C++ Syntax and Fundamentals

C++

Pocket Reference

O, REILLY® Kyle Loudon

(++

Pocket Reference

Kyle Loudon

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei « Tokyo

C++ Pocket Reference
by Kyle Loudon

Copyright © 2003 O'Reilly Media, Inc. All rights reserved.
Printed in Canada.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’'Reilly Media, Inc. books may be purchased tor educational,
business, or sales promotional use. Online editions are also available
tor most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Jonathan Gennick
Production Editor: Emily Quill
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Printing History:

May 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly
logo are registered trademarks of O’Reilly Media, Inc. The Pocket
Reference series designations, C++ Pocket Reference, the image of a
chipmunk, and related trade dress are trademarks ot O'Reilly Media,
Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly Media, Inc. was aware ot
a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

ISBN-10: 0-596-00496-6
ISBN-13: 978-0-596-00496-5
(T] [9/07]

Typographic Conventions

This book uses the following typographic conventions:

Italic
This style is used for filenames and for items emphasized
in the text.

Constant width
This style is used for code, commands, keywords, and
names for types, variables, functions, and classes.

Constant width italic
This style is used for items that you need to replace.

Acknowledgments

[would like to thank Jonathan Gennick, my editor at
O’Reilly, for his support and direction with this book.
Thanks also to Uwe Schnitker, Danny Kalev, and Ron Passe-
rini for taking the time to read and comment on an early

draft of this book.

Compatibility with C

With some minor exceptions, C++ was developed as an
extension, or superset, of C. This means that well-written C
programs generally will compile and run as C++ programs.
(Most incompatibilities stem from the stricter type checking
that C++ provides.) So, C++ programs tend to look syntacti-
cally similar to C and use much of C’s original functionality.

This being said, don’t let the similarities between C and C++
fool you into thinking that C++ is merely a trivial derivation
of C. In fact, it is a rich language that extends C with some
grand additions. These include support for object-oriented
programming, generic programming using templates,
namespaces, inline functions, operator and function over-
loading, better facilities for memory management, refer-
ences, safer forms of casting, runtime type information,
exception handling, and an extended standard library.

2 | C++Pocket Reference

C++ Syntax and Fundamentals

C++

Pocket Reference

O, REILLY® Kyle Loudon

(++

Pocket Reference

Kyle Loudon

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei « Tokyo

C++ Pocket Reference
by Kyle Loudon

Copyright © 2003 O'Reilly Media, Inc. All rights reserved.
Printed in Canada.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’'Reilly Media, Inc. books may be purchased tor educational,
business, or sales promotional use. Online editions are also available
tor most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Jonathan Gennick
Production Editor: Emily Quill
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Printing History:

May 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly
logo are registered trademarks of O’Reilly Media, Inc. The Pocket
Reference series designations, C++ Pocket Reference, the image of a
chipmunk, and related trade dress are trademarks ot O'Reilly Media,
Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly Media, Inc. was aware ot
a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

ISBN-10: 0-596-00496-6
ISBN-13: 978-0-596-00496-5
(T] [9/07]

Typographic Conventions

This book uses the following typographic conventions:

Italic
This style is used for filenames and for items emphasized
in the text.

Constant width
This style is used for code, commands, keywords, and
names for types, variables, functions, and classes.

Constant width italic
This style is used for items that you need to replace.

Acknowledgments

[would like to thank Jonathan Gennick, my editor at
O’Reilly, for his support and direction with this book.
Thanks also to Uwe Schnitker, Danny Kalev, and Ron Passe-
rini for taking the time to read and comment on an early

draft of this book.

Compatibility with C

With some minor exceptions, C++ was developed as an
extension, or superset, of C. This means that well-written C
programs generally will compile and run as C++ programs.
(Most incompatibilities stem from the stricter type checking
that C++ provides.) So, C++ programs tend to look syntacti-
cally similar to C and use much of C’s original functionality.

This being said, don’t let the similarities between C and C++
fool you into thinking that C++ is merely a trivial derivation
of C. In fact, it is a rich language that extends C with some
grand additions. These include support for object-oriented
programming, generic programming using templates,
namespaces, inline functions, operator and function over-
loading, better facilities for memory management, refer-
ences, safer forms of casting, runtime type information,
exception handling, and an extended standard library.

2 | C++Pocket Reference

Program Structure

At the highest level, a C++ program is composed of one or
more source files that contain C++ source code. Together,
these files define exactly one starting point, and perhaps vari-
ous points at which to end.

C++ source files frequently import, or include, additional
source code from header files. The C++ preprocessor is
responsible for including code from these files before each
file is compiled. At the same time, the preprocessor can also
perform various other operations through the use of prepro-
cessor directives. A source file after preprocessing has been
completed is called a translation unit.

Startup

The function main is the designated start of a C++ program,
which you as the developer must define. In its standard form,
this function accepts zero or two arguments supplied by the
operating system when the program starts, although many
C++ implementations allow additional parameters. Its return
type is int. For example:

int main()
int main(int argc, char *argv[])

argc is the number of arguments specified on the command
line; argv is an array of null-terminated (C-style) strings con-
taining the arguments in the order they appear. The name of
the executable is stored in argv[0], and may or may not be
prefixed by its path. The value of argv[argc] is 0.

The following shows the main function for a simple C++ pro-
gram that prompts the user for actions to perform on an
account:

#include <iostream>

#include <cmath>

#include <cstdlib>
using namespace std;

Program Structure | 3

#include "Account.h”

int main(int argc, char *argv([])

{

Account account(0.0);
char action;
double amount;

if (argc > 1)
account.deposit(atof(argv[1]));

while (true)
{
cout << "Balance is
<< account.getBalance()
<< endl;

cout << "Enter d, w, or q: “;
cin >> action;

switch (action)
{
case 'd":
cout << "Enter deposit: ";
cin >> amount;
account.deposit(amount);
break;

case 'w':
cout << "Enter withdrawal: “;
cin >> amount;
account.withdraw(amount);
break;

case 'q':
exit(0);

default:
cout << "Bad command" << endl;

return 0;

4 | C++ Pocket Reference

The class for the account is defined in a later example. An
initial deposit is made into the account using an amount
specified on the command line when the program is started.
The function atof (from the C++ Standard Library) is used
to convert the command-line argument from a string to a
double.

Termination

A C++ program terminates when you return from main. The
value you return is passed back to the operating system and
becomes the return value for the executable. If no return is
present in main, an implicit return of 0 takes places after fall-
ing through the body of main. You can also terminate a pro-
gram by calling the exit function (from the C++ Standard
Library), which accepts the return value for the executable as
an argument.

Header Files

Header files contain source code to be included in multiple
files. They usually have a .h extension. Anything to be
included in multiple places belongs in a header file. A header
file should never contain the following:

e Definitions for variables and static data members (see
“Declarations” for the difference between declarations
and definitions).

* Definitions for functions, except those defined as tem-
plate functions or inline functions.

e Namespaces that are unnamed.

NOTE

Header files in the C++ Standard Library do not use the .h
extension; they have no extension.

Program Structure | 5

Often you create one header file for each major class that you
define. For example, Account is defined in the header file
Account.h, shown below. Of course, header files are used for
other purposes, and not all class definitions need to be in
header files (e.g., helper classes are defined simply within the
source file in which they will be used).

#ifndef ACCOUNT H
#tdefine ACCOUNT H

class Account

{
public:
Account(double b);
void deposit(double amt);
void withdraw(double amt);
double getBalance() const;
private:

double balance;
b
flendif

The implementation of this class is in Account.cpp. You use
the preprocessor directive #include to include a header file
within another file (see “Preprocessor Directives”).

Because header files are often included by other headers
themselves, care must be taken not to include the same file
more than once, which can lead to compilation errors. To
avoid this, it is conventional to wrap the contents of header
files with the preprocessor directives #ifndef, #define, and
#endif, as done in the previous example.

The tactic of wrapping a header file forces the preprocessor
to test an identifier. If that identifier is not defined, the pre-
processor defines it and processes the file’s contents. As an
example, the contents of Account.h are processed only when
ACCOUNT H is undefined, and the first thing that processing
does is to define ACCOUNT H to ensure the header is not

6 | C++ PocketReference

processed a second time. To ensure uniqueness, X_H is typi-
cally used as the identifier, where X is the name of the header
file without its extension.

