
from the stack. The last function in the code is [f3()]. The code in this
function contains an exception handler block of code. When the compiler
identifies the error, it will execute the catch block in the code. The compiler
will run the code after the exception handler code. It is important to note that
the compiler does not run the lines of code found in the first two functions.

//inside f1()
cout<<"\n f1() End ";

//inside f2()
cout<<"\n f2() End ";

If you have some local objects created in the first two functions, the
destructors used in the base functions will be called to remove any lines or
blocks of code during the process of stack unwinding.

 345

Chapter 19

Identifying Exceptions in Base
and Derived Classes

If the compiler identifies exceptions in both the base and derived classes in
the code, then it will not run the code or give you an output. When you write
the code, you need to write an exception handler code in both the base and
derived classes, and the exception handler block should be present before the
block for the base class.

You may wonder why you need to add the exception handler block of code
for the derived class before the base class. If you write the code for the base
class before the derived class, the compiler will not reach the exception
handler block of code in the derived class. For instance, the program below
will give you the output: “Caught Base Exception.”

#include<iostream>
using namespace std;

class Base {};
class Derived: public Base {};
int main()
{

Derived d;
// some other stuff
try {

// Some monitored code
throw d;

}
catch(Base b) {

cout<<"Caught Base Exception";
}

 346

catch(Derived d) { //This catch block is NEVER executed
cout<<"Caught Derived Exception";

}
getchar();
return 0;

}

If you change the order of the exception handler statements in the code
above, the compiler can access both the statements easily. The following is a
modified program of the above code, but it prints the following output:
“Caught Derived Exception.”

#include<iostream>
using namespace std;

class Base {};
class Derived: public Base {};
int main()
{

Derived d;
// some other stuff
try {

// Some monitored code
throw d;

}
catch(Derived d) {

cout<<"Caught Derived Exception";
}
catch(Base b) {

cout<<"Caught Base Exception";
}
getchar();
return 0;

}

In C++, the compiler may throw an error if it catches or goes through the
exception handler code in the base class before it looks at the derived class. It
will, however, continue to compile the code. Java, another object-oriented
programming language, does not throw any exceptions or errors if this

 347

happens. Consider the example below. This code returns the following
output: “exception Derived has already been caught.”

//filename Main.java
class Base extends Exception {}
class Derived extends Base {}
public class Main {

public static void main(String args[]) {
try {

throw new Derived();
}
catch(Base b) {}
catch(Derived d) {}

}
}

Differentiating Between Block and Type Conversions
Consider the following code:

#include <iostream>
using namespace std;

int main()
{

try
{

throw 'x';
}
catch(int x)
{

cout << " Caught int " << x;
}
catch(...)
{

cout << "Default catch block";
}

}

 348

The output of this block of code is: “Default catch block.”

In the program above, an exception is thrown by the compiler in the form of a
character. There is an exception handler block of code, but this is only to
catch an int error in the code. You may think that the compiler will match the
character's ASCII code and use the int exception handler to take care of the
error, but this is not what happens in C++. Consider the following example
where the exception handler code is not called for the object thrown as an
error.

#include <iostream>
using namespace std;

class MyExcept1 {};
class MyExcept2
{
public:

// Conversion constructor
MyExcept2 (const MyExcept1 &e)
{

cout << "Conversion constructor called";
}

};
int main()
{

try
{

MyExcept1 myexp1;
throw myexp1;

}
catch(MyExcept2 e2)
{

cout << "Caught MyExcept2 " << endl;
}
catch(...)
{

cout << " Default catch block " << endl;

 349

}
return 0;

}

 350

Chapter 20

Object Destruction and Error Handling

Before you run the code in C++, try to predict the output of the following
code:

#include <iostream>
using namespace std;

class Test {
public:

Test() { cout << "Constructing an object of Test " << endl; }
~Test() { cout << "Destructing an object of Test " << endl; }

};
int main() {
try {

Test t1;
throw 10;

} catch(int i) {
cout << "Caught " << i << endl;

}
}

The output of this code is:

Constructing an object of Test
Destructing an object of Test
Caught 10

When the compiler throws an exception, the code's destructor functions will
be called to remove the objects whose scope ends with the entire block. This
destructor is called before the compiler executes the exception handler code.
For this reason, the code above gives you the output “Caught 10” after

 351

“Destructing an object of Test.” How do you think the compiler will act when
it identifies an exception in the constructor? Consider the following example:

#include <iostream>
using namespace std;

class Test1 {
public:

Test1() { cout << "Constructing an Object of Test1" << endl; }
~Test1() { cout << "Destructing an Object of Test1" << endl; }

};
class Test2 {

public:
// Following constructor throws an integer exception
Test2() { cout << "Constructing an Object of Test2" << endl;

throw 20; }
~Test2() { cout << "Destructing an Object of Test2" << endl; }

};
int main() {
try {

Test1 t1; // Constructed and destructed
Test2 t2; // Partially constructed
Test1 t3; // t3 is not constructed as this statement never gets

executed
} catch(int i) {

cout << "Caught " << i << endl;
}

}

The output of the above program is:

Constructing an Object of Test1
Constructing an Object of Test2
Destructing an Object of Test1
Caught 20

The compiler calls the destructor only when it uses completely constructed
objects. If the constructor of the object leaves an exception, the compiler does
not call for the destructor. Before you execute the following program, try to

 352

predict its outcome.

#include <iostream>
using namespace std;

class Test {
static int count;
int id;

public:
Test() {

count++;
id = count;
cout << "Constructing object number " << id << endl;
if(id == 4)

throw 4;
}
~Test() { cout << "Destructing object number " << id << endl; }

};

int Test::count = 0;

int main() {
try {

Test array[5];
} catch(int i) {

cout << "Caught " << i << endl;
}

 353

Chapter 21

Searching Algorithms

A searching algorithm is designed to look for an element or print the same
element from the program's data structures or variables. There are numerous
algorithms you can use to search for elements in the structures. The
algorithms are classified into the following categories:

● Interval search: An interval search is one where the algorithm will
look for the element in a sorted structure. These algorithms are better
to use when compared to the next category since the structure is
broken down and divided into parts before the element is identified in
the structure—for example, binary search.

● Sequential search: In these types of algorithms, the compiler moves
from one element to the next to look for the element in the data
structure. An example of this algorithm is linear search.

Let us look at how these search algorithms work in C++.

Linear Search
Let us understand how the search algorithm works in C++ using an example.
Consider a problem where you have an array ‘arr[]’ with n elements; how
would you look for the value ‘x’ in the arr[]?

Input : arr[] = {10, 20, 80, 30, 60, 50,
110, 100, 130, 170}

x = 110;

Output : 6

Element x is present at index 6
Input : arr[] = {10, 20, 80, 30, 60, 50,

 354

110, 100, 130, 170}
x = 175;

Output : -1

Element x is not present in arr[].

The simplest way to perform a linear search is as follows:

1. Begin at the end of the array and compare the element you are
looking for against each array element.

2. If the element matches one of the elements in your array, return
the index

3. If the element does not match, move to the next element

4. If the element is not present in the array, return -1.

// C++ code to linearly search x in arr[]. If x
// is present then return its location, otherwise
// return -1

#include <iostream>
using namespace std;

int search(int arr[], int n, int x)
{

int i;
for (i = 0; i < n; i++)

if (arr[i] == x)
return i;

return -1;
}

// Driver code
int main(void)

 355

{
int arr[] = { 2, 3, 4, 10, 40 };
int x = 10;
int n = sizeof(arr) / sizeof(arr[0]);

// Function call
int result = search(arr, n, x);
(result == -1)

? cout << "Element is not present in array"
: cout << "Element is present at index " << result;

return 0;
}

Binary Search
As mentioned earlier, a binary search is based on the interval search
algorithm, where you look for an element in a sorted array. When compared
to a linear search algorithm, a binary search algorithm has a higher time
complexity.

A binary search uses the whole array as the interval when the search starts. It
then breaks the interval into parts to look for the search element. It divides
the array into half and looks for the element in the array's lower and upper
sections. Depending on where the element lies, the algorithm will break the
interval into a smaller section to look for it. It continues to do this until it
finds the element.

A binary search aims to use the existing information in the array after it sorts
the elements. This reduces the time complexity of the algorithm to O (log n).
In a binary search, half the elements are not considered after making one
comparison.

1. Sort the array.

2. Compare the search element x with the element in the middle of
the array.

3. If x is less than the middle element, ignore the right section of
the array since x can only lie in the left section of the array.

