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Preface

The laser belongs to one of the most fascinating fields in modern physics since
its first experimental demonstration in 1960 by T. H. Maiman. The laser itself and
its applications have fundamentally influenced many fields in modern physics as
well as in many other sciences—some of which only become possible through the
existence of the laser. The outstanding quantum-mechanical properties of laser ra-
diation, for example its coherence and interaction with atoms or molecules, opened
new fields of research, from spectroscopy in physics, chemistry and biology to in-
formation processing, materials science and general metrology, and to some of the
probably most fascinating fields of physics: the laser allows us to create and study
extreme states of matter such as Bose-Einstein condensates or degenerate Fermi
gases. It opens a way to important investigations in quantum mechanics, has a big
impact on solid-state physics and electronics by creating a need for more and more
efficient light sources such as laser diodes and it made the demonstration and ex-
ploitation of the interesting field of non-linear optics possible. The laser will provide
an enormous contribution also in the future, to discover gravitational waves, to cre-
ate extremely hot and dense matter, for example for inertial fusion, and it opens the
was to understand the fundamentals of physics at ultra-short time scales, which has
become possible only owing to the existence of femto- and atto-second laser pulses.

This text book originates from a lecture in laser physics at the Karlsruhe School
of Optics and Photonics at the Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany, which has been given there since 2008. A main item in the conception of
this text book was, to describe the fundamentals of lasers in a uniform and especially
lab-oriented notation and formulation, as well as many currently well-known laser
types, becoming more and more important in the future. It closes a gap between, for
example, the measurable spectroscopic quantities and the whole theoretical descrip-
tion and modelling.

This text book contains not only the fundamentals and the context of laser physics
in a mathematical and methodical approach important for university-level studies. It
allows simultaneously, owing to its conception and its modern notation, to directly
implement and use the learned matter in the practical lab work. It is presented in a
format suitable for everybody, who wants to not only understand the fundamentals

v



vi Preface

of lasers, but also use modern lasers or even develop and make laser setups. This
text book tries to limit prerequisite knowledge and fundamental understanding to a
minimum and is intended for students in physics, chemistry and mathematics after a
bachelor degree, with the intention to create as much joy and interest as seen among
the participants of the corresponding lecture.

This university text book describes in its first three chapters the fundamentals of
lasers: light-matter interaction, the amplifying laser medium and the laser resonator.
In the fourth chapter, pulse generation and related techniques are presented and
investigated. The fifth chapter gives a closing overview on to different laser types
gaining importance currently and in the future. It also serves as a set of examples,
on which the theory learned in the first four chapters is applied and extended.

The author wishes to thank Prof. David H. Titterton (Dstl, UK) for proof reading
the manuscript and offering valuable comments, and to Springer, here especially to
Vera Spillner and Claus Ascheron for the extraordinary and friendly collaboration.

Marc EichhornSaint Louis, France
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Chapter 1
Quantum-Mechanical Fundamentals of Lasers

In this chapter we will investigate the basic quantum-mechanical effects and rela-
tions that allow the realization of a laser and determine the properties of laser opera-
tion. These are the fundamental processes of absorption, spontaneous emission and
stimulated emission of light and their quantum-mechanical description.

1.1 Einstein Relations and Planck’s Law

It was is the early years of quantum physics, when Planck found a theoretical
description of the spectral distribution of the blackbody radiation. This radiation,
which is emitted, e.g., from a small hole in the walls of a hohlraum (the blackbody)
kept at a temperature T as shown in Fig. 1.1, shows a characteristic spectrum. Its
spectral distribution and the peak of the emission intensity are only a function of
the blackbody temperature. In Planck’s derivation of this spectrum he assumed that
electromagnetic radiation cannot be emitted or absorbed continuously, but only in
fixed amounts of energy, the quanta, with a corresponding energy of

E = hν = hc

λ
. (1.1)

Today we know that these quanta are the photons of the electromagnetic field that
can be described by their frequency ν or their wavelength λ.

Einstein also tried to find a derivation of this spectral distribution, starting
from the fundamental interactions of absorption and emission between a quantum-
mechanical system (atom, ion, molecule, electronic states in condensed matter for

Fig. 1.1 Measurement of the
spectral distribution of the
blackbody radiation emitted
by a hohlraum at a
temperature T

M. Eichhorn, Laser Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-05128-4_1,
© Springer International Publishing Switzerland 2014
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2 1 Quantum-Mechanical Fundamentals of Lasers

Fig. 1.2 Interactions between a two-level system and a photon according to Einstein

example) and a photon. According to Einstein, this can be described by three basic
processes as shown in Fig. 1.2 for a simple two-level system. These processes are:

• The absorption of a photon of energy hν = E2 − E1, causing a transition from
level |1〉 to level |2〉.

• The spontaneous emission, in which the system emits a photon of energy hν

by returning from level |2〉 to level |1〉. This is called spontaneous emission as
the moment of emission (i.e. the phase φ of the radiation), the polarization �ε and
the propagation direction, i.e. the direction of the wave vector �k, is random. Thus
the spontaneous emission causes incoherent radiation and is responsible for the
fluorescence of excited media.

• The stimulated emission, in which an incoming photon induces a resonant tran-
sition from the excited level |2〉 to level |1〉, emitting a second photon of energy
hν. As photons are Bosons, i.e. they are allowed to be in the same quantum-
mechanical state, and as stimulated emission is a resonant process, both photons
are identical in all their properties. This effect, therefore, allows the amplification
of light, the fundamental process of any laser.

The fundamental process that allows us to realize a laser is the stimulated emis-
sion process occurring in excited quantum-mechanical systems, giving rise to the
possibility of photon amplification. It was the existence of the stimulated emission
process that Einstein postulated in 1917 in order to derive the well-known Planck’s
law of the spectral energy density of electromagnetic radiation per volume u(ν,T )
in the spectral range ν to ν + dν (or in wavelengths u(λ,T ) in the spectral range λ
to λ + dλ),

u(ν,T )dν = 8πhν3

c3

1

e
hν
kBT − 1

dν (1.2)

u(λ,T )dλ = 8πhc

λ5

1

e
hc

λkBT − 1
dλ, (1.3)

which is shown in Fig. 1.3. Therein, also the classical Rayleigh-Jeans law is shown,
which we will need later to find some relations in Einstein’s derivation.