Source Files

C++ source files contain C++ source code. They usually
have a .cpp extension. During compilation, the compiler typi-
cally translates source files into object files, which often have
a .obj or .o extension. Object files are joined by the linker to
produce a final executable or library.

Often you create one source file for each major class you
implement. For example, the implementation of Account is in
Account.cpp, shown below. Of course, there is no require-
ment about this; source files often contain more than just the
implementation of a single class.

#include "Account.h”

Account: :Account(double b)

{

balance = b;

}

void Account::deposit(double amt)

{

balance += amt;

}

void Account::withdraw(double amt)

{

balance -= amt;

}

double Account::getBalance() const

{

return balance;

}

Program Structure | 7

Preprocessor Directives

The C++ preprocessor can be used to perform a number of
useful operations controlled via several directives. Each direc-
tive begins with a pound sign (#) as the first character that is
not whitespace on a line. Directives can span multiple lines
by including a backslash (\) at the end of intermediate lines.

#define

The #define directive replaces an identifier with the text that
follows it wherever the identifier occurs in a source file. For
example:

#tdefine BUFFER_SIZE 80

char buffer[BUFFER_SIZE];

If you specify no text after the identifier, the preprocessor
simply defines the identifier so that any check for its defini-
tion tests true and it expands to nothing in the source code.
(You can see this in use earlier where ACCOUNT H was defined.)

NOTE

In C++, it is preferable to use enumerations, and to a
lesser degree, variables and data members declared using
the keywords const or static const for constant data,
rather than the #define directive.

The #define directive can accept arguments for macro substi-
tution in the text. For example:

#idefine MIN(a, b) (((a) < (b)) ? (a):(b))
int X =5,y =10, z;

z = MIN(x, y); // This sets z to 5.

In order to avoid unexpected problems with operator prece-
dence, parameters should be fully parenthesized in the text,
as shown above.

8 | C++PocketReference

NOTE

In C++, it is preferable to use templates and inline func-
tions in place of macros. Templates and inline functions
eliminate unexpected results produced by macros, such
as MIN(x++, y) incrementing x twice when a is less than b.
(Macro substitution treats x++, not the result of x++, as
the first parameter.)

#undef

The #undef directive undefines an identifier so that a check
for its definition tests false. For example:

#undef LOGGING ENABLED

#ifdef, #ifndef, #else, #endif

You use the #ifdef, #ifndef, #else, and #endif directives
together. The #ifdef directive causes the preprocessor to
include different code based on whether or not an identifier
is defined. For example:

#ifdef LOCGING ENABLED

cout << “"Logging is enabled" << endl;
#else

cout << "Logging is disabled" << endl;
#tendif

Using #else is optional. #ifndef works similarly but includes
the code following the #ifndef directive only if the identifier
is not defined.

#if, #elif, #else, #endif

The #if, #elif, #else, and #endif directives, like the direc-
tives of #ifdef, are used together. These cause the preproces-
sor to include or exclude code based on whether an
expression is true. For example:

#1f (LOGGING LEVEL == LOGGING MIN && \
LOCGING FLAG)
cout << "Logging is minimal" << endl;

Program Structure | 9

#elif (LOGGING LEVEL == LOGGING MAX && \
LOGGING FLAG)

cout << “Logging is maximum" << endl;

#elif LOGGING FLAG

cout << "Logging is standard” << endl;

#endif

The #elif (else-if) directive is used to chain a series of tests
together, as shown above.

#include

The #include directive causes the preprocessor to include
another file, usually a header file. You enclose standard
header files with angle brackets, and user-defined header files
with quotes. For example:

ffiinclude <iostream>
#include "Account.h"

The preprocessor searches different paths depending on the
form of enclosure. The paths searched depend on the system.

#error

The #error directive causes compilation to stop and a speci-
fied string to be displayed. For example:

#ifdef LOGGING ENABLED
#error Logging should not be enabled
#endif

#line

The #line directive causes the preprocessor to change the
current line number stored internally by the compiler during
compilation in the macro __LINE_ . For example:

#]line 100

A filename optionally can be specified in double quotes after
the line number. This changes the name of the file stored
internally by the compiler in the macro _ FILE . For
example:

#line 100 "NewName.cpp"

10 | C++ Pocket Reference

#pragma

Some operations that the preprocessor can perform are
implementation-specific. The #pragma directive allows you to
control these operations by specifying the directive along
with any parameters in a form that the directive requires. For
example:

#ifdef LOGGING ENABLED

#pragma message("lLogging enabled")
#endif

Under Microsoft Visual C++ 6.0, the message directive
informs the preprocessor to display a message during compi-
lation at the point where this line is encountered. The direc-
tive requires one parameter: the message to display. This is
enclosed in parentheses and quoted.

Preprocessor Macros

The C++ preprocessor defines several macros for insert-
ing information into a source file during compilation.
Each macro begins and ends with two underscores, except
for _cplusplus, which has no terminating underscores.

LINE
Expands to the current line number of the source file
being compiled.

FILE
Expands to the name of the source file being compiled.

DATE
Expands to the date on which the compilation is taking
place.

TIME
Expands to the time at which the compilation is taking
place.

__TIMESTAMP
Expands to the date and time at which the compilation is
taking place.

Program Structure | 11

STDC
Will be defined if the compiler is in full compliance with
the ANSI C standard.

__cplusplus
Will be defined if the program being compiled is a C++
program. How a compiler determines whether a given
program is a C++ program is compiler-specific. You may
need to set a compiler option, or your compiler may look
at the source file’s extension.

Fundamental Types

The type for an identifier determines what you are allowed to
do with it. You associate a type with an identifier when you
declare it. When declaring an identifier, you also may have
the opportunity to specify a storage class and one or more
qualifiers (see “Declarations™).

The fundamental types of C++ are its Boolean, character,
integer, floating-point, and void types. The Boolean, charac-
ter, and integer types of C++ are called integral types. Inte-
gral and floating-point types are collectively called arithmetic
types.

bool

Booleans are of type bool. The bool type is used for values of
truth. For example:

bool flag;
i%'(flag)
// Do something when the flag is true.
}
Boolean values

Booleans have only two possible values: true or false. The
typical size of a bool is one byte.

12 | C++ Pocket Reference

Boolean literals

The only Boolean literals are the C++ keywords true and
false. By convention, false is defined as 0; any other value is
considered true.

charand wchar _t

Characters are of type char or wchar_t. The char type is used
for integers that refer to characters in a character set (usually
ASCII). For example:

char ¢ ="'a';

L

cout << "lLetter a: " << ¢ << endl;

The wchar_t type is a distinct type large enough to represent
the character sets of all locales supported by the implementa-
tion. To use facilities related to the wchar_t type, you include
the standard header file <cwchar>.

Character types may be specified either as signed or unsigned
and are sometimes used simply to store small integers. For
example:

signed char small
unsigned char flags

-128;
ox7f;

A signed char represents both positive and negative values,
typically by sacrificing one bit to store a sign. An unsigned
char doesn’t have a sign and therefore can hold larger posi-
tive values, typically twice as large. If neither signed nor
unsigned is specified, characters are usually signed by default,
but this is left up to the compiler.

Character values

The range of values that characters may represent is found in
the standard header file <climits>. The size of a char is one
byte. The size of a byte technically is implementation-
defined, but it is rarely anything but eight bits. The size of

Fundamental Types | 13

the wehar_t type is also implementation-defined, but is typi-
cally two bytes.

Character literals
Character literals are enclosed by single quotes. For example:
char c="A";

To specify literals for wide characters, you use the prefix L.
For example:

wchar t c=L'A";

To allow special characters, such as newlines and single
quotes, to be used within literals, C++ defines a number of
escape sequences, each of which begins with a backslash.
Table 1 presents these escape sequences. There is no limit to
the number of hexadecimal digits that can appear after \x in
a hexadecimal escape sequence. Octal escape sequences can
be at most three digits.