 356

4. We then perform the same functions with the left section of the
array.

5. If x is greater than the middle element in Step 3, we consider the
array's right section.

We will now look at two ways to implement the binary search algorithm:
recursive and iterative.

Before that, let us understand the time complexity of the binary search
algorithm. You can calculate the time complexity of an algorithm using the
following formula: T(n) = T(n/2) + c

You can remove the recurrence by using a master or recurrence tree method.

Recursive Implementation
// C++ program to implement recursive Binary Search
#include <bits/stdc++.h>
using namespace std;

// a recursive binary search function. It returns
// location of x in given array arr[l..r] is present,
// otherwise -1
int binarySearch(int arr[], int l, int r, int x)
{

if (r >= l) {
int mid = l + (r - l) / 2;

// If the element is present at the middle
// itself
if (arr[mid] == x)

return mid;

// If element is smaller than mid, then
// it can only be present in left subarray
if (arr[mid] > x)

 357

return binarySearch(arr, l, mid - 1, x);

// Else the element can only be present
// in right subarray
return binarySearch(arr, mid + 1, r, x);

}

// We reach here when element is not
// present in array
return -1;

}

int main(void)
{

int arr[] = { 2, 3, 4, 10, 40 };
int x = 10;
int n = sizeof(arr) / sizeof(arr[0]);
int result = binarySearch(arr, 0, n - 1, x);
(result == -1) ? cout << "Element is not present in array"

: cout << "Element is present at index " << result;
return 0;

}
The output of the code is:

Element is present at index 3

Iterative Implementation
// C++ program to implement recursive Binary Search
#include <bits/stdc++.h>
using namespace std;

// a iterative binary search function. It returns
// location of x in given array arr[l..r] if present,
// otherwise -1

 358

int binarySearch(int arr[], int l, int r, int x)
{

while (l <= r) {
int m = l + (r - l) / 2;

// Check if x is present at mid
if (arr[m] == x)

return m;

// If x greater, ignore left half
if (arr[m] < x)

l = m + 1;

// If x is smaller, ignore right half
else

r = m - 1;
}

// if we reach here, then element was
// not present
return -1;

}

int main(void)
{

int arr[] = { 2, 3, 4, 10, 40 };
int x = 10;
int n = sizeof(arr) / sizeof(arr[0]);
int result = binarySearch(arr, 0, n - 1, x);
(result == -1) ? cout << "Element is not present in array"

: cout << "Element is present at index " << result;
return 0;

}

 359

The output of the code is: Element is present at index 3

Jump Search
The jump search algorithm is similar to the binary search algorithm in the
sense that it looks for the search element in a sorted array. This algorithm's
objective is to search for the search element from fewer elements in the array.
The compiler can jump ahead by skipping a few elements or jumping ahead
by a few steps.

Let us understand this better using an example. Suppose you have an array
with n elements in it, and you need to jump between the elements by m fixed
steps. If you want to look for the search element in the array, you begin to
look at the following indices a[0], a[m], a[2m], ….. a[km]. When you find the
interval where the element may be, the linear search algorithm kicks in.

Consider the following array: (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610). The length of this array is 16. Let us now look for element 55 in
the array. The block size is 4, which means the compiler will jump four
elements each time.

Step 1: The compiler moves from index 0 to 3.
Step 2: The compiler moves from 4 to 8.
Step 3: The compiler jumps from 9 to 12.
Step 4: The element in position 12 is larger than 55, so we go back to
the previous step.
Step 5: The linear search algorithm kicks in and looks for the index of
the element.

Optimal Block Size
When you use the jump search algorithm, you need to choose the right block
size, so there are no issues in the algorithm. In the worst-case scenario, you
need to perform n/m jumps. If the element the compiler last checked was
greater than the search element, you need to perform m-1 comparisons when
the linear search algorithm kicks in. Therefore, in the worst-case scenario, the
number of jumps should be ((n/m) + m-1). This function's value will be
minimum if the value of the element ‘m’ is square root n. The step size,
therefore, should be m = √n.

 360

// C++ program to implement Jump Search

#include <bits/stdc++.h>
using namespace std;

int jumpSearch(int arr[], int x, int n)
{

// Finding block size to be jumped
int step = sqrt(n);

// Finding the block where element is
// present (if it is present)
int prev = 0;
while (arr[min(step, n)-1] < x)
{

prev = step;
step += sqrt(n);
if (prev >= n)

return -1;
}

// Doing a linear search for x in block
// beginning with prev.
while (arr[prev] < x)
{

prev++;

// If we reached next block or end of
// array, element is not present.
if (prev == min(step, n))

return -1;
}
// If element is found

 361

if (arr[prev] == x)
return prev;

return -1;
}

// Driver program to test function
int main()
{

int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377, 610 };

int x = 55;
int n = sizeof(arr) / sizeof(arr[0]);

// Find the index of 'x' using Jump Search
int index = jumpSearch(arr, x, n);

// Print the index where 'x' is located
cout << "\nNumber " << x << " is at index " << index;
return 0;

}

The output of this code: Number 55 is at index 10

Some important points to note about this algorithm are:

● This algorithm only works when an array is sorted

● Since the optimal length the compiler should jump is √ n, the time
complexity of this algorithm is O (√ n). This means the time
complexity of this algorithm is between the binary search and linear
search algorithms

The jump search algorithm is not as good as the binary search algorithm, but
it is better than the binary search algorithm since the compiler only needs to
move once back through the array. If the binary search algorithm is too

 362

expensive, you should use the jump search algorithm.

 363

Chapter 22

Sorting Algorithms

You use sorting algorithms when you want to arrange a list or array of
elements based on the comparison operator you want to include. This
comparison operator will be used to decide how the elements will be sorted in
the data structure where you want to arrange the elements. Let us look at
some common sorting algorithms.

Bubble Sort
The bubble sort algorithm is one of the simplest algorithms used in C++, and
it works by swapping the elements adjacent to each other in the array in case
they are not in the right order.

Consider the following example:

First Pass
(5 1 4 2 8) –> (1 5 4 2 8): In this step, the algorithm will compare the
elements in the array and swap the numbers 1 and 5.

(1 5 4 2 8) –> (1 4 5 2 8): In this step, the numbers 4 and 5 are swapped
since the number 5 is greater than 4.

(1 4 5 2 8) –> (1 4 2 5 8): In this step, the numbers 5 and 2 are swapped.

(1 4 2 5 8) –> (1 4 2 5 8): In the last step, the elements are ordered, so there
is no more swapping necessary.

Second Pass
(1 4 2 5 8) –> (1 4 2 5 8)

(1 4 2 5 8) –> (1 2 4 5 8): In this step, the numbers 4 and 2 are swapped

 364

since the number 4 is greater than 2.

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

The array is already sorted, but since the compiler is not aware that the
algorithm is complete, it will complete another round on the array and check
if any elements need to be swapped.

Third Pass
(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

Consider the following implementations of the bubble sort algorithm:

// C++ program for implementation of Bubble sort
#include <bits/stdc++.h>
using namespace std;

void swap(int *xp, int *yp)
{

int temp = *xp;
*xp = *yp;
*yp = temp;

}

// a function to implement bubble sort
void bubbleSort(int arr[], int n)
{

int i, j;
for (i = 0; i < n-1; i++)

 365

// Last i elements are already in place
for (j = 0; j < n-i-1; j++)

if (arr[j] > arr[j+1])
swap(&arr[j], &arr[j+1]);

}

/* Function to print an array */
void printArray(int arr[], int size)
{

int i;
for (i = 0; i < size; i++)

cout << arr[i] << " ";
cout << endl;

}

// Driver code
int main()
{

int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
cout<<"Sorted array: \n";
printArray(arr, n);
return 0;

}

The output of this code is:

Sorted array:

11 12 22 25 34 64 90

We can optimize the implementation of this sorting algorithm. The above
code runs more number of times than necessary, although the array is sorted.
You cannot stop the optimization since the inner loop does not perform any
swaps.