In this derivation [1] Einstein assumed that an ensemble of N = N1 + N2 non-
degenerate two-level systems with an energy difference �E = hν = E2 − E1 is in
thermal equilibrium with its environment kept at a temperature T . The absorption
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Fig. 1.3 Plot of the spectral energy density of electromagnetic radiation per volume as a function
of frequency or wavelength for different temperatures

of the radiation then causes a transition rate from level |1〉 to level |2〉,(
dN2

dt

)
abs

= −
(
dN1

dt

)
abs

= B12u(ν,T )N1, (1.4)

that is proportional to the (unknown) radiation energy density u(ν,T ) and the num-
ber of absorbers N1 with a proportionality constant B12. The stimulated emission of
the radiation causes a transition from level |2〉 to level |1〉 with the rate(

dN2

dt

)
stim

= −
(
dN1

dt

)
stim

= −B21u(ν,T )N2, (1.5)

which is also proportional to the radiation density u(ν,T ) and the number of emit-
ters N2 with a proportionality constant B21. The spontaneous emission is only pro-
portional to the number of the possible emitters N2 and causes a rate(

dN2

dt

)
spont

= −
(
dN1

dt

)
spont

= −A21N2. (1.6)

The proportionality constants B12, B21 and A21 are called Einstein coefficients.
From Eq. (1.6) it can be deduced that in absence of other processes the population

of level |2〉 decays exponentially with a time constant τ21 = A−1
21 , called the natu-

ral lifetime of the level |2〉. Therefore, the evolution of the externally measurable
fluorescence intensity I (t) ∝ dN2

dt
is given by

I (t) = I (0)e
− t
τ21 . (1.7)

This exponential decay is shown in Fig. 1.4.
In thermal equilibrium the populations of the levels |1〉 and |2〉 are constant, i.e.

dN2

dt
=
(
dN2

dt

)
abs

+
(
dN2

dt

)
stim

+
(
dN2

dt

)
spont

= 0, (1.8)
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Fig. 1.4 Decay of the
fluorescence intensity of an
excited sample

dN1

dt
=
(
dN1

dt

)
abs

+
(
dN1

dt

)
stim

+
(
dN1

dt

)
spont

= 0, (1.9)

and their ratio can be described by a Boltzmann distribution resulting in

N2

N1
= B12u(ν,T )

A21 + B21u(ν,T )

!= e
− E2 −E1

kBT . (1.10)

Therefore, the spectral energy density u(ν,T ) has to have the form

u(ν,T ) = A21

B12e
hν
kBT − B21

. (1.11)

In order to find the relations between the Einstein coefficients, two limits are inves-
tigated: In the high temperature limit T → ∞ the spectral energy density diverges,
forcing

B21 = B12. (1.12)

This result is very important as it shows that absorption and stimulated emission are
completely equivalent processes.

For the low photon energy limit hν � kBT , u(ν,T ) needs to be consistent with
the classical Rayleigh-Jeans law

uRJ (ν,T ) = 8πν2

c3
kBT , (1.13)

which itself was proven experimentally and which can be deduced in the scope of
classical Maxwellian electrodynamics, as it does not contain h. This comparison
results in

A21 = 8πhν3

c3
B12, (1.14)

stating that absorption and spontaneous emission are proportional to each other
(Kirchhoff’s law). Including both limits into Eq. (1.11) then gives Planck’s law
as in Eq. (1.2).
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Fig. 1.5 Spatial radiation power of a classical dipole and dipole moment of an electron in quantum
mechanics

1.2 Transition Probabilities and Matrix Elements

In this section we will derive the relations between the Einstein coefficients and the
quantum-mechanical properties of a dipole transition [2].

1.2.1 Dipole Radiation and Spontaneous Emission

In classical electrodynamics, a dipole consisting of a charge q oscillating at a fre-
quency ω = 2πν with a spatial amplitude r0 = | �r0 | possesses an electric dipole
moment

�p(t) = q�r(t) = q�r0 sinωt. (1.15)

As the oscillating dipole is an accelerated charge, it will give rise to a dipole radia-
tion, see Fig. 1.5. The total radiated average power P can be derived in the scope of
classical electrodynamics and results in Larmor’s formula,

P = 2

3

�p2ω4

4πε0c3
. (1.16)

Therein,

f = 1

T

∫ T

0
f dt (1.17)

is the time-average over one period T = 2π
ω

, leading to

�p2 = 1

2
q2 | �r0 |2. (1.18)

In quantum mechanics, the average dipole moment of an electron with its ele-
mentary charge e, described by the wave function ψ , is given by

〈 �p〉 = 〈ψ |e�r|ψ〉 =
∫
ψ∗e�rψdV . (1.19)
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Accordingly, we define for a transition between two levels |1〉 and |2〉 the transition
dipole moment

�M21 = 〈ψ2 |e�r|ψ1 〉 =
∫
ψ∗

2 e�rψ1dV (1.20)

and its absolute value

M21 = ∣∣〈ψ2 |e�r|ψ1 〉∣∣=
∣∣∣∣
∫
ψ∗

2 e�rψ1dV

∣∣∣∣. (1.21)

In this transition to quantum mechanics we also have to exchange the classical av-
erage of �p2 by the quantum-mechanical expression [3]

�p2 → 1

2
(M21 + M12)

2 = 2M2
21. (1.22)

Inserting this in Eq. (1.16) results in an emitted power given by

〈P21 〉 = 4

3

ω4

4πε0c3
M2

21, (1.23)

with ω = (E2 −E1)/�. According to Eq. (1.6), the total average fluorescence power
Pf emitted by N2 excited levels corresponds to

Pf = hνA21N2
!= 〈P21 〉N2. (1.24)

This comparison now allows us to deduce the explicit form of the Einstein coeffi-
cient A21 as

A21 = 2

3

e2ω3

hε0c3
|〈ψ2 | �r|ψ1 〉|2 = 2

3

e2ω3

hε0c3

∣∣∣∣
∫
ψ∗

2 �rψ1dV

∣∣∣∣
2

. (1.25)

For an atom or molecule with many different levels for which the wave functions are
known, the spontaneous emission rates Aji may now be calculated for all possible
transitions between the levels j and i, resulting in a matrix A[j,i]. Therefore the Mji

in Eq. (1.21) are also called matrix elements.
The derivation above, as a result of Eqs. (1.16), (1.25), is valid only in the dipole

approximation, i.e. as long as the wavelength of the emitted radiation is longer than
the spatial dimension of the dipole λ 
 r0. This is true for λ > 1 nm, and therefore,
for all visible and infrared lasers.

From the ω3 dependence in Eq. (1.25) it can also be concluded that the sponta-
neous emission increases dramatically for short wavelengths, resulting in very short
lifetimes of the corresponding upper level. As will be shown in Chap. 2, this affords
very high pump and laser intensities to saturate the optical transition, making the re-
alization of deep-UV and X-ray lasers based on electronic transitions very difficult.

1.2.2 Stimulated Emission and Absorption

In contrast to the description of the spontaneous emission presented before, the stim-
ulated emission or absorption of a photon by our two-level system is a quantum-
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mechanical process that involves the interaction between the system and the elec-
tromagnetic field. Therefore, it is necessary to make a short excursion into time-
dependent quantum-mechanics and perturbation theory [4]:

Let H0 be the Hamiltonian for the unperturbed system, i.e. the system with-
out the electromagnetic field, which is therefore described by the time-dependent
Schrödinger equation

i�
∂

∂t

∣∣ψ0(t)
〉= H0

∣∣ψ0(t)
〉

(1.26)

for t < t0 with |ψ0(t)〉 being the state of the system before the perturbation occurs.
After the application of the time-dependent perturbation V(t), which is assumed to
be small compared with H0, the system will occupy the state |ψ(t)〉 and will evolve
according to

i�
∂

∂t

∣∣ψ(t)〉= (H0 + V(t)
)∣∣ψ(t)〉. (1.27)

The time dependent perturbation theory allows to calculate the transition rates be-
tween different states. The exact derivation of the following formulas can be found,
e.g., in [4]. Here we only quote the results that we need to investigate the stimulated
emission and absorption processes. As the electromagnetic field of the incident pho-
ton can be treated as a periodic perturbation, we use the corresponding results of
perturbation theory for a periodic perturbation oscillating at a frequency ω = 2πν
of the form

V(t) = Fe−iωt + F
†eiωt , (1.28)

in which F is an operator defining the nature of the perturbation. Then the transition
rate, i.e. the transition probability per unit time, for the transition from state j to
state i can be calculated by Fermi’s golden rule, resulting in

Rji = 2π

�

(
δ(Ej − Ei − �ω)

∣∣〈ψj |F|ψi〉∣∣2 + δ(Ej − Ei + �ω)
∣∣〈ψj |F† |ψi〉∣∣2).