Table 1. Character escape sequences

Escape sequence Description

\a Alert (system bell)
\b Backspace

\f Form feed

\n Newline

\r Carriage return
\t Horizontal tab

\v Vertical tab

\\ Backslash

\' Single quote

\" Double quote

\? Question mark
\ooo Octal number 000
\xhhh. .. Hexadecimal number hhh...

14 | C++ Pocket Reference

short, int, long

Integers are of type short, int, or long. These types differ in
size and the range of values they can represent. For example:

short sval = 32767;
int ival = 2147483647;
long lval = ox7fffffff;

[ntegers may be specified as either signed or unsigned. For
example:

signed short total;
unsigned short flags = oxfofo;

Signed integers represent both positive and negative values,
typically by sacrificing one bit to store a sign. Unsigned inte-
gers don’t have a sign and therefore can hold larger positive
values. If an integer is not specified as either signed or
unsigned, it is signed by default.

Integer values

The range of values that each of the integer types may repre-
sent is found in the standard header file <climits>. The exact
size of a short, int, or long is left up to the compiler, but is
typically two, four, or four bytes respectively. Although the
size of each type can vary, the compiler guarantees that the
size of a short is less than or equal to the size of an int, and
the size of an int is less than or equal to the size of a long.

Integer literals

Literals for integers have several forms, as shown in Table 2.
[f U, u, L, or 1 is not used as a suffix, the compiler assigns a
type appropriate for the magnitude of the literal.

Fundamental Types | 15

Table 2. Integer literals

Examples Description

12 The most common form of integer literals.

-5

012 Literals that begin with 0 are octal values (e.g., 012 is the octal literal
0377 for the decimal number 10).

0x2a Literals that begin with ox are hexadecimal values (e.g., 0x2a is the
oxffff hexadecimal literal for the decimal number 42).

256L Literals with L (or 1) in the suffix are treated as long.

Ox7fL

0x80U Literals with U (or u) in the suffix are treated as unsigned.
oxFfFfUL

float, double, long double

Floating points are of type float, double, or long double.
These types differ in size and in the range and precision of
values they can represent. For example:

float fval
double dval

3.4e+38F;
1.7e+308;

Floating-point values

The range and precision of values that each of the floating-
point types may represent is found in the standard header file
<cfloat>. The exact size, range, and precision of a float,
double, or long double is left up to the compiler, but is typi-
cally four, eight, or ten bytes respectively. Although the size
of each type can vary, the compiler guarantees that the size of
a float is less than or equal to the size of a double, and the
size of a double is less than or equal to the size of a long
double.

Floating-point literals

Literals for floating points can take on several forms, as
shown in Table 3. If F, f, L, or 1 is not used as a suffix, the
compiler assigns a type of double.

16 | C++ Pocket Reference

Table 3. Floating-point literals

Examples Description

1.2345 The most common form of literal floating points.
-57.0

0.4567

1.992e+2 Literals expressed in scientific notation.
1.71e-25

8.00275F Literals with the suffix F (or f) are given the type float; literals
3.4e+38L with the suffix L (or 1) are given the type long double.

void

The void type indicates the absence of a value. One use is in
declaring functions that do not return a value. For example:

void sayHello()

{

cout << "Hello" << endl;

}

Another use is in declaring a pointer that can point to any
type of data. For example:

int i = 200;

void *p = &i;
The variable p points to an int. Variables that are not point-
ers cannot be declared as void.

Compound Types

Arithmetic types are the building blocks for more complex
types, called compound types. These include enumerations,
arrays, strings, pointers, pointers to members, references,
and the various class types of C++, as well as functions.
Arithmetic types, enumerations, pointers, and pointers to
members are collectively called scalar types.

Compound Types | 17

Enumerations

An enumeration, specified by the keyword enum, is a set of
integer constants associated with identifiers, called
enumerators, that you define. In general, enumerations pro-
vide a way to use meaningful names where you might other-
wise use integer constants, perhaps defined using the
preprocessor directive #define. Enumerations are preferred
over the preprocessor for this in C++ because they obey the
language’s rules of scope. The following defines an enumera-
tion for the colors of the rainbow:

enum SpectrumColor

{
Red, Orange, Yellow,
Green, Blue, Indigo,
Violet

b

If you plan to instantiate variables to store values of an enu-
meration, you can give the enumeration a name (here,
SpectrumColor); however, a name is not required. With this
enumeration, you can write a loop to cycle through the col-
ors of the rainbow, for example:

for SpectrumColor operator++(SpectrumColor &s, int dummy)

{
}

Following are some additional points to keep in mind about
enumerations:

return s = (s >= Violet) ? Red : SpectrumColor(s + 1);

* You can specity values for enumerators within an enu-
meration, which you can then use in place of integer con-
stants.

* When you let the compiler assign values to enumerators,

it assigns the next integer after the one assigned to the
preceding enumerator.

* Values start at 0 if you do not provide a value for the first
enumerator.

18 | C++ Pocket Reference

* You can use enumerators anywhere that you would use
an int.

* You cannot assign arbitrary integers to a variable of an
enumeration type.

* The size of integers for enumerations is no larger than
the size of an int, unless a larger integer is needed for
explicit values.

The following example illustrates these points:

enum
{
ASCIT NUL, /70
ASCII SOH, /71
ASCIT STX, /12
ASCII A = 65, // 65
ASCII B, /1 66
BufferSize = 8 // 8
b
char buffer[BufferSize];
Arrays

Arrays contain a specific number of elements of a particular
type. So that the compiler can reserve the required amount of
space when the program is compiled, you must specify the
type and number of elements that the array will contain
when it is defined. The compiler must be able to determine
this value when the program is compiled. For example:

enum
{
HandleCount = 100
b
int handles[HandleCount];

Once an array has been defined, you use the identifier for the
array along with an index to access specific elements within

Compound Types | 19

the array. The following sets each element in the previous
array to an initial value of —1:

for (int i = 0; i < HandleCount; i++)

{
}

Arrays are zero-indexed; that is, the first element is at index 0.
This indexing scheme is indicative of the close relationship in
C++ between pointers and arrays and the rules that the lan-
guage defines for pointer arithmetic. In short, the assignment
in the example above is equivalent to the following;:

handles[i] = -1;

*(handles + i) = -1;
[t is important to remember that no bounds-checking is per-
formed for arrays.
Multidimensional arrays

C++ supports multidimensional arrays, which are arrays
defined using more than one index, as follows:

enum
{
Sizel = 4,
Size2 = 4
};
double matrix[Size1][Size2];

Arrays can be defined with more than two indices in a simi-
lar manner. Once a multidimensional array is defined, you
use multiple indices to access a specific element, as follows:
for (int i = 0; i < Sizel; i++)
for (int j = 0; j < Size2; j++)
matrix[i][j] = 0.0;

The relationship between pointers and arrays extends to
multidimensional arrays as well. In short, the assignment in
the example above is equivalent to the following:

¥((matrix + 1) + j) = 0.0;

20 | C++ Pocket Reference

Passing arrays to functions

When defining a function that has an array as a parameter,
all but the first dimension must be specified for the parame-
ter. This ensures that the proper pointer arithmetic can be
performed. In the case of an array with a single dimension,
this means that no dimension is required:

void f(int handles[])
{

}

In the case of an array with two dimensions, for example, the
second dimension must be specified:

handle[0] = 0;

void g(double matrix[][Size2])
{

}

You can also define equivalent functions that use pointer
parameters:

void f(int *handles)

matrix[0][Size2 - 1] = 1.0;

{

handles[0] = 0;
}
void g(double (*matrix)[Size2])
{

matrix[0][Size2 - 1] = 1.0;
}

The parentheses are needed in the second case so that the
array is a multidimensional array of double values, not a one-
dimensional array of double pointers.

Initializer lists for arrays

An initializer list for an array is a comma-delimited list of val-
ues by which to initialize the array’s elements. The list is
enclosed by braces ({}). Each value’s type must be accept-
able for the type of elements that the array has been declared
to contain. For example:

Compound Types | 21

enum SwitchState

{
On, Off
1
SwitchState switches[] =
{
On, Off, On, Off
¥

When you initialize an array with an initializer list, you may
omit the array size in the declaration; enough space will be
allocated for the array to accommodate the values specified.
If you provide a size but specify values for fewer elements
than the size indicates, the missing elements are default-ini-
tialized. The rules for default initialization are complicated;
you should not rely on them.