 366

// Optimized implementation of Bubble sort
#include <stdio.h>

void swap(int *xp, int *yp)
{

int temp = *xp;
*xp = *yp;
*yp = temp;

}

// An optimized version of Bubble Sort
void bubbleSort(int arr[], int n)
{

int i, j;
bool swapped;
for (i = 0; i < n-1; i++)
{

swapped = false;
for (j = 0; j < n-i-1; j++)
{

if (arr[j] > arr[j+1])
{

swap(&arr[j], &arr[j+1]);
swapped = true;

}
}

// IF no two elements were swapped by inner loop, then break
if (swapped == false)

break;
}

}

/* Function to print an array */

 367

void printArray(int arr[], int size)
{

int i;
for (i=0; i < size; i++)

printf("%d ", arr[i]);
printf("n");

}

// Driver program to test above functions
int main()
{

int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array: \n");
printArray(arr, n);
return 0;

}

The output of the above code is:

Sorted array:

11 12 22 25 34 64 90

Selection Sort
Using the selection sort algorithm, you can sort the elements in the array by
looking at the smallest element in the array in ascending order. The compiler
will only perform this sorting algorithm in the part of the array with unsorted
elements. The algorithm divides the array into two arrays:

● The section of the array with sorted elements

● The section of the array which does not have any sorted elements

When the selection sort algorithm iterates, the element which is the smallest

 368

in the array from the unsorted section of the array. This element is then
moved to the sorted section of the array. Consider the following section:

arr[] = 64 25 12 22 11

// Find the minimum element in arr[0...4]
// and place it at the beginning
11 25 12 22 64

// Find the minimum element in arr[1...4]
// and place it at the beginning of arr[1...4]
11 12 25 22 64

// Find the minimum element in arr[2...4]
// and place it at the beginning of arr[2...4]
11 12 22 25 64

// Find the minimum element in arr[3...4]
// and place it at beginning of arr[3...4]
11 12 22 25 64
Let us write down the above example in the form of a program:
// C++ program for implementation of selection sort
#include <bits/stdc++.h>
using namespace std;

void swap(int *xp, int *yp)
{

int temp = *xp;
*xp = *yp;
*yp = temp;

}

void selectionSort(int arr[], int n)
{

int i, j, min_idx;

 369

// One by one move boundary of unsorted subarray
for (i = 0; i < n-1; i++)
{

// Find the minimum element in unsorted array
min_idx = i;
for (j = i+1; j < n; j++)
if (arr[j] < arr[min_idx])

min_idx = j;

// Swap the found minimum element with the first element
swap(&arr[min_idx], &arr[i]);

}
}

/* Function to print an array */
void printArray(int arr[], int size)
{

int i;
for (i=0; i < size; i++)

cout << arr[i] << " ";
cout << endl;

}

// Driver program to test above functions
int main()
{

int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr)/sizeof(arr[0]);
selectionSort(arr, n);
cout << "Sorted array: \n";
printArray(arr, n);
return 0;

}
The output of the program is:
Sorted array:

 370

11 12 22 25 64

Insertion Sort
The insertion sort algorithm is a simple and straightforward algorithm that
works in the same way you would sort or arrange playing cards. In this
algorithm, the array is split into two parts – sorted and unsorted arrays. The
values in the unsorted array will then be sorted and moved into the right
positions.

Let us understand this algorithm better by considering how it works when the
compiler tries to sort the elements in the ascending order:

1. Create an array with n elements.

2. Iterate from the first element in the array to the nth element in
the array

3. Compare every element in the array with its predecessor

4. If the element is smaller than the predecessor, you should
compare it to the other elements before the predecessor. Move
the elements around to ensure there is enough space for the
element which is swapped

Consider the following example: The array is 12, 11, 13, 5, 6

12, 11, 13, 5, 6

We will add a loop where the iterative element ‘i’ is assigned the value 1.
Since there are only 5 elements in the array, the value of ‘i' can be
incremented until 4.

i = 1. Since element 11 is smaller than 12, the number 12 is moved after
element 11.

11, 12, 13, 5, 6

i = 2. The number 13 will stay in its position since the first three elements are
sorted.

11, 12, 13, 5, 6

 371

i = 3. The number 5 will move to the start of the array since it is the smallest
number when compared to the other elements in the array. The other
elements will be moved ahead.

5, 11, 12, 13, 6

i = 4. The number 6 will move next to 5 since it is smaller than all the other
elements in the array.

5, 6, 11, 12, 13

Let us write the above example in C++.

// C++ program for insertion sort
#include <bits/stdc++.h>
using namespace std;

/* Function to sort an array using insertion sort*/
void insertionSort(int arr[], int n)
{

int i, key, j;
for (i = 1; i < n; i++)
{

key = arr[i];
j = i - 1;

/* Move elements of arr[0..i-1], that are
greater than key, to one position ahead
of their current position */
while (j >= 0 && arr[j] > key)
{

arr[j + 1] = arr[j];
j = j - 1;

}
arr[j + 1] = key;

}
}

 372

// a utility function to print an array of size n
void printArray(int arr[], int n)
{

int i;
for (i = 0; i < n; i++)

cout << arr[i] << " ";
cout << endl;

}

/* Driver code */
int main()
{

int arr[] = { 12, 11, 13, 5, 6 };
int n = sizeof(arr) / sizeof(arr[0]);

insertionSort(arr, n);
printArray(arr, n);

return 0;
}

Quicksort
The quicksort algorithm is a divide and conquer algorithm. In this algorithm,
the compiler picks an element in the array as the pivot and divides the
elements in the array based on that pivot. There are different ways to
implement the quick sort algorithm in C++.

1. The algorithm can choose the first element in the array as the
pivot

2. The algorithm can choose the last element as the pivot (we will
look at this in detail in the section below)

3. Choose any element in the array as the pivot

4. Choose the median of the elements in the array and pick that as

 373

the pivot

One of the most important processes in a quick sort algorithm is the
partition() function. This function's target is to take an element from the array
as the pivot and put it in the right position. The elements in the array which
are smaller than the pivot will be moved to one side of the array while the
others will move to the other section of the pivot. Consider the following
pseudo-code for this algorithm:

/* low --> Starting index, high --> Ending index */
quickSort(arr[], low, high)
{

if (low < high)
{

/* pi is partitioning index, arr[pi] is now
at right place */

pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // Before pi
quickSort(arr, pi + 1, high); // After pi

}
}

Understanding the Partition Algorithm

/* low --> Starting index, high --> Ending index */

quickSort(arr[], low, high)

{

if (low < high)

{

/* pi is partitioning index, arr[pi] is now

at right place */

pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // Before pi

 374

quickSort(arr, pi + 1, high); // After pi

}

}

The pseudo code for the partition algorithm is:

/* low --> Starting index, high --> Ending index */
quickSort(arr[], low, high)
{

if (low < high)
{

/* pi is partitioning index, arr[pi] is now
at right place */

pi = partition(arr, low, high);

quickSort(arr, low, pi - 1); // Before pi
quickSort(arr, pi + 1, high); // After pi

}
}
/* This function takes last element as pivot, places

the pivot element at its correct position in sorted
array, and places all smaller (smaller than pivot)

to left of pivot and all greater elements to right
of pivot */

partition (arr[], low, high)
{

// pivot (Element to be placed at right position)
pivot = arr[high];

i = (low - 1) // Index of smaller element

for (j = low; j <= high- 1; j++)
{

// If current element is smaller than the pivot
if (arr[j] < pivot)
{

i++; // increment index of smaller element
swap arr[i] and arr[j]

 375

}
}
swap arr[i + 1] and arr[high])
return (i + 1)

}
Let us look at the illustration of this function:
arr[] = {10, 80, 30, 90, 40, 50, 70}
Indexes: 0 1 2 3 4 5 6

low = 0, high = 6, pivot = arr[h] = 70
Initialize index of smaller element, i = -1

Traverse elements from j = low to high-1
j = 0 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 0
arr[] = {10, 80, 30, 90, 40, 50, 70} // No change as i and j

// are same

j = 1 : Since arr[j] > pivot, do nothing
// No change in i and arr[]

j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 1
arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and 30

j = 3 : Since arr[j] > pivot, do nothing
// No change in i and arr[]

j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
i = 2
arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40 Swapped
j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j]
i = 3
arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50 Swapped

We come out of loop because j is now equal to high-1.
Finally we place pivot at correct position by swapping
arr[i+1] and arr[high] (or pivot)
arr[] = {10, 30, 40, 50, 70, 90, 80} // 80 and 70 Swapped

 376

Now 70 is at its correct place. All elements smaller than
70 are before it and all elements greater than 70 are after
it.
Let us look at how to implement this algorithm in C++:
/* C++ implementation of QuickSort */
#include <bits/stdc++.h>
using namespace std;

// a utility function to swap two elements
void swap(int* a, int* b)
{

int t = *a;
*a = *b;
*b = t;