(1.29)
The two δ-functions describe the conservation of energy (or the resonance of the
process) and the matrix elements of the perturbation F account for the strength of
the transition. Owing to ω > 0 it follows that for Ej > Ei the first term describes
the stimulated emission and for Ej < Ei the absorption process is described by the
second term.

For the stimulated emission from level |2〉 to level |1〉 or the absorption from
level |1〉 to level |2〉 in our two-level system the perturbation is given by the electric
field of the incoming photon

�E(t) = �E0e
i�k�re−iωt , (1.30)

causing a transition rate [5]

R21 = πe2

2�2

∣∣〈ψ2 | �E0 �rei�k�r |ψ1 〉∣∣2δ(ω0 − ω) = πe2

2�2

∣∣∣∣
∫
ψ∗

2
�E0 �rei�k�rψ1dV

∣∣∣∣
2

δ(ω0 − ω).

(1.31)
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Fig. 1.6 Local coordinate
frame for the calculation of
the average over all
polarizations

Therein �k is the wave vector of the electromagnetic wave with | �k| = 2π
λ

and ω0 =
E2 −E1

�
is the resonance frequency.

In the same dipole approximation as used for the spontaneous emission, λ 
 r0,
i.e. �k�r � 1, this rate can be approximated by taking |ei�k�r | ≈ 1 to give

R21 = πe2

2�2
E2

0

∣∣�ε〈ψ2 | �r|ψ1 〉∣∣2δ(ω0 − ω) = πe2

2�2
E2

0

∣∣∣∣�ε
∫
ψ∗

2 �rψ1dV

∣∣∣∣
2

δ(ω0 − ω),

(1.32)
with �ε describing the polarisation of the wave. It shows that the electric field needs
to be applied in the same direction as the dipole orientation, in order to produce the
maximum transition rate.

We will now simplify this relation for the case of a thermal radiation that is
isotropically distributed in space. Therefore, Eq. (1.32) is averaged over all possible
polarisation orientations �ε, noting that 〈 �r〉21 = ∫ ψ∗

2 �rψ1dV is a constant vector after
the integration has been performed. By defining a local frame with its z-axis aligned
with 〈 �r〉21 as in Fig. 1.6, the average over all orientations of

�ε =
⎛
⎝ sin θ cosφ

sin θ sinφ
cos θ

⎞
⎠ (1.33)

is calculated in polar coordinates to give

〈| �ε〈 �r〉21 |2〉= 1

4π

∫ π

0

∫ 2π

0
cos2 θ

∣∣〈 �r〉21
∣∣2 sin θdθdφ = 1

3

∣∣〈 �r〉21
∣∣2. (1.34)

This results in the averaged transition rate

〈R21 〉 = πe2

6�2
E2

0

∣∣〈ψ2 | �r|ψ1 〉∣∣2δ(ω0 − ω) = πe2

6�2
E2

0

∣∣∣∣
∫
ψ∗

2 �rψ1dV

∣∣∣∣
2

δ(ω0 − ω),

(1.35)
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which can be further simplified by introducing the spectral energy density of the
electric field at resonance,

u(ν) = 1

2
ε0E

2
0δ(ν0 − ν) = πε0E

2
0δ(ω0 − ω), (1.36)

using δ(ax) = 1
a
δ(x). This yields

〈R21 〉 = 2

3

π2e2

3ε0h2

∣∣〈ψ2 | �r|ψ1 〉∣∣2u(ν) = 2

3

π2e2

3ε0h2

∣∣∣∣
∫
ψ∗

2 �rψ1dV

∣∣∣∣
2

u(ν). (1.37)

The direct comparison with Eq. (1.5) results in the expression for the Einstein coef-
ficient of stimulated emission,

B21 = 2

3

π2e2

ε0h2

∣∣〈ψ2 | �r|ψ1 〉∣∣2 = 2

3

π2e2

ε0h2

∣∣∣∣
∫
ψ∗

2 �rψ1dV

∣∣∣∣
2

. (1.38)

It is, in contrast to A21, independent of the transition frequency or wavelength,
and does only depend on the quantum-mechanical properties of the transition en-
closed in the matrix elements. By comparing this result with the Einstein coefficient
of spontaneous emission A21 in Eq. (1.25), we again find the relation shown in
Eqs. (1.12), (1.14).

1.3 Mode Structure of Space and the Origin of Spontaneous
Emission

Spontaneous emission can be seen as a statistical process, i.e. each atom, ion or
molecule decays independently by emitting a photon at a certain time in a single
process whilst the observation of the fluorescence of an ensemble of many atoms,
ions or molecules shows the well-known exponential decay law of Eq. (1.7). How-
ever, this statistical view cannot explain why a single atom “decides” to emit the
photon at a certain time. In order to answer this question, we need to have a look
into the mode structure of space, i.e. the structure of the allowed eigenmodes of
electromagnetic radiation in vacuum, and the nature of the photons occupying these
states.

1.3.1 Mode Density of the Vacuum and Optical Media

In order to determine the mode density of the vacuum and of optical transparent
media with a refractive index n > 1, we first calculate the number of eigenmodes of
a cubic hohlraum resonator of length a and volume a3 up to the frequency ω. As
we assume infinitely conductive walls the tangential components of the electric field
must vanish on these walls. Therefore, the set of eigenmodes can be represented by
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Fig. 1.7 Standing waves in a
conductive hohlraum and
representation of the
eigenmodes in reciprocal
space

the standing waves inside the hohlraum as shown in Fig. 1.7 with the wave vectors
given by

�k = π

a

⎛
⎝qr
s

⎞
⎠ with q, r, s ∈ Z. (1.39)

The corresponding electric field can be written as

�E = �E0 cosωt, (1.40)

with the spatial components

�E0 =
⎛
⎜⎝
E0x cos πq

a
x sin πr

a
y sin πs

a
z

E0y sin πq
a
x cos πr

a
y sin πs

a
z

E0z sin πq
a
x sin πr

a
y cos πs

a
z

⎞
⎟⎠ , (1.41)

the wave vector

| �kqrs | = π

a

√
q2 + r2 + s2 (1.42)

and the possible resonance frequencies

ωqrs = πc

a

√
q2 + r2 + s2, (1.43)

that result from the dispersion relation

ω = c| �k| (1.44)

of electromagnetic waves in vacuum.
In reciprocal space or k-space, where all eigenmodes are represented by a three-

dimensional point lattice with a lattice constant π
a

, Eq. (1.42) describes a sphere with

radius | �k| = ω
c

. For high frequencies, i.e. large mode numbers q2 + r2 + s2 
 1, the
discrete lattice can be approximated by a homogeneous k-space density ρk = ( a2π )

3,
which takes into account that, e.g., −q and q describe the same mode. This allows
an easy calculation of the volume density of the number of modes in the hohlraum
up to the frequency ν:

M(ν) = 2a−3
∫
ρkd

3k = 8π
∫

k2dk

(2π)3
= 8πn3

c3

∫
ν2dν = 8πn3ν3

3c3
. (1.45)
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Therein the factor of 2 represents the two independent polarisations of the electric
field and n the refractive index in the case of a hohlraum filled with an optical
medium. This result is independent from the external dimension or orientation of
the hohlraum. We can thus let a → ∞ and find the spectral mode density of space as

M̃(ν) = ∂M

∂ν
= 8πn3ν2

c3
. (1.46)

One can recognize this spectral mode density in Planck’s law, Eq. (1.2) and in the
Rayleigh-Jeans law, Eq. (1.13), which simply states that each of these modes is
excited with an energy of kBT in thermal equilibrium.