Initializer lists can also be used to initialize arrays that are
multidimensional. The rules are essentially the same as for
arrays of one dimension, except that an initializer list for a
multidimensional array uses nested braces to align its values
in a manner consistent with the size of each dimension.

char tictactoe[3][3] =
{
{._.) ._.: '_')}:
{._') ._.) ._.:}’
P
};
Strings

Character (C-style) strings are arrays of characters termi-
nated with a null character (\0). The characters of the string
are of type char, or type wchar t for wide-character strings.
For example:

enum

{
};

Namelength = 81

22 | C++ Pocket Reference

char name[Namelength];
wchar t wide[NameLength];

You must allocate one extra character for the null terminator
in arrays of characters to be used for strings. Functions that
return a string’s length, such as strlen (from the C++ Stan-
dard Library), do not include a string’s null terminator in the
length returned. Wide-character versions of standard facili-
ties typically have the prefix w or use wes instead of str (e.g.,
wostream, wcsncpy, etc.).

NOTE

Although many facilities in the C++ Standard Library
work with character (C-style) strings, the preferred way
to work with strings in C++ is to use the string class
from the C++ Standard Library. The wide-character ver-
sion i1s wstring.

String literals
String literals are enclosed in double quotes. For example:
char name[] = "Margot”;

Long string literals can be broken into quoted strings sepa-
rated by whitespace for style, when needed. For example:

char s[] = "This string is
"on two lines.";

To specity literals for wide-character strings, you use the pre-
fix L. For example:

wchar t wide[] = L"Margot";

The compiler allocates enough space for a string, including
its null terminator. An empty string (“") actually has space
reserved for one character: the null terminator. The storage
for a string literal is guaranteed to exist for the life of the pro-
gram, even for a string literal defined locally within a block.
The type of a string literal is an array of const char or wchar t
elements of static duration.

Compound Types | 23

Pointers

For any type T, there is a corresponding type pointer to T for
variables that contain addresses in memory of where data of
type T resides. T is the base type of a pointer to T. Pointers
are declared by placing an asterisk (*) before the variable
name in a declaration (see “Declaring Variables”). In the fol-
lowing example, i is an int while *iptr is a pointer to i:

int i= 20;

int *iptr = &i;
Normally you can set a pointer of a specific type only to the
address of data of that same type, as just shown. However, in
the case of a pointer to a class, the pointer can also be
assigned the address of an object of some type derived from
that class. This is essential for polymorphism (see “Virtual
Member Functions”). For example, if Circle were derived
from Shape (see “Inheritance”), we could do the following:

Circle C;
Shape *s = &c;
Pointer dereferencing

Dereferencing a pointer yields what the pointer points to. To
dereference a pointer, you precede it with an asterisk in an
expression, as shown in the commented lines below:

int i = 20;

int *iptr = &i;

int 3s

int k = 50;

j = ¥iptr; // This sets j to i.

*¥iptr = k; // This sets i to k;
Pointer arithmetic

Pointers in expressions are evaluated using the rules of
pointer arithmetic. When an operator for addition, subtrac-
tion, increment, or decrement is applied to a pointer p of
type T, p is treated as an array of type T. As a result, p + n

24 | C++ Pocket Reference

points to the nth successive element in the array, and p — n
points to the nth previous element. If n is 0, p + n points to
the first element in the array. So, if T were a type with a size
of 24 bytes, p += 2 would actually increase the address
stored in p by 48 bytes.

Pointer arithmetic illustrates the close relationship between
pointers and arrays in C++. However, pointers and arrays do
have a fundamental difference: whereas a pointer can be mod-
ified to point to something else, an array cannot be changed
to point away from the data it was created to reference.

Void pointers

Pointers of type void are permitted to point to data of any
type. For example:

Circle c(2.0);
void *p;
p = &c; // ¢ is a circle.

When assigning a void pointer to a pointer of some other
type, an explicit cast is required. For example:

Circle c;
c = static_cast<Circle *>(p);

Void pointers cannot be dereferenced or used with pointer
arithmetic.

Null pointers

Pointers of any type can be assigned the value 0, which indi-
cates that the pointer points to nothing at all. A pointer with
the value 0 is called a null pointer. You should never derefer-
ence a null pointer.

Function pointers

A function pointer is a pointer that points to a function. Its
type is related to the signature of the function to which it

Compound Types | 25

points. For example, the following defines a function named
addOne, then defines inc as a pointer to a function that takes
a reference to an int as a parameter and returns void. inc is
then set to addOne, which has that same signature:

void addOne(int &x)
{

}

void (*inc)(int &x) = addOne;

X += 1;

The last line could also be written as shown below (using the
address-of operator, &, before addOne):

void (*inc)(int &x) = &addOne;

Parentheses are needed around inc so that the asterisk is
associated with the name of the pointer, not the type. Once a
function pointer points to a function, it can be used to
invoke the function, as follows:

int a = 10;
inc(a); // This adds 1 to a.

The last line could also be written as shown below (using the
indirection operator, *, before the pointer):

(*inc)(a);

Pointers to Members

Pointers to members are like alternative names for class
members (see “Classes, Structs, and Unions”). For example,
assume that class X has a member of type int called data:

int X::*p = &X::data;
X object;

X *objptr = new X;
int = object.*p;
int = objptr->*p;

26 | C++ Pocket Reference

This sets i to the value of data in object, and j to the value
of data in the object addressed by objptr.

References

References are used to provide alternative names for vari-
ables. They are declared by placing an ampersand (&) before
the variable name in a declaration. For example:

int i= 20;

int &r = i;
Because a reference always has to refer to something, refer-
ences must be initialized where they are defined. Therefore, a
reasonable way to think of a reference is as a constant
pointer. Once initialized, the reference itself cannot be made
to refer to anything else; however, the variable or object to
which it refers can be modified. Operations applied to the
reference affect the variable or object to which the reference
refers. For example:

int i=20;
int &r = 1i;
Y++; // This increments 1i.

Normally you can set a reference of a specific type to a vari-
able of that same type, as just shown. However, in the case of
a reference to a class, the reference can also refer to an object
of some type derived from that class. Therefore, like point-
ers, references support polymorphic behavior (see “Virtual
Member Functions”™). For example, if Circle were derived
from Shape (see “Inheritance”), you could do the following;:

Circle C;
Shape &s = ¢;
Reference parameters

A common use of references is with parameters for func-
tions. References allow changes to parameters to be reflected
in the caller’s environment. For example:

Compound Types | 27

void xchg(int &x, int &y)

{
int t = x;
X =Y;
y = t;

}

Using the definition above, you could swap two integers a
and b by doing the following:

xchg(a, b);

If x and y were not references in the definition of xchg, the
contents of x and y would be swapped within the function,
but the contents of a and b would be unchanged when the
function returned.

References as I-values

References are also often used in C++ as return values for
functions. This allows the return value of a function to be
used as an [-value, which is a value that can appear on the
left side of an assignment.

Class Types

The class types of C++ are classes, structs, and unions (see
“Classes, Structs, and Unions”).

Type Conversions and Definitions

[n C++ you can convert a value of one type into a value of
another type. Such an action is called a type conversion. You
can also define your own type names using the typedef key-
word.

Type Conversions

Type conversions are performed when you use a cast explic-
itly (see “Casts and Runtime Type Information”), and at
times implicitly by the compiler. For example, the compiler

28 | C++ Pocket Reference

converts a type implicitly when the types in a binary opera-
tion are not the same. A compilation error occurs if no con-
version is possible.

Implicit conversions

Implicit conversions occur between C++’s arithmetic types,
between certain pointer types (see “Pointers”), and between
user-defined types and others. The implicit conversion of
arithmetic types and pointer types in binary operations is car-
ried out by converting the smaller or less precise type to the
larger or more precise one. Booleans, characters, and inte-
gers smaller than an int are first converted to an int using
integral promotion. When an integer and a floating point
appear in the same operation, the integer is converted to the
floating-point type.