}

/* This function takes last element as pivot, places
the pivot element at its correct position in sorted
array, and places all smaller (smaller than pivot)
to left of pivot and all greater elements to right
of pivot */
int partition (int arr[], int low, int high)
{

int pivot = arr[high]; // pivot
int i = (low - 1); // Index of smaller element

for (int j = low; j <= high - 1; j++)
{

// If current element is smaller than the pivot
if (arr[j] < pivot)
{

i++; // increment index of smaller element
swap(&arr[i], &arr[j]);

}
}

 377

swap(&arr[i + 1], &arr[high]);
return (i + 1);

}

/* The main function that implements QuickSort
arr[] --> Array to be sorted,
low --> Starting index,
high --> Ending index */
void quickSort(int arr[], int low, int high)
{

if (low < high)
{

/* pi is partitioning index, arr[p] is now
at right place */
int pi = partition(arr, low, high);

// Separately sort elements before
// partition and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);

}
}

/* Function to print an array */
void printArray(int arr[], int size)
{

int i;
for (i = 0; i < size; i++)

cout << arr[i] << " ";
cout << endl;

}

// Driver Code
int main()

 378

{
int arr[] = {10, 7, 8, 9, 1, 5};
int n = sizeof(arr) / sizeof(arr[0]);
quickSort(arr, 0, n - 1);
cout << "Sorted array: \n";
printArray(arr, n);
return 0;

}

 379

Chapter 23

Tips to Optimize Code in C++

When you write code in C++ or any other programming language, your main
objective should be to write code that works correctly. Once you accomplish
this, you need to change the code to improve the following:

1. The security of the code

2. The quantity of memory used while running the code

3. Performance of the code

This chapter gives you a brief idea of the areas to consider if you want to
improve the performance of your code. Some points to keep in mind are:

● You can use numerous techniques to improve the performance of
your code. This method, however, can lead to the creation of a larger
file.

● If you choose to optimize multiple areas in your code at the same
time, it may lead to some conflict between the areas of your code.
For instance, you may not be able to optimize both the performance
of the code and memory use. You need to strike a balance between
the two.

● You may always need to optimize your code, and this process is
never-ending. The code you write is never fully optimized. There is
always room to improve some parts of your code if you want the
code to run better.

● You can use different tricks to improve the performance of the code.
While you do this, you should ensure that you do not forget about

 380

some coding standards. Therefore, do not use cheap tricks to make
the code work better.

Using the Appropriate Algorithm to Optimize Code
Before you write any code, you need to sit down and understand the task.
You then need to develop the right algorithm to use to optimize the code. We
are going to understand how the algorithm affects your code using a simple
example. In the program, we are going to use a two-dimensional segment to
identify the maximum value and, for this, we will take two whole numbers.
In the first code, we will not look at the program’s performance. We will then
look at a few methods to use to improve the performance of the code.

Consider the following parameters used in the code: both numbers should lie
between the interval [-100, 100]. The maximum value is calculated using the
function: (x * x + y * y) / (y * y + b).

There are two variables used in this function – x and y. We are also using a
constant ‘b’ which is a user-defined value. The value of this constant should
always be greater than zero but less than 1000. In the example below, we do
not use the pow() function from the math.h library.

#include <iostream>
#define LEFT_MARGINE_FOR_X -100.0
#define RIGHT_MARGINE_FOR_X 100.0
#define LEFT_MARGINE_FOR_Y -100.0
#define RIGHT_MARGINE_FOR_Y 100.0
using namespace std;
int
main(void)
{
//Get the constant value
cout<<"Enter the constant value b>0"<<endl;
cout<<"b->"; double dB; cin>>dB;
if(dB<=0) return EXIT_FAILURE;
if(dB>1000) return EXIT_FAILURE;
//This is the potential maximum value of the function
//and all other values could be bigger or smaller
double dMaximumValue =

 381

(LEFT_MARGINE_FOR_X*LEFT_MARGINE_FOR_X+LEFT_MARGINE_FOR_Y*LEFT_MARGINE_FOR_Y)/
(LEFT_MARGINE_FOR_Y*LEFT_MARGINE_FOR_Y+dB);
double dMaximumX = LEFT_MARGINE_FOR_X;
double dMaximumY = LEFT_MARGINE_FOR_Y;
for(double dX=LEFT_MARGINE_FOR_X;
dX<=RIGHT_MARGINE_FOR_X; dX+=1.0)

for(double dY=LEFT_MARGINE_FOR_Y;
dY<=RIGHT_MARGINE_FOR_Y; dY+=1.0)

if(dMaximumValue<((dX*dX+dY*dY)/(dY*dY+dB)))
{

dMaximumValue=((dX*dX+dY*dY)/(dY*dY+dB));
dMaximumX=dX;
dMaximumY=dY;

}
cout<<"Maximum value of the function is="<<
dMaximumValue<<endl;
cout<<endl<<endl;
cout<<"Value for x="<<dMaximumX<<endl

<<"Value for y="<<dMaximumY<<endl;
return EXIT_SUCCESS;

}

Look at the code carefully. You notice that the function and value dX * dX is
run by the process too many times, and the value is stored multiple times in
the memory. This is a waste of CPU time and memory. What do you think we
could do to improve the speed of the code? An alternative to writing the
operation multiple times in the code is to declare a variable and assign this
function to it. Let us define a variable d, which stores the value of the
function dX * dX. You can use the variable ‘d’ everywhere in the code where
you need to use the calculation. You can optimize other sections of the above
code as well. Try to spot those areas.

The next area we need to look at is how general the lines of code are. You
need to see whether the program runs as fast as you want it to. If you want to
increase the speed of the algorithm, you need to tweak some functions based
on the size of your input. What does this mean?

You can improve the speed of the code you have written using multiple

 382

algorithms instead of only one algorithm. When you use two algorithms, you
can instruct the compiler to switch between the algorithms based on a
condition.

Optimizing Code
When you write code, every element in your code uses some space in the
memory. It is important to understand how each word in your code uses
memory to reduce consumption or usage. Let us consider a simple example
where we try to swap the values in two variables in the memory. You can do
this using numerous sorting algorithms. To understand this better, let us take
a real-world example – you have two people sitting in two different chairs.
You introduce a third or temporary chair to hold one of the individuals when
they want to swap chairs.

Consider the following code:

int nFirstOne =1, nSecondOne=2;
int nTemp = nFirstOne;
nFirstOne = nSecondOne;
nSecondOne = nTemp;

This code is easy to use, but when you create a temporary variable in your
code, the compiler will assign some space in the memory for this object. You
can avoid wasting memory space by avoiding the usage of a temporary
variable in the code.

int nFirstOne = 3, nSecondOne = 7;
nFirstOne += nSecondOne;
nSecondOne = nFirstOne ? nSecondOne;
nFirstOne -= nSecondOne;

You may need to swap large values in the memory to a different section.
How would you do this? The easiest way to do this is to use pointers. Instead
of copying the same value across the memory, use a pointer to obtain the
address of the value in the memory. You can then change their address
instead of moving the value from one location to the next in the memory.

You may wonder how you can determine if your code is faster or how you
can calculate this. When you finish writing your code, the system will

 383

translate it into a language it understands using the assembler. It will then
translate this into machine code, which it quickly interprets. Every operation
you write in the code takes place in the processor. It may also take place in
the graphic card or mathematical coprocessor.

One operation can take place in one clock cycle, or it may take a few. For this
reason, it is easier for the computer to multiply numbers compared to
division. This could be the case because of the optimization the computer
performs. You can also leave the task of optimization to the compiler in some
cases.

If you want to learn more about how fast your code is, you should know the
architecture of the computer you are using. The code can be faster because of
one of the following reasons:

1. The program runs in the cache memory

2. The mathematical coprocessor processes sections of the code

3. A branch predictor was used correctly by the compiler

Let us now consider the following numbers: O(n), O(log(n) *n), n*n, n!.
When you use this type of code, the program's speed depends on the number
you key into the system. Let us assume you enter n = 10. The program may
take ‘t’ amount of time to run and compile. What do you think will happen
when you enter n = 100? The program may take 10 times longer to run. It is
important to understand the limits a small number can have on your
algorithm.

Some people also take time to see how fast the code runs. This is not the right
thing to do since not every program or algorithm you key in is completed first
by the processor. Since an algorithm does not run in the computer’s kernel
mode, the processor can get another task to perform. This means the
algorithm is put on hold. Therefore, the time you write down is not an
accurate representation of how fast the code can run. If you have more than
one processor in the system, it is harder to identify which processor is
running the algorithm. It is tricky to calculate the speed at which the
processor completes running your code.