An alternative deduction of Planck’s law, which is the one Planck used, starts
from this spectral mode density M̃(ν), which is multiplied by the energy per photon
hν and by the number of thermally excited photons per mode

n(ν,T ) = 1

e
hν
kBT − 1

, (1.47)

to yield the spectral energy density in thermal equilibrium. n(ν,T ) is given by the
Bose-Einstein distribution as photons, spin 1 particles, are bosons.

1.3.2 Vacuum Fluctuations and Spontaneous Emission

We now know the spectral mode density of space and the fact that photons are
bosons, which means especially that the number of photons in one quantum-
mechanical state, i.e. in one mode, is not restricted. But what kind of state is a
mode, i.e. what energy potential creates this state? In order to answer this question
we have to look at the quantum structure of the electromagnetic field.

In classical electrodynamics [1], as we did for the determination of the spectral
mode density, we can see a mode as a monochromatic wave, e.g. propagating along
the x-axis and polarized along the z-axis with an electric field given by

�E(t) =
⎛
⎝ 0

0
p(t) sinkx

⎞
⎠ , (1.48)

with a temporal evolution described by p(t). The corresponding magnetic field is

given by the Maxwell-Equation �∇ × �E = − ∂ �B
∂t

, resulting in

�B(t) =
⎛
⎝ 0

1
c
q(t) coskx

0

⎞
⎠ , (1.49)

with q(t) being given by

dq(t)

dt
= ωp(t) (1.50)
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using Eq. (1.44). By inserting both fields into the Maxwell-Equation �∇ × �B =
ε0μ0

∂ �E
∂t

, we get

dp(t)

dt
= −ωq(t), (1.51)

which we can combine with Eq. (1.50) to result in

d2q(t)

dt2
+ ω2q(t) = 0. (1.52)

This is the equation of motion of a harmonic oscillator, that, in terms of classical
mechanics, can be described by a Hamilton function, i.e. a total energy, of

H = 1

2
ω
(
p2 + q2). (1.53)

The quantization of the electromagnetic field can now be done by formally iden-
tifying this result with the quantum-mechanical harmonic oscillator of mass m de-
scribed by the Hamiltonian

HHO = 1

2m
P

2 + 1

2
mω2

Q
2 = �ω

(
N + 1

2

)
, (1.54)

with P and Q being the momentum and position operators, respectively. For this
formal identification the mass m is a free, non-used parameter that we can simply
set to m = ω−1 and compare the result with the classical Eq. (1.53). The different
operators in this Hamiltonian are given by

N = A
†
A (1.55)

A = 1√
2�

(√
mωQ + i√

mω
P

)
(1.56)

A
† = 1√

2�

(√
mωQ − i√

mω
P

)
, (1.57)

with N being the occupation number operator and A and A
† the annihilation and

creation operators, respectively, as they decrease or increase the quantum number
n of the eigenstate |n〉 by one, i.e. A|n〉 = √

n|n − 1〉 and A
† |n〉 = √

n + 1|n + 1〉.
For the quantum-mechanical oscillator, we know that the possible energy levels are
evenly spaced with a separation of �ω as shown in Fig. 1.8 and that the energy
eigenvalues are given by

HHO |n〉 = En|n〉 with En = �ω

(
n + 1

2

)
. (1.58)

As a result, we can state that a photon mode consisting of n photons can be
seen as a harmonic quantum oscillator occupying the state with quantum number n.
The linear relationship between the number of photons n and the total energy En
of the mode is as expected, since adding a photon just should increase the energy
of that mode by �ω. However, as it is well known from the quantum oscillator,
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Fig. 1.8 Potential and
corresponding eigenstates of
the quantum-mechanical
harmonic oscillator

the lowest state |0〉 has a finite energy of 1
2�ω, and since usually the quantum-

mechanical system is found in its ground state at absolute zero, i.e. at T = 0 K, this
energy is called zero-point energy. We thus found that in quantum electrodynamics
the vacuum is not just an empty space. Electrodynamically, it can be described by
an infinite set of modes that are all in their ground state, i.e. unoccupied. However,
from Heisenberg’s uncertainty relation

�E�t ≥ �

2
, (1.59)

we can deduce that it is quantum dynamically allowed that a photon of energy �ω

may be spontaneously created “out of nothing’ for a short period of time �t ≤ 1
2ω ,

so that the necessary energy �ω is within the theoretically allowed uncertainty

�E ≥ �

2�t
≥ �ω. (1.60)

Without going into detail here, we just state the result that these “virtual” photons
do exist and are called vacuum fluctuations. In a classical picture this explanation
is not possible as the time �t ≤ 1

2ω does not allow a full oscillation to occur.
An experimental proof of the vacuum fluctuations, e.g., the Casimir force, an ad-

ditional attractive force component between two uncharged parallel metallic plates
placed close to each other. It can be explained by the fact that between the plates
only those vacuum fluctuations occur that are consistent with the allowed standing
modes, see illustration in Fig. 1.9, whilst in the outer space all vacuum fluctuations
occur. Thus an external pressure is created that pushes the two plates together.

Now that we know that the physical vacuum is no “quiet” space, but that vacuum
fluctuations occur, we can understand the spontaneous emission in a much more
fundamental way. By using the quantum nature of the electromagnetic field, being
present in the form of modes that are occupied by a number of photons, we can
separate this electromagnetic field into a real part consisting of real photons, and a
virtual part, consisting of the virtual photons of the vacuum fluctuations. Therefore,
we can describe the spontaneous emission process as a stimulated emission process,
triggered by a virtual photon from the vacuum fluctuations. As in standard stim-
ulated emission triggered from a real photon, the emitted photon here is an exact
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Fig. 1.9 Casimir force
between two metallic plates

copy of the input virtual photon. However, no real photon amplification occurs as
the virtual photon has to disappear after the process to obey Eq. (1.59). The sta-
tistical behaviour of the vacuum fluctuations, i.e. the random nature of the time of
creation of the virtual photon as well as the mode in which it occurs, is therefore,
transferred on to the whole emission process, explaining the statistical nature of the
spontaneous emission. As a result of this more fundamental view, we find that any
state of a quantum-mechanical system that couples to the electromagnetic field, and
which is not the ground state of the system, will show spontaneous emission towards
the energetically lower lying states.