Preservation of values

The implicit conversion of arithmetic types is performed in
such a way as to preserve the original values of the entities
being converted whenever possible. However, there are many
situations in which surprising results can occur. For exam-
ple, a compiler may not warn about conversions from wider
or more precise types to smaller or less precise ones (e.g.,
from long to short, or double to float), in which a wider
value may not be representable in the smaller type. In addi-
tion, the conversion from an unsigned type to a signed one
can result in a loss of information.

User-defined conversions

You can specify explicit conversions for user-defined types by
defining user-defined conversion operators (see “Overload-
ing Operators”). For example, the following user-defined
conversion operator, operator double, converts an Account
object to a double:

class Account

{
public:

Type Conversions and Definitions | 29

Account(double b)

{
balance = b;
}
operator double()
{
return balance;
}
private:
double balance;
b

This user-defined conversion operator allows you to use a
value of type Account where you might otherwise use a double:

Account account(100.0);
double balance = account;

When C++ sees the assignment of an Account value to a
double variable, it invokes operator double to perform the
conversion.

Converting constructors

A constructor that has a single parameter and is not declared
using explicit can be used by the compiler to perform
implicit conversions between the type of the parameter and
the class type. For example:

class Account

{
public:
Account(double b)
{
balance = b;
}
private:
double balance;
};

The constructor in this class allows you to do the following,
for example:

Account account = 100.0;

30 | C++ Pocket Reference

Type Definitions

Frequently it is useful to provide an alternative name for
types that have long or otherwise unwieldy names. This is
accomplished using typedef.

To define a new name for a type, you use the keyword
typedef followed by the old type, then the new type. The fol-
lowing example defines uint32 to mean unsigned long:

typedef unsigned long uint32;

uint32 value32bit;

This illustrates using typedef to define your own sized-
integer type (e.g., int8, int16, int32, etc.). Some compilers
define int8, int16, and so forth; typedef provides a
way to use types like these with any compiler. Another
common use of typedef is in providing alternative names
for parameterized types, which tend to be long, when work-
ing with the Standard Template Library. For example:

typedef map<int, string> IntStringMap;

IntStringMap m;

Lexical Elements

At the most fundamental level, a C++ program consists of
individual lexical elements called tokens. Tokens are delin-
eated by whitespace (spaces, newlines, tabs, etc.), or can be
formed once the start of another token is recognized, as
shown below:

ival+3

This stream actually consists of three tokens even though
there is no whitespace. The tokens are ival, +, and 3. In the
absence of whitespace, the compiler forms tokens by con-
suming the longest possible token as it scans from left to
right.

Lexical Elements | 31

Tokens are passed to the parser, which determines if a
stream of tokens has the correct syntax. Tokens together
form more complex semantic constructs, such as declara-
tions, expressions, and statements that affect the flow of
execution.

Comments

Comments are notes written in the source code for develop-
ers; they are ignored completely by the compiler. The prepro-
cessor converts each comment to a single space before the
compiler ever gets the chance to see it.

A comment is any block of text enclosed between /* and */,
or following // on a single line. Comments of the first form
cannot be nested within one another. They usually span mul-
tiple lines. For example:

/* This comment has more than one line.
Here is another part of the comment.*/

Comments of the second form are useful for short explana-
tions that do not occupy more than a single line. For example:

z = MIN(x, y); // z is the smallest.

Once a single-line comment begins, it occupies the remain-
der of the line. There is no way to end the comment before
this.

Identifiers

[dentifiers in C++ are sequences of characters that are used
for names of variables, functions, parameters, types, labels,
namespaces, and preprocessor macros. Identifiers may con-
sist of letters, digits, and underscores, but they must not
begin with a digit. For example, the following are all legal
C++ identifiers:

i addressBook Mgr item count
ptr2 NAME LENGTH class_ showWindow

32 | C++ Pocket Reference

The following rules apply to identifiers:

* Identifiers are case-sensitive, and they must not be one of
the C++ reserved words (see “Reserved Words”).

* Identifiers that begin with an underscore are reserved for
implementations of the language.

* Although C++ imposes no limit on the size of identifi-
ers, your compiler and linker will have size limits that
you should consider in practice.

NOTE

There is no one stylistic convention for identifiers upon
which everyone agrees. One common convention, howev-
er, is to use lowercase characters to begin names for local
variables, data members, and functions. Uppercase char-
acters are then used to begin the names of types,
namespaces, and global variables. Names processed by
the preprocessor are written entirely in uppercase. Names
of parameters in macros are written entirely in lowercase.

Reserved Words

C++ defines a number of keywords and alternative tokens,
which are sequences of characters that have special meaning
in the language. These are reserved words and cannot be
used for identifiers. The reserved words of C++ are listed

below:

and and_eq asm

auto bitand bitor

bool break case

catch char class
compl const const_cast
continue default delete

do double dynamic_cast
else enum explicit
export extern false
float for friend
goto if inline

Lexical Elements

33

int long mutable

namespace new not
not_eq operator or
or_eq private protected
public register reinterpret cast
return short signed
sizeof static static_cast
struct switch template
this throw true
try typedef typeid
typename union unsigned
using virtual void
volatile wchar_t while
Xor X0 _eq

Literals

Literals are lexical elements that represent explicit values in a
program. C++ defines many types of literals. Each is
described under its respective type in “Fundamental Types.”

Operators

An operator is used to perform a specific operation on a set
of operands in an expression. Operators in C++ work with
anywhere from one to three operands, depending on the
operator.

Associativity
Operators may associate to the left or right. For example,

assignment operators (=, +=, <<=, etc.) associate to the right.
Therefore, the following:

i=j=k
actually implies:
i=(=k

On the other hand, the operator for addition (+) associates to
the left. Therefore, the following:

i+j+k

34 | C++ Pocket Reference

actually implies:

(i+3)+k

Precedence

Operators also have an order, or precedence, by which
expressions that contain them are evaluated. Expressions
containing operators with a higher precedence are evaluated
before those containing operators with a lower precedence.

You can use parentheses around an expression to force
grouping. Even when not essential, it’s best to use parenthe-
ses in expressions to document your intentions. The number
of operators in C++ often makes their precedence difficult to
remember.

Table 4 lists the operators of C++ from highest precedence
to lowest and describes how each operator associates. Each
section contains operators of equal precedence. The table
also describes the behavior of each operator when used with
the intrinsic types of C++. For most operators, C++ lets you
define additional behaviors for your own types (see “Over-
loading Operators”).

Table 4. Operators

Operator Description Associates
Scope resolution No
[] Array subscript Left
. Member selection Left
-> Member selection Left
() Function call Left
() Value construction No
++ Postfix increment No
. Postfix decrement No
typeid Type information No
* cast (++ cast No

Lexical Elements | 35

Table 4. Operators (continued)

Operator
sizeof

-

&

%

new
new|[]
delete
delete[]

()

Description
Size information
Prefix increment
Prefix decrement
Bitwise NOT
Logical NOT
Unary minus
Unary plus
Address-of
Indirection
Allocate
Allocate
Deallocate
Deallocate
(-style cast

Pointer-to-member selection

Pointer-to-member selection

Multiply

Divide

Modulo (remainder)
Add

Subtract

Shift left

Shift right

Less than

Less than or equal to
Greater than

Greater than or equal to
Equalto

Not equal to

36 | C++ Pocket Reference

Associates
No
No
No
No
No
No
No
No
No
No
No
No
No
Right
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left

Table 4. Operators (continued)

Operator Description Associates
& Bitwise AND Left
" Bitwise XOR Left

l Bitwise OR Left
& Logical AND Left
} Logical OR Left
?: Conditional expression Right
- Simple assignment Right
*= Multiply and assign Right
/= Divide and assign Right
o= Modulo and assign Right
+= Add and assign Right
-= Subtract and assign Right
<<= Shift left and assign Right
>>= Shift right and assign Right
&= AND and assign Right
Ae XOR and assign Right
|= OR and assign Right
throw Throw exception Right
) Sequence Left

Additional information about the behaviors of the operators
in C++ is summarized in the following sections.
Scope resolution (::)

The scope resolution operator is used to specify a scope (see
“Scope”). For example, the following invokes a static mem-
ber function of a class called Dialog:

dialog = Dialog::createDialog();

Lexical Elements | 37

The scope operator can also be used without a scope name to
specify file (global) scope. For example:

::serialize(i);

This ensures that the global function serialize is invoked,
even if serialize has been declared within the local scope.