If you want to optimize or improve the speed at which the program runs, you

 384

need to prevent the processor from shifting the code to a different core during
the run. You also need to find a way to prevent the counter from switching
between tasks since that only increases the time the processor takes to run the
code. You may also notice some differences in your code since the computer
does not transfer all optimizations into machine code.

Using Input and Output Operators
When you write code, it is best to identify the functions you can use which do
not occupy too much space in the memory. Most times, you can improve the
speed of the program by using a different function to perform the same task.
Printf and scanf are two functions used often in C programming, but you can
use the same keywords in C++ if you can manipulate some files. This
increases the speed of the program and can save you a lot of time and
memory.

Let us understand this better through an example. You have two numbers in a
file and need to read those numbers. It is best to use the keywords cin and
cout on files in terms of security since you have instructions passed to the
compiler from the header library in C++. If you use printf or scanf, you may
need to use other functions of keywords to increase the speed of the program.
If you want to print strings, you can use the keyword put or use an equivalent
from file operations.

Optimizing the Use of Operators
You need to use operators to perform certain functions in C++. Basic
operators, such as +=, *= or -= use a lot of space in the memory. This is
especially true when it comes to basic data types. Experts recommend you
use a postfix decrement or increment along with the prefix operator if you
want to improve the functioning of the code. You may also need to use the
<< or >> operators instead of division and multiplication, but you need to be
careful when you use those operators. This may lead to a huge mistake in the
code. It takes some time to identify these mistakes and, to overcome the
mistake, you need to add more lines of code. This is only going to reduce the
speed and performance of the program.

It is best to use bit operators in your code since these increase the speed of
the program. If you are not careful about how you use these operators, you

 385

may end up with machine-dependent code, and this is something you need to
avoid.

C++ is a hybrid language and allows you to use an assembler’s support to
improve the functioning of your program. It also allows you to develop
solutions to problems using object-oriented programming. If you are adept at
coding, you can develop libraries to improve your code's functioning.

Optimization of Conditional Statements
You may need to include numerous conditional statements in your code,
depending on the type of code you are writing. Most people choose to use the
‘if’ conditional statement, but it is advised that you do not do this. It is best to
use the switch statement. When you use the former conditional statement, the
compiler needs to test every element in the code, and this creates numerous
temporary variables to store the code. This reduces the performance of the
code.

It is important to note that the ‘if’ conditional statement has many
optimizations built into the statement itself. If you only have a few conditions
to test, and if these are connected to the or operator, you can use the ‘if’
conditional statement to calculate the value. Let us look at this using an
example. We have two conditions, and each of these uses the and operator. If
you have two variables and want to test if both values are equal to a certain
number, you use the and operator. If the compiler notes that one value does
not meet the condition, it returns false and does not look at the second value.

When you use conditional statements in your code, it is best to identify the
statements which often occur before the other conditional statements. This is
the best way to determine if an expression is true or false. If you have too
many conditions, you need to sort them and split them into a nested
conditional statement. There may be a possibility that the compiler does not
look at every branch in the nest you have created. Some lines of code may be
useless to the compiler, but they simply occupy memory.

You may also come across instances where you have long expressions with
numerous conditions. Most programmers choose to use functions in this
instance, but what they forget is that functions take up a lot of memory. They
create calls and stacks in memory. It is best to use a macro to prevent the

 386

usage of memory. This increases the speed of the program. It is important to
remember that negation is also an operation you can use in your code.

Dealing with Functions
If you are not careful when you use functions, you may end up with bad code.
Consider the following example. If you have code written in the same format
as the statements below, it will lead to a bad code:

for(int i=1; i<=10; ++i)
DoSomething(i);

Why do you think this is the case? When you write some code similar to the
above, you need to call the function a few times. It is important to remember
that the calls the compiler makes to the functions in the code use a lot of
memory. If you want to improve the performance of the code, you can write
the statement in the following format:

DoSomething(n);

The next thing you need to learn more about is inline functions. The compiler
will use an inline function similar to a macro if it is small. This is one way to
improve the performance of your code. You can also increase the reusability
of the code in this manner. When you pass large objects from one function to
another, it is best to use references or pointers. It is better to use a reference
since this allows you to write code that is easy to read. Having said that, if
you are worried about changing the value of the actual variable being passed
to the function, you should avoid using references. If you use a constant
object, you should use the keyword const since it will save you some time.

It is important to note that the arguments and parameters passed in the
function will change depending on the situation. When you create a
temporary object for a function, it will only reduce the speed of the program.
We have looked at how you can avoid using or creating temporary variables
in the code.

Some programmers use recursive functions depending on the situation.
Recursive functions can slow the code down. So you should avoid the use of
recursive functions if you can since these reduce the performance of your
code.

 387

Optimizing Loops
Let us assume you have a set of numbers, and you are to check if the value is
greater than 5 or less than 0. When you write the code, you need to choose
the second option. It is easier for the compiler to check if a value is greater
than zero than to check which number is greater than 10. In simple words, the
statement written below makes the program slower when compared to the
second statement in this section.

for(i =0; i<10; i++)

As mentioned, it is best to use this loop instead of the above. If you are not
well-versed with C++ programming, this line of code may be difficult for you
to read.

for(i=10; i--;)

Similarly, if you find yourself in a situation where you need to pick from <=n
or !=0, you should choose the second option since that is faster. For instance,
if you want to calculate a factorial, do not try to use a loop since you can use
a linear function. If you ever find yourself in a situation where you need to
choose between a few loops or one loop with different tasks, you should
choose the second option. This method may help you develop a better
performing program.

Optimizing Data Structures
Do you think a data structure affects the performance of your code? It is not
easy to answer this question. Since data structures are used everywhere in
your code, the answer is difficult to formulate and vague. Let us look at the
following example to understand this better. If you are tasked with creating
permutations (using the pattern below), you may choose to use a linked list or
array.

1, 2, 3, 4,
2, 3, 4, 1,
3, 4, 1, 2,
4, 1, 2, 3,

If you use an array, you can copy the first element in the array and move

 388

every other element in the array towards that element. You then need to move
the first element in the array to the end of the list. To do this, you need to use
multiple operations, and your program will be very slow. If you leave the
data in a list, you can develop a program, which will improve the
performance of the code. You can also store the data in the form of a tree.
This data structure allows you to develop a faster program.

Bear in mind that the type of data structure you use affects the performance
of your program. You can solve any problem you have in the code without
using arrays or any other data structure.

Sequential or Binary Search?
When you look for a specific object or variable in the code, which method
should you opt for – binary or sequential search?

No matter what you do in your code, you always look for some value in a
data structure. You may need to look for data in tables, lists, etc. There are
two ways to do this:

1. The first method is simple. You create an array and assign some
values to the array. If you want to look for a specific value in the
array, you need to start looking at the start of the array until you
find the value in the array. If you do not find the value at the start
of the array, the compiler moves to the end of the array. This
reduces the speed at which the program is compiled.

2. In the second strategy, you need to sort the array before you
search for an element in the array. If you do not sort the array
before you look for the element, you cannot obtain the results on
time. When the array is sorted, the compiler will break it into
two parts from the middle. It will then look for the value in either
part of the array depending on the values in the sections. When
you identify the part where the element may be, you need to
divide it through the middle again. You continue to do this until
you find the value you are looking for. If you do not, then you
know the array does not have the value.

What is the difference between these strategies? When you sort the elements

 389

in the array, you may lose some time. Having said that, if you give the
compiler time to do this, you will benefit faster from the search. When it
comes to choosing between a sequential and binary search, you need to
understand the problem before you implement the method you want to use.

Optimizing the Use of Arrays
We looked at arrays in the previous book, and this is one of the basic data
structures used in C++. An array contains a list of objects of a similar data
type. Every object in an array holds a separate location in the memory.

If you want to learn more about optimizing the work or use of an array, you
need to understand the structure of this structure. What does this mean? An
array is similar to a pointer, and it points to the elements in the array. You
can access array methods using arithmetic pointers or any other type of
pointer if needed. Consider the following example:

for(int i=0; i<n; i++) nArray[i]=nSomeValue;

The code below is better than the statement above. Why do you think this is
the case?

for(int* ptrInt = nArray; ptrInt< nArray+n; ptrInt++)
*ptrInt=nSomeValue;

The second line of code is better than the first line of code since the
operations rely only on pointers. In the example above, we are using pointers
to access the values stored in the integer data type. The pointer takes the
address of the variable in the memory. In the case of the example, the pointer
points to the variable nArray. When we add the increment operator to the
variable, the pointer will move from the first element in the array to the next
until it reaches the end of the array. If you use the double data type, the
compiler will know how far it should move the address.