1.4 Cross Sections and Broadening of Spectral Lines

We will introduce in this section the spectroscopic properties that describe a laser
medium as well as the line broadening mechanisms that influence the spectral be-
haviour and the efficiency of a laser. This allows us to quantify the different proper-
ties of the optical transitions in a laser medium and results in a general mathematical
description of lasers that will be presented in Chap. 2.

1.4.1 Cross Sections of Absorption and Emission

When an electromagnetic wave propagates in an absorbing medium along the z-
axis, its intensity I (z) will be attenuated during propagation. In this process each
frequency or wavelength component of the radiation may suffer from a different
absorption strength. Therefore, we introduce the spectral intensity Ĩ (z, λ), which is
defined by

I (z) =
∫
Ĩ (z, λ)dλ. (1.61)

By passing an infinitesimal propagation distance dz each wavelength component is
attenuated proportional to the incident spectral intensity according to

dĨ (z, λ)

dz
= −α(λ)Ĩ (z, λ), (1.62)

as shown in Fig. 1.10.
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Fig. 1.10 Absorption of light
in a medium and geometrical
interpretation of the cross
section in an absorption
process of particles

Integrating this equation under the assumption of a spatially constant absorption
coefficient α(λ) leads to the Lambert-Beer law of absorption

Ĩ (z, λ) = Ĩ (0, λ)e−α(λ)z. (1.63)

In the important case in which the absorption is caused by an optical transition from
a lower state |1〉 to an upper state |2〉, as described by Eq. (1.4), the absorption
coefficient is proportional to the number density N1 of atoms, ions, molecules or
other laser species in state |1〉 and can be written as

α(λ) = σa(λ)N1. (1.64)

The proportionality constant σa(λ) is the absorption cross section. It has a dimen-
sion of an area and can be interpreted as an effective “cross-sectional area” attached
to, e.g., an atom that absorbes the incident photons as shown in Fig. 1.10. However,
depending on the strength of the transition it can vary for different transitions in one
atom and one should not confuse it with the geometrical size of the atom itself.

In the same way also the stimulated emission can be described as an amplification
of the incident light according to

dĨ (z, λ)

dz
= γ (λ)Ĩ (z, λ), (1.65)

resulting in

Ĩ (z, λ) = Ĩ (0, λ)eγ (λ)z. (1.66)

In analogy to the absorption coefficient, the emission coefficient is proportional to
the number density N2 of atoms in the upper state

γ (λ) = σe(λ)N2, (1.67)

for which the proportionality constant σe(λ) is the emission cross section. Taking
both processes together leads to the total evolution of the spectral intensity given by

Ĩ (z, λ) = Ĩ (0, λ)e(σe(λ)N2 −σa(λ)N1)z (1.68)

In the special case of the two-level system in Fig. 1.2, where Ni denote the pop-
ulation densities of the two levels |i〉, it follows from Eq. (1.12) that the emis-
sion and absorption cross sections related to the intrinsic transition are equal,
i.e. σe(λ) = σa(λ). They are, therefore, called intrinsic cross sections. However,
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as we will see in Chap. 2, more complex level schemes exist, especially for ionic
levels in solids. Then the levels are split up by the Stark effect and create mani-
folds, for which it is easier to refer to Ni as the total manifold population and to
include e.g. the thermal population distributions within one manifold into the exter-
nally measured spectroscopic cross sections, for which σe(λ) and σa(λ) are usually
different. This will be explained in more detail in Chap. 2.

To connect this spectroscopic description to the Einstein coefficients, the emit-
ted spectral power density per volume resulting from stimulated emission in the
medium of volume dV = dAdz is investigated. Therefore, we use the description
of Eq. (1.5) and assume that each emission process emits the energy of one photon
hν into the propagating mode. The photon energies itself are taken to be distributed
around hν0 = E2 − E1, given by a normalized distribution ρf (ν) describing this
fluorescence, with ∫

ρf (ν)dν = 1. (1.69)

ρf (ν) thus determines which frequencies are amplified by the stimulated emission.
Then the emitted spectral power density per volume is given by

∂P̃

∂V
= −hνρf (ν)

∂N2

∂t
= hνρf (ν)B21u(ν)N2. (1.70)

The spectroscopic view on the other hand results in

∂P̃

∂V
= ∂Ĩ

∂z
= γ (ν)Ĩ (ν) = N2σe(ν)

c

n
u(ν) (1.71)

Therein, it was assumed that Ĩ (ν) describes a collimated homogeneous beam, which
is related to the energy density by Ĩ (ν) = c

n
u(ν) and describes that the energy

“flows” with the velocity of light c
n

in a medium with a refractive index n.
Comparing Eq. (1.70) and Eq. (1.71) results in the relation

σe(ν) = hνn

c
B21ρf (ν). (1.72)

By using the relation for the Einstein coefficients Eq. (1.14) and Eq. (1.12), which
in a medium with a refractive index n changes owing to the changed mode density
of Eq. (1.46) to

A21 = 8πhν3n3

c3
B21, (1.73)

the important relation

σe(ν) = c2

8πn2ν2τ21,sp
ρf (ν) (1.74)
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Fig. 1.11 Measurement setup for the determination of absorption and emission cross sections,
e.g. of an Er3+ :YAG sample

results. Therein, it has been explicitly written that the A21 coefficient is related to
the spontaneous decay with a decay time τ21,sp as

A21 = 1

τ21,sp
. (1.75)

Thus, the spectral distribution ρf (ν) of the light emitted from the volume dV is
closely linked to the spectroscopic emission cross section σe(ν). Finally, by exploit-
ing the normalization of ρf (ν) a relation between the upper state lifetime and the
integral emission cross section can be deduced,

1

τ21,sp
= 8πn2

c2

∫
σe(ν)ν

2dν = 8πn2c

∫
σe(λ)

λ4
dλ. (1.76)

In the last step we used |dν| = c

λ2 |dλ|.
Equation (1.76) is called Füchtbauer-Ladenburg relation, for which it has to be

noted that it is also valid for spectroscopic cross sections and that λ always refers to
vacuum wavelengths. It allows the calculation of the spontaneous emission lifetime
τ21,sp, also called radiative lifetime, from measured spectra, or, in the reverse sense,
the calibration of measured spectral intensities Ĩ (λ) to deduce the absolute values
of the emission cross section σe(λ).

For this application, the spectral fluorescence is recorded from an excited sample
and the emission cross section is then calculated by

σe(λ) = λ4Ĩ (λ)

8πn2cτ21,sp
∫
Ĩ (λ)dλ

. (1.77)

A scheme of this measurement setup is shown in Fig. 1.11. An Er3+:YAG sample
is excited by the emission from a Ti:sapphire laser and its fluorescence is recorded
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by a 1 − m spectrometer. As the number of fluorescence photons that are captured by
the spectrometer is often low, the excitation beam is modulated at a frequency fmod ,
so that only the detected signal with this frequency component is recorded using a
lock-in technique. This enables an increase in signal-to-noise ratio, especially when
low cross sections are to be determined. In order to measure the absorption cross
section, a broad-spectrum tungsten lamp is used as the source and the spectrometer
records the spectrum of the intensity transmitted by the sample. After correcting
the data for the spectral emission characteristics of the lamp (cf. Planck’s law), the
absorption cross section can be calculated by the relative intensity change using

σa(λ) = − 1

LN1
ln

It (λ)

I0,t (λ)
. (1.78)

Therein, N1 equals the Er3+ ion density as the excitation power from the lamp is
chosen to be low enough in order not to bleach the ground state, L is the length of
the sample, It (λ) the transmitted intensity signal and I0,t (λ) the reference recorded
with an undoped sample in place.