Array subscript ([1)
The array subscript operator is used to access individual ele-
ments of arrays or memory referenced by pointers. For exam-
ple:

tmp = table[0];

This assigns the first element in an array called table to tmp.
The expression between the brackets indicates the element.

Member selection (. and ->)

Member selection operators are used to specify members of
objects (see “Classes, Structs, and Unions”). You use the dot
form with objects and the arrow form with pointers to
objects. For example:

object.f();

This invokes member function f of an object called object.
The following illustrates the arrow form:

objptr->f();

This invokes member function f for an object that is
addressed by the pointer objptr.

Function call (())

The function call operator, which is (), is used to invoke a
function. For example:

f(a, b);

This invokes a function called f with two arguments, a and b.

38 | C++ Pocket Reference

Value construction (())

The value construction operator, which is also (), is used to
create an instance of a type. For example:

g(Circle(5.0));
This constructs a temporary object that is an instance of the
Circle class, which is passed to g.
Postfix increment and decrement (++, ——)

The postfix increment and decrement operators increment or
decrement an operand, but the value of the operand within
its expression is the value prior to modification. For example:

void count()

{
static int i=0;
if (i++ == 0)
{
// This is the first time called.
}
}

The value of i prior to being incremented is tested for equal-
ity with 0. Because i is initialized to 0, the test is true during
the first invocation of the function.

typeid

The typeid operator gets runtime type information for an
operand. See “Casts and Runtime Type Information” for a
complete description of this operator.

C++ cast

Type cast operators specific to C++ are dynamic_cast,
static cast, const cast, and reinterpret cast. See “Casts
and Runtime Type Information” for a complete description
of these operators.

Lexical Elements | 39

sizeof

The sizeof operator gets the size of its operand. For example:
size t s = sizeof(c);

This initializes s to the size of c. The operand may be an

expression or type. The result is an integer of type size t.

Prefix increment and decrement (++, ——)

The prefix increment and decrement operators increment or
decrement an operand. The value of the operand within its
expression is the value after modification. For example:

void count()

{ static int i=0;
if (441 == 1)
{
// This is the first time called.
}
}

The value of i after being incremented is tested for equality
with 1. Because i is initialized to 0, the test is true during the
first invocation of the function.

Bitwise NOT (~)

The bitwise NOT operator computes the bitwise comple-
ment of its operand. For example:

unsigned char bits = 0x0;

bits = ~bits;
This assigns OxFF back into bits, assuming a character is

eight bits. The operand must be one of the Boolean, charac-
ter, or integer types of C++.

Logical NOT (!)

The logical NOT operator reverses the truth of its operand; it
yields false if its operand is true (nonzero) and true if its
operand is false. For example:

40 | C++ Pocket Reference

bool done = false;

while (!done)
{

}

This loop is repeated until something in the loop sets done to
true. The result of the logical NOT operator is a bool.

// Set done to true when finished.

Unary minus and plus (=, +)

The unary minus and plus operators compute the negative
and positive values their operands. For example:

i = -125;
j = +273;

Because the unary plus operator simply returns the value of
its operand (promoted to an int), it is seldom used.

Address-of (&)

The address-of operator gets the address at which its oper-
and resides in memory. For example:

Circle C;
Circle *p = &c;

This assigns the address of ¢ to the Circle pointer p. The
address is a pointer derived from the type of the operand.

Indirection (*)

The indirection operator dereferences a pointer and gets the
value that it addresses. For example:

int i;

int *p = new int;
*p - 5;

i= *p;

This assigns the value 5 to i. The type of the result is the type
from which the pointer is derived. The operand must be a
pointer.

Lexical Elements | 41

Allocate and deallocate

The C++ memory management operators are new, new[],
delete, and delete[]. They allocate and reclaim memory on
the heap. See “Memory Management” for a complete
description of these operators.

C-style cast (())

The C-style cast operator converts the type of its operand to
a new type (see “C-Style Casts”). For example:

void *p = new int;
*p = 10;
int *q = (int *)p;

This casts p from a void pointer to an int pointer. No run-
time checking is performed to ensure that the cast is legal.
Pointer-to-member selection (.* and —>%)

The .* and ->* operators access a class member via a pointer
to the member. For example:

int X::*p = &X::data;
X object;

X *objptr = new X;
int i = object.*p;
int j = objptr->*p;

This sets i to the value of data in object, and j to the value of
data in the object addressed by objptr. You use the dot form
with objects and the arrow form with pointers to objects.

Arithmetic (*,/, %, +, -)

Arithmetic operators perform multiplication (*), division (/),
modulus (%), addition (+), and subtraction (=) using two
operands. For example:

if (x % 2 == 0)

{

}

// The integer x is an even number.

42 | C++ Pocket Reference

Either condition can be true for the block containing the
comment to be executed.

For both operators, if a result can be determined from the
first operand alone, the second operand is not evaluated.
When these operators are overloaded, both operands are
always evaluated.

Conditional expression (?:)

The conditional expression operator uses the value of one
operand to determine whether to evaluate the second or
third operand. For example:

i=(p != NULL) ? *p : -1;

[f the first operand is true, the result is the second operand;
otherwise, the result is the third. The first operand appears
before the question mark (?); the second and third operands
are separated by a colon ().

Simple and compound assignments
(=r *=I /=I %=I +=,—=, <<=,>>=, &=I I=I A=)
Assignment operators assign the value of one operand to
another. For example:

i=(j+10)*s;
This is the simplest form of assignment; the second operand
is simply evaluated and stored into the first. The other
assignment operators perform compound assignments. For
example:

i+=5;
This adds 5 to i and assigns the result back to i. Therefore, it
has the same effect as the following but avoids the need for i
to be evaluated twice:

i=14+G5;

After any assignment, the value of the expression is the value
that was assigned. This allows assignments to be chained
together, as follows:

Lexical Elements | 45

Exception (throw)

The throw operator is used to throw an exception. See
“Exception Handling” for a complete description of this
operator.

Sequence (,)

The sequence operator, which is a comma, evaluates two
operands from left to right. The value of the expression
becomes the value of the last operand. For example:

for (i =0, j =10; i< 10; i++, j--)

{
}

In this case, the result of i=0, j=10 is 10. However, both
assignments are performed; both variables are initialized.

// Increase i while making j smaller.

Expressions

An expression is something that yields a value. Nearly every
type of statement uses an expression in some way. For exam-
ple, the declaration below uses an expression for its initial-
1zer:

int t = (100 + 50) / 2;

The simplest expressions in C++ are just literals or variables
by themselves. For example:

1.23 false "string” total

More interesting expressions are formed by combining liter-
als, variables, and the return values of functions with various
operators to produce new values. These can then be used in
expressions themselves. For example, the following are all
C++ expressions:

i->getvalue() + 10

p * pow(1.0 + rate,(double)mos))
new char[20]

sizeof(int) + sizeof(double) + 1

46 | C++ Pocket Reference

Scope

A name can be used only within certain regions of a pro-
gram. These regions define its scope. The scope of a name is
based on where, and to some extent how, you declare it.
Most names have one of four scopes. Labels and prototype
parameters have their own special scopes.

Local Scope

A name has local scope when it is declared inside of a block.
A block i1s a compound statement that begins with a left
brace ({) and ends with a right brace (}). For example:

void ()
{

int i = 10;

}

In this example, i has local scope. A name with local scope is
visible only within its block.

Class Scope

A name has class scope when it i1s declared within the con-
fines of a class and does not have local scope. For example:

class Event

{
public:
enum Type
{
keyDown,
b5
Type getType() const
return type;
}
private:

Scope | 47

Declaring Variables

Declarations for variables introduce names that refer to data.
They contain the following, in order: an optional storage
class, optional qualifiers, a type, and a comma-delimited list
of one or more names to declare. For example:

int i, j, k;
char buffer[80];
static int counter, a;

volatile float X;

Data members of classes are declared in a similar manner
(see “Classes, Structs, and Unions™); however, they can only
have the storage classes static (see “Static data members”)
and mutable (see “Mutable data members”).