It is difficult to interpret and read the code using this method, but this is the
only way to increase the speed of the program. In simple words, if you do not
use a good algorithm, you can increase compiling speed by writing code
using the right syntax.

Consider the following example: You have a matrix with the required

 390

elements. A matrix is a type of array, and it will be stored in your memory
based on the rows. So, how do you think you should access the elements in
the array? You should access every element in the matrix row by row. It does
not make sense for you to use any other method because you reduce the
speed of the program.

It is best to avoid initializing large sections of the memory for only one
element. If you know the size of the element, make sure to stick to that size.
Do not allot more memory space. You can use the function memset or other
commands to allot some space in the memory to the variables used in the
code.

Let us assume you want to create an array of characters or strings. Instead of
defining the variables or assigning the array to specific variables, it is best to
use pointers. You can assign each element in the array to a string, but this
would only reduce the speed of the program. The compiler will run the code
faster, even if the file is big. If you use the new keyword to create or declare
an array in the code, your program will not do well since it will use a lot of
memory the minute you try to run the code. It is for this reason you should
use vectors. These objects add some space to your memory, allowing the
program to do well.

If you want to move large volumes of data from one section in the memory to
another, it is best to use an array of pointers. When you do this, you do not
change the original values of the data but only replace the addresses of the
objects stored in the memory.

 391

Chapter 24

Debugging and Testing

Before we look at the different aspects of debugging and testing, let us
understand what these terms mean.

Definition

Testing
Testing is the process of identifying the behavior of the code and identifying
the correct behavior. You can test the code at different stages of developing
the code, including:

1. Module development

2. Requirements analysis

3. Interface design

4. Algorithm development

5. Implementation

6. Integration

In this chapter, we will look at what implementation testing is and how it
helps to improve the functioning of the code. It is important to note that
implementation testing does not mean you only test the code when you
execute it. You can also perform this testing to check the correctness of the
code used. Some programmers also use peer review to help them improve
their code.

Debugging

 392

It is important to note that debugging is an activity every coder must perform
to ensure the code runs correctly. During the debugging process, you can
correct any lines in the code which do not run correctly. Implementation
testing is very different from debugging since the latter is used to locate any
errors in the code, while the former is to test whether the code gives you the
correct output. The testing strategies you implement during debugging and
testing are based on this difference.

Conditions for Debugging
It is important to avoid spending too much time when you debug code. You,
as a programmer, should be prepared. You need to put in a lot of effort to
debug the code. Follow the steps given below to prepare yourself for the
arduous task:

Understand the Algorithm and Design
It becomes very difficult to debug the code written if you do not understand
the algorithm and design. You cannot test the module if you do not
understand the design since you have no idea what the objective of the
module is. If you do not understand the algorithm, you cannot locate any
error in the code when you test it. Another reason why it is important to
understand the algorithm is the test cases. If you do not know how the
algorithm functions, you cannot develop effective test cases, and this is true
when you use data structures in your code.

Check the Correctness of the Code
There are numerous methods used to check if the code is correct and runs
smoothly.

Proof of Correctness
One of the easiest ways to check for any errors in the code is to examine
every algorithm used in the code using some methods. For instance, if you
know the invariants, preconditions, postconditions, and terminating
conditions in a loop statement, then you can perform some easy checks in the
code. Here are some questions you can ask to determine the correctness of
the code:

1. If the compiler enters the loop, does this mean the invariant used

 393

is true based on the precondition?

2. If the compiler moves through the loop, does it indicate that the
loop is closer to termination?

3. If the loop is nearing the end, does it mean the compiler will
move towards the postcondition?

Some of these checks may not indicate the errors in the code, but you will
understand the algorithm better.

Code Tracing
It can be easy to detect some errors in the code by tracing how the modules or
functions execute, especially when calls are made to the function or module
in different parts of the program. Experts suggest that you, as the code writer,
should trace the working of the modules and functions along with someone
else. If you want this process to be effective, you should trace the modules
and functions by assuming that other code work functions and procedures
work accurately. You may need to deal with levels or layers of abstraction in
the procedure and function. Tracing does not catch all errors, but it will
improve your understanding of the algorithm used.

Peer Reviews
As the name suggests, peer review is asking a peer to examine and check
your code for any errors. If you want the review to be effective, you must
ensure the peer has the required information and knowledge to check the
code. You may also need to give the peer the code in advance so they know
what to read or expect.

As the code writer, you should meet with the reviewer and explain how the
algorithms in the code work. If the reviewer disagrees or does not understand
some parts of the implementation, you need to discuss it with him until you
both reach an agreement. The reviewer’s objective should be to detect the
errors in the code. You can then correct the errors identified.

You can identify or discover errors in your code when you review it. Having
said that, it is useful if you have someone from the outside looking at the
code and identifying some blind spots in the code. Peer reviews, like code
tracing, may take some time. Make sure to restrict the reviews only to those

 394

sections in the code where you know there can be some problems.

Anticipate Errors
It is unfortunate that people make errors when they write code, and some
arguments may not be called accurately by the functions and modules. We
also make mistakes when it comes to tracing the code, and peer reviews may
not catch all the errors in the code. Therefore, you need to be prepared for the
errors your code may run into using the requirements mentioned below.

Debugging Requirements
You need to have two capabilities in your code when you try to debug your
program. The first thing to do is call the functions and services used in the
module, while the second thing to do is obtain the information about the
results of those calls. You also need to learn more about the internal state and
data available in the function or module.

How to Drive the Module
When you try to debug any module in your code, you should ensure there is a
method available to call the services or functions used in the module. This
can be done using the following methods:

Hardwired Drivers
Hardware drivers are sections in the main program which contain a sequence
of calls to various functions in the program. You can modify the sequence of
the calls by rewriting the code in the driver. If you want to test the modules
which vary because of different variables, it is best to use a hardwired driver.
These drivers cannot work with numerous cases, which is a shortcoming.

Command Onterpreters
When the compiler runs the code in the program, it uses a command
interpreter to test the code by running the input statements and interpret the
commands which execute the calls to functions and modules. You can design
these interpreters so you can enter the command either from a file or
interactively. It is best to use an interactive command interpretation,
especially in the first stages of debugging, but it is best to use a batch mode in
later stages. A disadvantage of using a command interpreter is that it is
slightly complicated to write. You may also spend too much time debugging

 395

the code you have written for the interpreter. This disadvantage is overcome
since most of the code can be used to test other sections of the module or
function.

Learn More About the Module
When it comes to debugging, you need to learn more about the program's
various modules and functions. It makes no sense to control the functions and
their sequence if you do not have the information about the effect of those
functions on your code's variables and data structures. If the statements
provide an output, then you have enough information available. Having said
that, most functions and statements in the code will change some aspects of
the module. This would mean you need to learn more about the modules for
debugging.

Module State
Most data structures and modules in C++ allow you to insert and delete data
used in the module. These statements do not generate the necessary output
because these statements do not return the information from the arguments
and parameters entered in the functions. Therefore, if you want to debug or
test any code in the module, include the right statements in the code to
display the workings or changes made in the module. Most programmers add
some procedures to display the various contents in the modules. The compiler
uses the procedures while testing the code, but it removes them when the
testing is complete. It is important to have the compiler show the internal
structure of the modules during debugging.

Module Errors
If you develop modules with complex statements, it is hard to determine
where the error has occurred. It is possible the compiler may call upon the
wrong private subroutine. To avoid such errors, you need to write practical
code.

Execution
To locate where the errors in the module are, it is important to know which
subroutine or program the compiler used when the error occurred. If you
want to know when the compiler is in the execution state, add print
statements to the code to indicate when the compiler enters and exits some
sections of the code.

 396

Debugging Principles

Report Conditions
Most programmers spend a lot of time identifying the errors in the code. It is
important to detect these errors early so that you identify the cause easily. If
the compiler detects the error early on, it is important to find the cause. If the
compiler detects the errors in the module early, you can identify the cause
easily. If you detect the errors in the code only when the symptoms of the
errors appear, it may be hard to identify the code.

Improve the Ease of Interpretation and Useful Information
It is important to maximize the information you obtain on executing
debugging code. It is also important to learn to interpret the meaning of the
information. As a programmer, you need to interpret the data and detect the
error location in the code. You cannot rely on the error or debugging codes
you write since each module relies on the entire structure. Therefore, it is
important to display the entire structure in an easily understandable form.