1.4.2 Natural Line Width and Broadening of Spectral Lines

As a result of the Heisenberg uncertainty principle, Eq. (1.59), a transition between
two quantum-mechanical levels cannot be infinitely sharp when the corresponding
upper level has a finite lifetime τ , i.e. the corresponding cross sections σe(ν) and
σa(ν) as well as the fluorescence distribution ρf (ν) discussed previously are no
δ-functions. As shown in Sect. 1.3.2, each level above the ground state will at least
have its natural lifetime that is determined by the spontaneous emission, and thus,
by the vacuum fluctuations. Therefore, any optical transition will show a minimum
line width, called the natural line width of the transition and the spectral line can be
represented by its line form function g(ν), which is identical with the fluorescence
distribution ρf (ν).

The fact that a laser medium usually consists of many identical absorption and
emission systems, i.e. the atoms, ions or molecules, divides the interaction between
them and the electromagnetic field into two cases that define the two different line
broadening mechanisms:

• Homogeneous line broadening: In this case all systems show the same transi-
tion frequency ν0, line width �ν and form function g(ν). Therefore, they all con-
tribute to the emission or absorption of a photon of energy hν in the same way,
i.e. with the same probability. They can be described by processes that reduce
the upper level lifetime in a homogeneous way for all the systems, thus caus-
ing an equal broadening of all systems around the same resonance frequency ν0,
e.g. spontaneous emission (natural line width), lattice vibrations (phonons) of
the crystal matrix in solid-state lasers causing multi-phonon relaxation, atomic
collisions in gas lasers causing collisional relaxation (pressure broadening).
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• Inhomogeneous line broadening: In this case, the transition frequency of the
different systems varies, resulting in different interaction probabilities between
a photon of energy hν and the different systems. This inhomogeneous distri-
bution of the resonance frequencies over the different systems may be tempo-
rally constant as e.g. in ion-doped amorphous solids as fibers, in which the Stark
effect shifts the energy levels by a fixed amount for a given ion but varies from
site to site in the glass matrix. It can also be time dependent for a given system as
e.g. the Doppler-shift in gas lasers, which depends on the local velocity of an atom
or molecule (Doppler broadening). Thus, the atom itself changes its resonance
frequency over time resulting from its collisions and the corresponding changes
in velocity and direction. However, for the ensemble, a constant effective average
results from the Maxwell distribution.

Homogeneous Broadening

To find the line width function of a homogeneously broadened line g(ν) we will
investigate a classical example [6]. The spontaneous emission can be explained by
a suddenly emitted electric field oscillating at the resonance �ω0 = hν0 = E2 −
E1 with an exponentially decaying amplitude with a time constant of 2τ (the time
constant τ corresponds to the intensity I ∝ E2),

E(t) =
{

0 for t ≤ 0
E0e

− t
2τ cosω0t for t > 0

=
{

0 for t ≤ 0
E0
2 e

− t
2τ
(
eiω0t + e−iω0t

)
for t > 0

.

(1.79)
The spectral components of this electric field are given by its Fourier transformation

E(ν) =
∫ ∞

−∞
E(t)e−i2πνtdt = i

E0

4π

(
1

ν0 − ν + i
4πτ

− 1

ν0 + ν − i
4πτ

)
, (1.80)

resulting in the spectral intensity given by a Lorentzian function

Ĩ (ν) = Ig(ν) =
√
ε0

μ0

∣∣E(ν)∣∣2 = I
2

π

�ν

4(ν − ν0)2 + (�ν)2
. (1.81)

Therein,�ν = 1
2πτ is the natural line width, given as the full width at half maximum

(FWHM) of the line.

Inhomogeneous Broadening

The most important broadening process in gas lasers is Doppler broadening, which
will be described here as an example for inhomogeneous broadening. In a gas the
different atoms or ions will show a kinetic velocity distribution with respect to one
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propagation direction, e.g. the z-axis, that is given by the normalized Maxwell dis-
tribution [6]

P(vz) =
√

m

2πkBT
e

− mv2
z

2kBT . (1.82)

Therein, m is the mass of the atom, vz its velocity component along the z-axis and
T the kinetic gas temperature. While the atoms itself still have the same resonance
frequency ν0 in their local rest frame, an external observer looking along the z-axis,
however, will see the Doppler shifted frequency

ν = ν0

(
1 + vz

c

)
, (1.83)

which is taken here in the non-relativistic limit. As the velocity distribution directly
determines the probability of that velocity component in the gas, the line form func-
tion can be directly deduced as

g(ν) = 2
√
π ln 2

π�νD
e

−(2
ν−ν0
�νD

)2 ln 2
, (1.84)

with a Doppler line width of

�νD = ν0

√
8kBT ln 2

mc2
. (1.85)

In contrast to the homogeneous broadening, the form function of the inhomogenous
Doppler broadening is a Gaussian function.

Simultaneous Broadening Processes

In the case of different homogeneous broadening processes acting simultaneously,
e.g. spontaneous emission and multi-phonon relaxation in a solid-state laser, each
process contributes to the total decay of the upper level and can be described by its
own lifetime or decay constant. In this example, they are the spontaneous lifetime
τsp and the non-radiative relaxation lifetime τr , that both contribute to the decay of
the upper level as

dN2

dt
= −N2

τsp
− N2

τr
= −N2

τ
. (1.86)

Therefore, for different homogeneous broadening processes the different lifetimes
add inversely to the total lifetime τ like the parallel connection of resistors,

1

τ
=
∑
i

1

τi
, (1.87)
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Fig. 1.12 Fundamental
Lorentzian and Gaussian line
shape functions and their
convolution, the Voigt profile

and the corresponding line widths add directly like the parallel connection of capac-
itors,

�ν =
∑
i

�νi . (1.88)

The line shape function g(ν) of the combined line shape is again a Lorentzian func-
tion.

For the case of two inhomogeneous processes with line form functions g1(ν) and
g2(ν), or a mixing between a homogeneous and an inhomogeneous process, the total
line form function is in general given by the convolution of the line form functions
of the different processes [6],

g(ν) =
∫ ∞

−∞
g1
(
ν′)g2

(
ν − ν′)dν′. (1.89)

Two Gaussian line shapes thus result in a new Gaussian line shape with the line
width

�ν =
√
�ν2

1 + �ν2
2 , (1.90)

while for a mixing between a Lorentzian and a Gaussian line form function the
convolution cannot be solved analytically and results in the Voigt profile. All three
line shapes are shown for comparison in Fig. 1.12.
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Chapter 2
The Laser Principle

After the investigation of the fundamental quantum-mechanical properties of ab-
sorption and emission in quantum systems, we are now able to realize and to de-
scribe a laser. The laser principle itself is already given in its arconym: LASER
stands for Light Amplification by Stimulated Emission of Radiation. Lasers are
thus based on the stimulated emission process that was postulated by Einstein in
1917. However, it took 43 years until the first laser, a ruby (Cr3+:Al2O3) solid-state
laser, was demonstrated by Maiman in 1960.