Declarations for variables may appear anywhere within a
block, not just at the start. This makes code like the follow-
ing common in C++:

void spin(int n)

{

cout << "Spinning" << endl;

for (int 1 = 0; 1 < n; i++)
H
}
In this example, the variable i is declared within the for
loop, as opposed to at the start of the function in which the
loop appears.

Pointer variables

Declarations for pointers follow the same rules as for other
types of variables, except you must be sure to precede each
name with an asterisk (*). For example:

int *p, *q, *r;
Special situations arise when the qualifier const is used in the
declaration of pointer variables (see “Qualifiers™).

Declarations | 51

Function definitions

Declarations for functions are called prototypes. They do not
define a function; they simply inform the compiler of your
intention to define and use it. To define a function, you spec-
ify a body for it, as follows:

void xchg(int &x, int &y)

{
int t = x;
X =Y;
y =1
}

This function has a return type of void. If the return type is
anything other than void, the function must use a return
statement (see “Jump Statements”) to return a value suitable
for the function’s return type. Functions that return void can
use a return statement without a value.

Default arguments

Default arguments can be specified for the parameters of
functions. You do this by setting a parameter equal to its
default value in the function declaration, as shown below:

void isTempOK(const int t,
const int low = 20,
const int high = 50);

A default argument is used for a parameter when nothing is
specified for it in an invocation of the function. For example,
assuming a temperature declared as temp, the following uses
the default arguments 20 for low and 50 for high:

if (!isTempOK(temp))
{

}

[f a function is declared with default arguments, the parame-
ters with defaults must appear last in the parameter list. Val-
ues are assigned to parameters from left to right. Remaining
parameters are then assigned their default values. Therefore,

// Do something if too low or high.

Declarations | 53

Forward Declarations

You can declare a class without providing a definition for it.
You do that using what is called a forward declaration, which
declares the class name without specifying any other details
about the class. For example:

class Account;

This informs the compiler that you plan to define the class
later but are going to use its name now without referring to
any of the class’s members. For example, forward declara-
tions are needed when two classes refer to each other:

class Account;

class Bank

{

LR

private:
Account *accounts;
b

class Account

{

private:
Bank *pbank;
b

Alternatively, you could define Account first and provide a
forward declaration for Bank.

Structs

Structs are functionally identical to classes except that the
default access level for their members is public, not private.
To define a struct, you use the keyword struct in place of the
keyword class.

Unions

Unions are similar to classes; however, they can hold a value
for only one data member at a time. As a result, a union

8 | C++ PocketReference

occupies only as much space as its largest data member
requires. Other differences between unions and classes are:

* The default access level for unions is public; the default
access level for classes is private.

* Unions cannot have member functions that are declared
using the keyword virtual.

* Unions cannot inherit from anything, nor can anything
inherit from them.

* The members of unions cannot be objects that define
constructors or destructors, or that overload the assign-
ment operator.

Unions can be anonymous (unnamed). This form is used
when nesting a union inside of a struct or class that contains
an extra data member to indicate what the union contains.
For example:

struct AccountInfo

{
enum
{
NameInfo,
Balancelnfo
};
int type;
union
{
char name[20];
double balance;
}
b

When setting a value in the union, you record how the union
is being used. For example:

AccountInfo info;

info.type = AccountInfo::Balancelnfo;
info.balance = 100.0;

Classes, Structs, and Unions | 87

Whenever you need to access the data member, you check
what the union contains. For example:

if (info.type == AccountInfo::BalanceInfo)
{

}

// Use the balance.

Inheritance

When you derive one class from another, the derived class
inherits the data members and member functions that the
other class defines (subject to access controls) while adding
its own. Aside from the benefits that inheritance offers stem-
ming from the reuse of functionality provided by the base
class, inheritance is fundamental to supporting polymor-
phism (see “Virtual Member Functions”), an essential part of
object-oriented programming. Consider the version of
Account below:

class Account

{
public:

Account(double b);
void deposit(double amt);
void withdraw(double amt);
double getBalance() const;

protected:
double balance;
b

To derive a new class called BankAccount from Account, you
do the following;:

class BankAccount : public Account

{
public:
BankAccount(double 1r);
void addInterest();
void chargeFee(double ¢);

88 | C++ Pocket Reference

private:
double interestRate;
};

Account is called the base class (or superclass). BankAccount is
called the derived class (or subclass). A BankAccount object
gives you the functionality of both BankAccount and Account:

BankAccount bankAccount(2.25);

bankAccount.deposit(50.0);
bankAccount.addInterest();

Access to members of the base class depends on two criteria:
the access level of the member in the base class (see “Access
Levels for Members”) and the access level for inheritance (see
“Access Levels for Inheritance”).

Constructors and Inheritance

Whenever you instantiate an object of a class derived from
another class, multiple constructors are called so that each
class in the derivation chain can initialize itself (see “Con-
structors’).

Order of construction

The constructor for each class in the derivation chain is
called beginning with the base class at the top of the deriva-
tion chain and ending with the most derived class.

Base class initializers

Base class initializers stipulate the data to pass to the con-
structors of base classes. They are specified with a construc-
tor’s definition. Base class initializers are placed in a comma-
delimited list between the constructor’s signature and its
body. The list begins with a colon (:). For example:

class BankAccount : public Account

{
public:

BankAccount(double 1) :

Inheritance | 89

{
}

balance -= amt;

protected:
double balance;

1
The member function in the derived class is declared like any
other member function, although it is common to declare the
member function using the keyword virtual in the derived
class as well for purposes of documentation. For example:

class BankAccount : public Account

{
public:
virtual void withdraw(double amt)
{
if (balance - amt < 0.0)
{
// Do nothing.
}
else
{
// Balance 0OK.
balance -= amt;
}
}

1
When you invoke a virtual member function via a base class
pointer or reference to an object of a derived class, the mem-

ber function of the derived class is called instead of the mem-
ber function of the base class. For example:

BankAccount bankAccount(2.25);
Account *aptr = &bankAccount;

aptr->withdraw(50.0);

The last line in this example calls withdraw of the BankAccount
class. To determine which member function to call, C++
uses polymorphism, or dynamic binding. This allows the

92 | C++ Pocket Reference

Symbols

-- (postfix decrement
operator), 39

-- (prefix decrement
operator), 40

- (subtraction operator), 41

! (logical NOT operator), 40

!= operator, 43

& (address-of operator), 41

& (bitwise AND operator), 43

&& (logical AND operator), 44

() (value construction
operator), 39

* (indirection operator), 41

+ (plus operator), 41

++ (postfix increment
operator), 39

++ (prefix increment
operator), 40

. (member selection
operator), 38

. operator, 42

:: (scope resolution operator), 37

:? (conditional expression
operator), 45

< operator, 43

Index

<< (left shift operator), 43

<= operator, 43

<climits> header file, 13

== operator, 43

-> (member selection
operator), 38

> operator, 43

~>" operator, 42

>= operator, 43

>> (right shift operator), 43

[] (array subscript operator), 38

\ (backslash), 8

~ (bitwise XOR operator), 43

| (bitwise OR operator), 43

|| (logical OR operator), 44

" (bitwise NOT operator), 40

A

abstract base classes, 94

access levels for members, 78
access specifiers, 78

addition operator (+), 42
address-of operator (&), 41
arithmetic operators, 42

array subscript operator ([]), 38

We'd like to hear your suggestions for improving our indexes. Send email to

index@oreilly.com.