Avoid Distracting and Meaningless Information
If you have too much information in the code, it can be a little overwhelming.
If you have very little information, the error testing process is rendered
useless. Let us assume you have a printout of all the times the compiler has
entered and exited the code. When you look at this sheet, you cannot identify
where the first error was identified. You should only use module execution
reports only if you know where the error has occurred. As a rule, you should
prefer code that tells you where the problem is and not that it is not in the
code you are looking at.

Do Not Use Single-Use Testing Code
Most programmers make the mistake of using one single test code to check
the error in the entire code. This code is extremely complex to write and
understand. How would you feel if you were testing the debugging code, but
there is an error in the debugging code itself? This is a waste of time. It is
only practical to write complex test scripts if you know you can use different
parts of the code in other debugging methods.

Functionalities to Use

 397

Every programming language has some built-in functionalities you can use to
debug the code.

Assertion Statements
Some C++ procedures have assertion procedures in the code that only take
one parameter, often a Boolean statement. When you add a call to an
assertion procedure in your code, the compiler executes the Boolean
expression first. If the compiler executes this statement and the result is true,
nothing additional is done but, when you receive a false, the compiler will
end the execution and throw an error message. You can use this procedure to
detect and report the error condition.

Tracebacks
Most compilers come with generic debugger codes that allow you to perform
traceback operations. The compiler uses these, especially when there are
runtime errors in your code. a traceback method of debugging gives you the
list of active subroutines in the code. Tracebacks also give you the line
numbers where you have active subroutines. If the error code identifies the
sections where you have runtime errors, the traceback gives you the line
numbers where the error has occurred. It is, however, up to you to identify
which line in the subprogram caused the error.

Debugger Keywords
Most compilers and computers have different debugging programs or
sections in the code. For instance, you can use the debugging keywords dbx
and sdb in a Unix operating system. a debugging program gives you a way
out – there is no need to develop a block of code for the sole purpose of
debugging.

A debugging program runs through every line of code and identifies the
errors in each line of the code. When the compiler executes a line with an
error or break within it, the debugging code will create a break in the process,
which allows the user to examine or modify the program data.

You can also use a debugging program or keyword to perform traceback
operations in case you encounter any run-time errors. It is difficult to learn
how a debugging code or keyword works. If this is the only tool you are
using for debugging, then you may not save a lot of time. For instance, if you

 398

have a good debugger but a terrible test driver, the results of your debugging
will not lead to the right results.

Techniques for Debugging

Incremental Testing
It is important to break the code into multiple subroutines if you are
designing a complex module or function. It is important to note that the
subroutines in the code should not be longer than 10 statements. If a module
is designed this way, it is best to use incremental testing to work on your
code.

When you perform incremental testing, you can classify subroutines as
different levels. For instance, if you have a subroutine at a lower level, it
means lower level subroutines do not call higher subroutines. Let us assume
you have two subroutines – a and B. If a calls B, then B is a lower subroutine.

This form of testing aims to look at each subroutine as an individual block of
code and test it. Begin with the lower subroutines. To do this, develop a test
script that calls a lower subroutine directly. Otherwise, you need to include
numerous test cases in your code, and each of these sections should include
lower level subroutines.

To develop these test cases, you need to have a good understanding of the
algorithms used in the module. The objective of this form of testing is to
identify the errors in different sections of the code. This makes the process
effective to debug the code and identify different sections in the code with
errors.

Through incremental testing, you learn to work only with one error in the
code. Most debugging and testing techniques look at multiple errors at once.

Sanity Checks
You can write a low-level code within a data structure under the assumption
that the compiler can implement the code with the help of the high-level
code. Most programmers write low-level code under the assumption that
certain parameters or variables should not be null. The condition or
assumption may be justified by the statements written in the method or

 399

program, but it is best to include a test script or block to see if the statements
in the algorithm are implemented correctly. This is a sanity check, and the
advantage of including these blocks of code is that the compiler can easily
detect errors in the code.

Using Boolean Constants to Turn Off Debugging
If you want to include debugging code in your functions and methods, it is
best to enclose those statements within a conditional statement. You can
control the functioning of the conditional statement using a Boolean constant.
This process allows you to turn the debugging code off easily, but the
compiler can access it later if it needs to. It is best to use a different constant
at every stage of the testing so that the compiler does not consider useless
information.

Error Variables to Control the Program’s Behavior
When you add debugging a print statement to your code, there is a possibility
that the program may contain too much information which the compiler
cannot use. The trouble with including such print statements is that the
compiler will execute the statement regardless of whether there is an error or
not. If the print statement is executed multiple times by the compiler, it
indicates that it does not identify the error.

If the print statements display too much information of an existing data
structure in the code, it indicates that the issue is magnified. If you do include
a sanity check in your code to detect any errors, you should include a
Boolean variable in the same module. Initialize the Boolean variable to false,
which indicates there is no error in the code. You can create most data
structures during the data initialization period, and you can initialize the error
variable at the same time. Doing this will ensure that the compiler sets the
error to true but does not exit the sanity check block of code. You can then
enclose the debug code in a conditional statement, so the information in the
block of code is printed only when the compiler identifies an error. You can
do this using the next method.

Traceback Methods
If you want to use traceback to identify the error in your code, it is best to use
Boolean sets to identify the error. It is easier to do this by performing a sanity
check. Experts recommend that you add some error code in the functions or

 400

methods. This error code needs to be controlled by the variable causing the
error. It is best to run the code and perform a sanity check before you add any
error code to the program. You should add the debug code to control the
errors in the program when the method or function calls on the sanity check.

How to Correct the Errors In Your Code
You need to keep the following objective in mind when you test code and
identify any errors in your code – identify the cause and fix it. Do not worry
about the symptoms.

Let us assume you have run the code, and you identify an issue with the
segment. When you check the code carefully, you notice that you were
passing a null pointer into a function or module. You, unfortunately, have not
entered a statement to check if the pointer carries a null value. Does this
mean you should check every method or function in the code for a null
pointer? To do this, you may need to use an if statement and enclose the
entire method or function in that if statement. You cannot determine this
without understanding the design of the program and the algorithm you have
used. The algorithm may have been implemented correctly in your code, and
you can determine if the pointer is null using the algorithm. If this happens in
your code, it means the if statement does not identify or solve the issue’s
cause.

When you add the if statement to the code, you only cover the indicators; you
may hide the issue in one section of the code, but the issue will be elsewhere.
It is important to note that you should include new code to your algorithm
only if you are certain the statements should be added to the algorithm.
Although the algorithm does not require it, if you still want to add a check,
ensure it returns error codes and conditions. In simple words, you need to
perform a sanity check.

 401

Conclusion

If you have the basics of C++ down pat and want to learn more about
programming in C++, you have come to the right place. This book has all the
information you need about the language and how you can use object-
oriented programming in C++. You will gather information about different
concepts in object-oriented programming, such as abstraction, encapsulation,
etc.

The book also introduces the concepts of searching and sorting algorithms
and gives you some examples of how you can implement these in C++. Since
it is important to optimize the code, the book also leaves you with some tips
to help you do the same. The book also provides some information on how
you can test the code you have written and debug the errors. There are
numerous programs and examples given in this book to help you understand
how to implement various concepts of C++. Best of luck to you. I hope you
enjoy your journey.

 402

References

10 Tips for C and C++ Performance Improvement Code Optimization. (n.d.).
www.thegeekstuff.com website: https://www.thegeekstuff.com/2015/01/c-
cpp-code-optimization/

C++ Tutorial - Tutorialspoint. (2019). Tutorialspoint.com website:
https://www.tutorialspoint.com/cplusplus/index.htm

C++ Programming Language - GeeksforGeeks. (2012). GeeksforGeeks
website: https://www.geeksforgeeks.org/c-plus-plus/

Debugging and Testing. (2020). Umn.edu website:
https://www.d.umn.edu/~gshute/softeng/testing.html

 403

	C++A Comprehensive Beginner’s Guide to Learn About the Realms of C++ From A-Z
	C++A Comprehensive Beginner’s Guide to Learn About the Realms of C++ From A-Z
	Introduction
	Chapter 1: Writing a C++ Program
	Chapter 1: Writing a C++ Program
	General structure of a simple C++ code!
	Editing, Compiling and Running a Program
	Variations of Writing Our Simple Program

	Chapter 2: Variables and Values
	Chapter 2: Variables and Values
	Integer Values
	Variables and Assignment
	Identifiers
	Additional Integer Types
	Floating-Point Types
	Constants
	Other Numeric Types
	Characters
	Enumerated Types