According to Eq. (1.66), the stimulated emission causes amplification of light and
we can therefore, create a light oscillator by introducing feedback to the amplifying
medium, as used in electronic oscillators. However, as shown by Eq. (1.12), the
light may also be absorbed by this medium with an identical strength, making it
more difficult to get an efficient amplification. In the next section we will, therefore,
investigate the fundamental relations necessary for laser operation.

2.1 Population Inversion and Feedback

By combining Eq. (1.63) with Eq. (1.66), we find for the total amplification of an
incident spectral intensity Ĩ (0, λ)

Ĩ (z, λ) = Ĩ (0, λ)e(γ (λ)−α(λ))z (2.1)

and thus an effective gain G(z,λ) of

G(z,λ) = Ĩ (z, λ)

Ĩ (0, λ)
= e(σe(λ)N2 −σa(λ)N1)z. (2.2)

In order to amplify the incoming light, we need G> 1, thus

σe(λ)N2 > σa(λ)N1 or N2 >
σa(λ)

σe(λ)
N1. (2.3)

This is called effective population inversion and states that there have to be more
“systems” in the upper level that cause emission processes than there are “systems”
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in the lower level causing absorption processes. For a single atomic line (σa(λ) =
σe(λ)) this simplifies to

N2 >N1, (2.4)

meaning that refering to the population densities of the two levels involved in the
transition, there need to be more systems in the upper state than in the lower state.
However, in thermal equilibrium the population density relation between the two
levels is directly given by the Boltzmann distribution

N2

N1
= e

− hν21
kBT . (2.5)

A population inversion, can therefore, never be reached in thermal equilibrium,
i.e. in a static process, and thus, we need a dynamic process that constantly achieves
the non-equilibrium state described by Eq. (2.4).

2.1.1 The Two-Level System

In this section we will investigate if the laser condition of population inversion can
be reached in a simple two-level scheme as shown in Fig. 1.2 by optical pump-
ing, i.e. by providing an incident pump radiation that is absorbed by the two-level
system. From Eq. (1.8) it follows in the steady-state that

dN2

dt
= B12u(ν)(N1 − N2) − A21N2

!= 0 (2.6)

⇒ N2

N1
= B12u(ν)

B12u(ν) + A21
< 1 ∀u(ν) > 0. (2.7)

This shows that by pumping a two-level system a steady-state population inversion
cannot be obtained, and therefore, a two-level system does not lead to a laser pro-
cess. Even in the case of infinite pump intensity, corresponding to u(ν) → ∞, we
only approach an equilibrium between the two populations N2 → N1. Although this
negative result was shown here for optical pumping, it can be quantum mechanically
proved that any other pumping mechanism (chemical reaction, electric discharge for
example) would give the same result for a true two level system.

2.1.2 Three- and Four-Level Systems

The problem with the two-level system is inherent to quantum mechanics and is
expressed by the symmetry of the absorption and emission process in Eq. (1.12).
This symmetry is only broken by the spontaneous emission in the two-level system,
resulting in N2

N1
< 1. In order to circumvent this problem and to create an inversion,

we need to avoid the stimulated emission into the pump wave. This is fulfilled if the
stimulated emission towards the lower level occurs at a different wavelength from
that of the (pump) absorption, and therefore, at minimum three levels are needed as
shown in Fig. 2.1.
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Fig. 2.1 Three level system
and corresponding transitions

The Three-Level Laser

In this three-level scheme the pump radiation up(νp) pumps the level |3〉 with a
rate (

dN3

dt

)
pump

= B13up(νp)N1 = WpN1. (2.8)

Therein, we define Wp as the pump rate of the transition |1〉 → |3〉. We now assume
that a very fast relaxation occurs from level |3〉 to level |2〉, e.g. induced by phonons
in a solid host crystal. This relaxation needs to occur at a rate much faster than the
pumping of level |3〉. Then no efficient stimulated back-emission into the pump can
occur, as the absolute population of level |3〉 stays low, i.e. N3 ≈ 0. We can then
assume that the pump rate of level |2〉, i.e. the change in the population of level |2〉
per unit time as a result of the pumping process, equals WpN1. Including emission
and absorption the steady-state rate equations for the two laser levels read

dN2

dt
= WpN1 + W12N1 − W21N2 − A21N2 (2.9)

= WpN1 − W21(N2 − N1) − A21N2
!= 0 (2.10)

N2 + N1 ≈ N = const, (2.11)

which results in

N2

N1
= Wp + W21

A21 + W21
> 1 for Wp >

1

τ2
. (2.12)

Therein, τ2 = A−1
21 is the upper level lifetime. Thus, a population inversion can be

achieved in a three-level system. The pump rate necessary to achieve the inversion,
i.e. the pump intensity, depends on the spontaneous emission rate and has to com-
pensate for the spontaneous losses to restore the broken symmetry. The pump rate
needs to be stronger for media with strong spontaneous emission, i.e. for media with
a short upper level lifetime.

However, this three-level scheme is still very inefficient, as at least 50 % of the
total population (assuming N3 ≈ 0) needs to be pumped into the upper laser level
|2〉 to provide G> 1. Therefore, only keeping the inversion at that level needs the
minimum pump rate of A21N2, and thus results in a high laser threshold. The laser
threshold itself is defined as the pump power necessary to initiate laser oscillation.
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Fig. 2.2 Four level system
and corresponding transitions

In order to keep this threshold as low as possible, we have to reduce the need for
a high upper level population N2 to reach inversion. This can be done by using the
same idea as in the transition from the two-level to the three-level system: We have
to reduce the lower laser level population by a relaxation process, which leads us to
the four level scheme shown in Fig. 2.2.

The Four-Level Laser

In such a four-level system the pump rate Wp can be defined by(
dN4

dt

)
pump

= B14up(νp)N1 = WpN1. (2.13)

As in the three-level system, we can assume that a very fast relaxation occurs from
level |4〉 to level |3〉 at a rate much faster than the pumping of level |4〉. In addition,
the lower laser level |2〉 is now no longer the ground-state of the system and we as-
sume a second fast relaxation from level |2〉 to the ground-state |1〉. We also assume
that the energy separation between the levels |2〉 and |1〉 is large enough so that level
|2〉 is not thermally populated from level |1〉. Then we can state N4 ≈ 0 and N2 ≈ 0,
which leads to the rate equation

dN3

dt
= WpN1 + W23N2 − W32N3 − (A32 + A31)N3 (2.14)

≈ WpN1 − W32N3 − (A32 + A31)N3
!= 0 (2.15)

N3 + N1 ≈ N = const (2.16)

and thus to

N3 = Wp

Wp + W32 + A32 + A31
N > 0 ∀Wp > 0. (2.17)

As the lower level population is N2 ≈ 0, the laser radiation on the transition
|3〉 → |2〉 does not suffer from reabsorption and any population of level |3〉 causes a
population inversion to occur. This four-level laser, will therefore, show the lowest
possible threshold.
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The Quasi-Three-Level Laser

In reality the approximations made for the three- and four-level laser are not al-
ways fulfilled, resulting in a net lower level population N2 and also in a reduced but
existing back-emission into the pump light. This often comes from the low separ-
tion between the levels |1〉 and |2〉 as well as |4〉 and |3〉, especially in the case of
solid-state lasers. As this laser scheme can be seen to be in between the three- and
the four-level laser, it is called quasi-three-level scheme. Sometimes also quasi-
four-level scheme can be found in the literature. In the following we will deduce
some important relations for quasi-three-level lasers, as well as motivate this de-
scription.