125

arrays, 19-22
initializer list for, 21
initializing with an array, 22
multidimensional, 20
passing to functions, 21

assignment operators, 34, 45
overloading, 107

atof() function, 5

auto storage class, 56

B
backslash (1), 8

base classes, 89

virtual, 97
bitwise AND operator (&), 43
bitwise NOT operator (7), 40
bitwise OR operator (|), 43
bitwise XOR operator (™), 43
break statement, 64

C

C Standard Library, 121
C++ programs
startup, 3-5
structure, 3-12
termination, 3
C++ Standard Library, 120-124
C, compatibility with, 2
catch blocks, 118
cerr object, 124
character escape sequences, 14
character literals, 14
cin object, 122
class scope, 47
class types, 28
classes, 69-86
storage, 35-56
clog object, 124
clone member function, 108
comments, 32
compound statements, 59
compound types, 17-28

conditional expression operator
(:?), 45
const qualifier, 57
const_cast operator, 39, 115
constant data members, 72
constant member functions, 77
constructors, 80-83
converting, 30
copy, 81
default, 81
explicit, 82
inheritance and, 89
member initializers, 83
continue statement, 64
copy constructors, 81
cout object, 123
_ _cplusplus macro, 12
cpp files, 7
cross casting, 114
C-style cast operator, 42
C-style casting, 112

D

data members

constant, 72

declaring, 70-73

mutable, 73

static, 71

volatile, 73
__DATE_ _ macro, 11
declarations, 50-58

forward, 86

nested, 85
default arguments, 33
#define directive, 6.8
delete operator, 42, 110
delete[] operator, 42, 111
dereferencing pointers, 24, 41
derived classes, 89
destructors, 83

inheritance and, 90

virtual, 90
directives, preprocessor, 8-11

126 | Index

division operator (/), 42

do loop, 60

double type, 16

downcasting, 114

dynamic_cast operator, 39,
112-114

E
#elit directive, 9
ellipsis (...) and exception
handling, 118
#else directive, 9
enclosing scopes, 49
#endif directive, 6,9
enum keyword, 18
enumerations, 18
#error directive, 10
escape sequences, 14

exception handling, 117-120

ellipsis (...) and, 118

exception specifications, 119

exit function, 5
explicit specialization
of template classes, 100

of template functions, 102

expression statements, 59
expressions, 46
extern storage class, 56

F
file scope, 48
_ _FILE_ _ macro, 11
float type, 16
floating points, 16
for loops, 61

break statements and, 64
forward declarations, 86
friends, 79
function call operator, 38
function pointers, 25

functions
declaring, 52
definitions, 53
inline, 54
overloading, 104
parameters, 53
passing arrays to, 21
fundamental types, 12-17

G

global namespaces, 66
goto statement, 65

H
header files, 5-7

C++ Standard Library, 120

wrapping, 6

I/O streams, 122
identifiers, 32
rules, 33
#it directive, 9
if statement, 62
#itdef directive, 9
#ifndef directive, 6.9
implicit conversions, 29
#include direcuve, 6, 10
indirection operator (), 41
inheritance, 88-98
access levels for, 94
constructors and, 89
destructors and, 90
multiple, 95
mitializer list for arrays, 21
inline functions, 54
imline keyword, 54
nt type, 13
integers, 13
iteration statements, 60-62

Index |

127

J

jump statements, 64

L

left shift operator (<<), 43
#line directive, 10
_ _LINE_ _ macro, 11
literals, 34
local scope, 47
logical AND operator (&&), 44
logical NOT operator (!), 40
logical OR operator (|[), 44
long double type, 16
long type, 15
loops, 60-62
l-values, 28

references as, 28

M

main() function, 3
member access levels, 78
member functions, 74-78
constant, 77
static, 76
this pointer and, 75
virtual, 91-94
volatile, 78
member functions and volatile
qualifiers, 58
member initializers, 82
member selection operator
(.and ->), 38
memory allocation failure, 110
memory management, 108-111
operators, 108
memory reclamation, 110
message directive, 11
minus operator (-), 41
modulus operator (%), 42
multidimensional arrays, 20
multiple inheritance, 95
multiplication operator (*), 42

mutable data members, 73
mutable storage class, 56

namespace scope, 48
namespaces, 66-68
global, 66
unnamed, 68
nested declarations, 85
new operator, 42, 108
new|] operator, 42, 109
null pointers, 25
null statements, 39

0

.o files, 7
.obj files, 7
objects
accessing members, 69
declaring, 69
operators, 34-46
list of, 35-37
overloading, 105-108
precedence, 35
overloading
defined, 104
functions, 104
operators, 105-108

P

parameters, function, 33
plus operator (+), 41
pointer arithmetic, 24
pointer variables, 51
pointers, 24-27

const declaration, 57

dereferencing, 24, 41

function, 25

null, 25

of type void, 25

this, 75

128 | Index

pointers to members, 26
pointer-to-member selection
operators (.* and —>%), 42
postfix increment and decrement
operators (++, --), 39
#pragma directive, 11
precedence, operator, 35
prefix increment and decrement
operators, 40
preprocessor directives, 8-11
preprocessor macros, 11
private members, 78
inheritance and, 95
protected members, 78
inheritance and, 95
prototypes, 53
public members, 78
inheritance and, 95

Q
qualifiers, 57

reference parameters, 27
references, 27
as l-values, 28

register storage class, 56

reinterpret_cast operator, 39,
115

relational operators, 43

reserved words, 33

return statement, 65

right shift operator (>>), 43

RTTI (runtime type
information), 115

S

scope resolution operator (::), 37
scopes, 47-50

class, 47

enclosing, 49

file, 48

local, 47

namespace, 48
selection statements, 62
sequence operator (,), 46
set_new_handler function, 110
set_terminate function, 119
shift operators, 43
short type, 15
signed integers, 15
sizeof operator, 40
source files, 7
Standard Template Library

(STL), 122
statements, 59-635
static data members, 71
static member functions, 76
static storage class, 55
static_cast operator, 39,113
std namespace, 121
__STDC_ _ macro, 12
STL (Standard Template
Library), 122

storage classes, 55-56
string literals, 23
strings, 22
strlen function, 23
structs, 86
subtraction operator (-), 42
switch statement, 63

T

template classes, 98-101
default arguments for, 101
explicit specialization of, 100
member functions in, 99
nontype parameters in, 100

template functions, 101-103
arguments to, 102
explicit specialization of, 102
instantiation of, 102
nontype parameters in, 103

templates, 98-103

Index | 129

this pointer, 75
throw operator, 46, 117
__TIME_ _ macro, 11
_ _TIMESTAMP_ _ macro, 11
tokens, 31
try block, 117
type cast operators, 39
type conversions, 28-30
type definitions, 31
type_info class, 116
typedef keyword, 28 31
typeid operator, 39, 116
types
compound, 17-28
fundamental, 12-17

U

unary minus and plus operators
(-, +), 41

#undef directive, 9

unexpected function, 119

unions, 86

unnamed namespaces, 68

unsigned integers, 15

upcasting, 114

user-defined conversions, 29

using declaration, 67

using directives, 67

v

value construction operator, 39
variables

declarations, 51

initializing, 52
virtual base classes, 97
virtual destructors, 90
virtual member functions, 91-94
void pointers, 25
void type, 17
volatile data members, 73
volatile member functions, 78
volatile qualitier, 58

member functions and, 58

w

while loop, 60

wide characters, 23
wrapping header files, &

130 | Index

9

C++ Programming

O’REILLY"

C++ Pocket Reference

C++ is a complex language with many subtle facets.
The C++ Pocket Reference allows C++ programmers
to quickly look up usage and syntax for the most

commonly used features of the language. As much
information as possible has been crammed onto its pages, and
its small size makes it easy to take anywhere. The C++ Pocket
Reference covers:

e (C++ statements and preprocessor directives

e (C++ namespaces and scope

e Template programming and exception handling

e (lasses and inheritance

e C++ types and type conversion, including C++ casts

In addition to serving as a ready-reference for C++ programmers,
the C++ Pocket Reference is useful to Java and C programmers
who are making the transition to C++ or who find themselves
occasionally programming in C++. The three languages are often
confusingly similar. This book enables programmers familiar with C
or Java to quickly come up to speed on how a particular construct
or concept is implemented in C++.

The C++ Pocket Reference is one of the most concise, portable
quick references to the C++ language available.

www.oreilly.com

US $9.95 CAN $14.95
ISBN-10: 0-596-00496-6
ISBN-13: 978-0-596-00496-5

[T

7805967004965