	Chapter 3: Arithmetic and Expressions
	Chapter 3: Arithmetic and Expressions
	Expressions
	Mixed Type Expressions
	Operator Precedence and Associativity
	Comments
	Formatting
	Errors and Warnings
	Integers vs. Floating-Point Numbers
	Bitwise Operators
	Algorithms

	Chapter 4: Conditional and Iterative Statements
	Chapter 4: Conditional and Iterative Statements
	Conditional Execution
	Boolean Expression
	The Simple IF Statement
	Compound Statements
	The IF/ELSE Statement
	Nested Conditionals
	Iteration
	Nested Loops
	Abnormal Loop Termination
	Infinite Loops

	Chapter 5: Using, Writing and Managing Functions and Data
	Chapter 5: Using, Writing and Managing Functions and Data
	Introduction to Using Functions
	Standard Mathematic Function
	Maximum and Minimum
	Clock Function
	Character Function
	Random Numbers
	Writing Functions
	Function Basics
	Using Functions
	Commenting Functions
	Managing Functions and Data
	Overloaded Function
	Default Arguments
	Recursion

	Chapter 6: Sequences
	Chapter 6: Sequences
	Vectors
	Declaring and Using Vectors
	Traversing a Vector
	Vector Methods
	Vectors and Functions
	Multidimensional Vectors
	Arrays
	Code 6.6
	Copying an Array
	Multidimensional Arrays
	C Strings

	Chapter 7: Sorting and Searching
	Chapter 7: Sorting and Searching
	Sorting
	Flexible Sorting
	Search
	Binary Search
	Vector Permutations
	Randomly Permuting a Vector

	Chapter 8: Standard C++ Classes
	Chapter 8: Standard C++ Classes
	String Objects
	Input/Output Streams
	Complex Numbers
	Better Pseudorandom Number Generation

	Chapter 9: Memory Management
	Chapter 9: Memory Management
	Memory Available to C++ Programs
	Manual Memory Management
	Linked Lists
	Resource Management
	Smart Pointers

	Chapter 10: Generic Programming
	Chapter 10: Generic Programming
	Function Templates
	Class Templates

	Conclusion
	C++Simple and Effective Tips and Tricks to learn C++ Programming Effectively
	C++Simple and Effective Tips and Tricks to learn C++ Programming Effectively
	Introduction
	Chapter 1: The Fundamentals of C++
	Chapter 1: The Fundamentals of C++
	The Fundamental Characteristics of C++
	Object-Oriented Programming
	Translating and Creating a C++ Program

	Chapter 2: The Basic Data Types, Constants, and Variables Used in C++
	Chapter 2: The Basic Data Types, Constants, and Variables Used in C++
	The Fundamental Data Types
	The Fundamental Constants
	The Fundamental Variables
	Constant and Volatile Objects

	Chapter 3: Functions and Classes in C++
	Chapter 3: Functions and Classes in C++
	Declaring Functions
	Function Calls
	Functions Without Return Values or Arguments
	Header Files
	Using Classes in C++

	Chapter 4: Operators For Fundamental Types
	Chapter 4: Operators For Fundamental Types
	Binary Arithmetic Operators
	Unary Arithmetic Operators
	Assignments
	Relational Operators
	Logical Operators

	Chapter 5: Controlling the Flow of a Program
	Chapter 5: Controlling the Flow of a Program
	The ‘While’ Statement
	The ‘For’ Statement
	The ‘do-while’ Statement
	Selections of ‘If-Else’ Statements
	Else-If Chains
	The Conditional Operators
	The ‘Switch’ Statements

	Chapter 6: Arithmetic Data Type Conversions
	Chapter 6: Arithmetic Data Type Conversions
	Implicit Type Conversions
	Performing Some of the Usual Arithmetic Type Conversions
	Implicit Type Conversions with Assignment Operators
	Some Other Type Conversions

	Chapter 7: The Use of References and Pointers in C++
	Chapter 7: The Use of References and Pointers in C++
	Defining References
	References as Parameters
	References as Return Values
	Expressions with Reference Types
	Defining Pointers
	The Indirection Operator
	Pointers as Parameters

	Chapter 8: The Basics of File Input and File Output in C++
	Chapter 8: The Basics of File Input and File Output in C++
	The Basic Concept of Files
	File Stream Classes
	Creating Files through a C++ Program
	Modes when Opening Files
	Closing Files
	Read and Write Operation on Blocks

	Conclusion
	References
	C++Advanced Guide to Learn C++ Programming Effectively
	C++Advanced Guide to Learn C++ Programming Effectively
	Introduction
	Chapter 1: Using Pointers in C++
	Chapter 1: Using Pointers in C++
	Introduction to Pointers
	How to Use Pointers in C++
	Types of Pointers

	Chapter 2: References in C++
	Chapter 2: References in C++
	Difference Between References and Pointers
	How to Create References

	Chapter 3: Introduction to Data Structures in C++
	Chapter 3: Introduction to Data Structures in C++
	The Struct Statement
	How to Access Members
	Using Structures as Arguments
	Using Pointers
	Typedef Keyword

	Chapter 4: Introduction to Object-Oriented Programming in C++
	Chapter 4: Introduction to Object-Oriented Programming in C++
	Definition of Classes
	Defining Class Objects
	How to Access the Class Members
	Classes and Objects

	Chapter 5: Differences Between Classes and Structures
	Chapter 5: Differences Between Classes and Structures
	Chapter 6: Encapsulation in C++
	Chapter 6: Encapsulation in C++
	Chapter 7: Understanding Inheritance
	Chapter 7: Understanding Inheritance
	Introduction to Base and Derived Classes
	Inheritance and Access
	Inheritance Types
	Multiple Inheritance

	Chapter 8: Overloading in C++
	Chapter 8: Overloading in C++
	Introduction to Function Overloading
	Introduction to Operator Overloading

	Chapter 9: Polymorphism in C++
	Chapter 9: Polymorphism in C++
	Understanding Virtual Functions

	Chapter 10: Abstraction in C++
	Chapter 10: Abstraction in C++
	Benefits
	How to Enforce Abstraction
	Example
	Why Use Abstraction?

	Chapter 11: Abstract Classes or Interfaces
	Chapter 11: Abstract Classes or Interfaces
	Chapter 12: Constructors in C++
	Chapter 12: Constructors in C++
	Constructor Types

	Chapter 13: Copy Constructors in C++
	Chapter 13: Copy Constructors in C++
	Definition
	When Do You Call a Copy Constructor?
	When Should You Define a Copy Constructor?
	Assignment Operators Versus Copy Constructors
	Example Where You Use Copy Constructors
	What Happens When You Remove a Copy Constructor From the Code?

	Chapter 14: Destructors in C++
	Chapter 14: Destructors in C++
	Properties
	When Do You Call a Destructor?
	Difference Between Destructors and Member Functions

	Chapter 15: Virtual Destructors in C++
	Chapter 15: Virtual Destructors in C++
	Pure Virtual Destructors

	Chapter 16: Introduction to Private Destructors
	Chapter 16: Introduction to Private Destructors
	Chapter 17: Exception Handling in C++
	Chapter 17: Exception Handling in C++
	Importance of Exception Handling
	Exception Handling Examples

	Chapter 18: Stack Unwinding
	Chapter 18: Stack Unwinding
	Chapter 19: Identifying Exceptions in Base and Derived Classes
	Chapter 19: Identifying Exceptions in Base and Derived Classes
	Differentiating Between Block and Type Conversions

	Chapter 20: Object Destruction and Error Handling
	Chapter 20: Object Destruction and Error Handling
	Chapter 21: Searching Algorithms
	Chapter 21: Searching Algorithms
	Linear Search
	Binary Search
	Jump Search

	Chapter 22: Sorting Algorithms
	Chapter 22: Sorting Algorithms
	Bubble Sort
	Selection Sort
	Insertion Sort
	Quicksort

	Chapter 23: Tips to Optimize Code in C++
	Chapter 23: Tips to Optimize Code in C++
	Using the Appropriate Algorithm to Optimize Code
	Optimizing Code
	Using Input and Output Operators
	Optimizing the Use of Operators
	Optimization of Conditional Statements
	Dealing with Functions
	Optimizing Loops
	Optimizing Data Structures
	Sequential or Binary Search?
	Optimizing the Use of Arrays

	Chapter 24: Debugging and Testing
	Chapter 24: Debugging and Testing
	Definition
	Conditions for Debugging
	Debugging Requirements
	Debugging Principles
	Functionalities to Use
	Techniques for Debugging
	How to Correct the Errors In Your Code

	Conclusion
	References