The spectroscopic rate equation description of a laser medium, as it is necessary
to completely describe the quasi-three-level laser, can be viewed as the most gen-
eral description, and will therefore, be investigated in detail in Sect. 2.2. Here we
follow the simple description to compare the quasi-three-level system with the ones
described before. We assume again that a very fast relaxation occurs from level |4〉
to level |3〉 at a rate much faster than the pumping of level |4〉. However, the lower
laser level |2〉 is now so close to the ground-state |1〉 that it will be thermally popu-
lated. As this thermalization is much faster than the other processes discussed here,
we can assume that the population density of |2〉 is a constant fraction f > 0 of the
population density of |1〉,

N2 = fN1. (2.18)

This leads to the rate equation

dN3

dt
= WpN1 + W23N2 − W32N3 − (A32 + A31)N3 (2.19)

= Wp

f
N2 + W32N2 − W32N3 − (A32 + A31)N3

!= 0 (2.20)

and thus to

N3

N2
=

Wp

f
+ W32

W32 + A32 + A31
> 1 ∀Wp >

f

τ3
. (2.21)

Here, the upper level lifetime corresponds to τ3 = (A32 + A31)
−1. The laser radi-

ation on the transition |3〉 → |2〉 now suffers from reabsorption and a population
inversion between level |3〉 and level |2〉 is only reached for a minimum pump rate.
However, owing to f < 1 this quasi-three-level laser, will therefore, show a lower
threshold than the three-level laser as can be seen from Eq. (2.12).

In a solid-state laser, i.e. a laser based on a medium doped with active ions, the
intrinsic levels of the electrons of the dopant ions are split and shifted by the host
crystal field. In the case of rare earth ions as, e.g, Nd3+, Er3+, Tm3+ or Ho3+,
the optically active electron belongs to an inner shell of the ion configuration, and
therefore, is shielded from the strong influence of the crystal field. The electronic
levels itself are split into different terms resulting from the non-centrosymmetric
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Fig. 2.3 Splitting of energy
levels in a solid-state host on
the example of the Ho3+ ion
[2]

Fig. 2.4 Quasi-three level
scheme in a solid-state laser

coulomb interaction and the spin-orbit (LS) coupling within the ion. The weak-
ened influence of the crystal field then causes the splitting of the different terms as a
result of the Stark effect and is shown in Fig. 2.3 on the example of the Ho3+ ion.
As the Stark splitting energy difference (some 100 cm−1) is less than the energy
difference between the main terms (some 1000 cm−1), e.g. the 5I8 and 5I7 with
∼ 5000 cm−1 separation, the Stark levels form separated groups, called manifolds.
In this example, a pump and laser transition would connect different Stark levels in
the 5I8 and 5I7 manifold as sketched in Fig. 2.4.

This manifold structure is common to all rare earth ions in solids, as can be
seen from Fig. 2.5 for rare earth ions in the host LaCl3. As the main energy
shifts arise from the Coulomb and the spin-orbit interaction, which are inherent
processes of the ion itself, whilst the Stark-splitting is comparably weak, this dia-
gram also shows qualitatively the energetic positions of the manifolds in other host
media.

In this Stark manifold picture, we refer Nm to the total population of a mani-
fold m, here as N1 for the ground-state manifold and N2 for the upper level man-
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Fig. 2.5 Energy-level diagram of trivalent rare earth ions in LaCl3 [3, 4]

ifold, whilst the pump radiation couples the levels |1, a〉 and |2, b〉 and the laser
radiation couples the levels |2, j 〉 and |1, i〉. As the levels within one manifold are
close enough to each other so that a thermal population distribution results within a
manifold, the fractional population of the levels itself is given by
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f1,a = 1

Z1
d1,ae

− E1,a
kBT , (2.22)

f2,b = 1

Z2
d2,be

− E2,b
kBT , (2.23)

f2,j = 1

Z2
d2,j e

− E2,j
kBT , (2.24)

f1,i = 1

Z1
d1,ie

− E1,i
kBT , (2.25)

with

Zm =
∑
i∈m

dm,ie
− Em,i

kBT (2.26)

being the partition function of manifold m and dm,i and Em,i the degeneracy and
the absolute energy of level i in this manifold, respectively.

In the following, we will show that owing to thermodynamic constraints absorp-
tion and emission cross sections cannot be independent properties and are related
to each other. For the transition |2, j 〉 ↔ |1, i〉 between the two manifolds m = 2
and m = 1, respectively, shown in Fig. 2.4, it has to be taken into account that the
absorption and emission cross sections σa(λ) and σe(λ) are proportional to the tran-
sition probabilities pi→j for the transition |1, i〉 → |2, j 〉 and pj→i for the transition
|2, j 〉 → |1, i〉, which are given according to Fermi’s golden rule by

σa,ij (λ) ∝ pi→j = 2π

�
|Mij (λ)|2f1,i , (2.27)

σe,ij (λ) ∝ pj→i = 2π

�
|Mji(λ)|2f2,j . (2.28)

As the intrinsic atomic matrix elements |Mij | for absorption and emission are iden-
tical resulting from reciprocity, i.e. according to Eq. (1.12), and the proportionality
factors are also the same in both cases, the ratio between the emission and absorp-
tion cross section at wavelength λ is

σe,ij (λ)

σa,ij (λ)
= f2,j

f1,i
= Z1

Z2
e

− E2,j −E1,i
kBT = e

− hc
kBT

( 1
λ

− 1
λμ
)
. (2.29)

In rare-earth doped solids, the different transition lines between two manifolds
are often clearly visible in the absorption and emission cross sections, as can be
seen in Fig. 2.6. This is a result of the less strong interaction of the inner-shell
electrons responsible for the transitions with the crystal field of the host, compared
with, for example, transition metal doped solids, for which the outer-shell electrons
are responsible for the optical transitions, which are not shielded from the crystal
field. The spectroscopic absorption and emission cross sections, i.e. the externally
measured cross sections according to Eq. (1.68), can therefore, be written as a sum
over the intrinsic atomic cross sections σij connecting the different levels,
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Fig. 2.6 Emission and absorption cross sections of Er3+ :YAG and the corresponding ratio com-
pared with the McCumber relation

σa(λ) =
∑
ij

f1,iσij (λ)d2,j , (2.30)

σe(λ) =
∑
ij

f2,j σji(λ)d1,i . (2.31)

In Eq. (1.68) theNm refer to the manifold population density, and therefore, the frac-
tional population of each level, as well as the degeneracy of the final level, absorbed
into what is called spectroscopic cross section. From reciprocity, i.e. Eq. (1.12), it
follows for the intrinsic cross sections that σij (λ) = σji(λ).

Using Eq. (2.29), the equivalent relation

σe(λ)

σa(λ)
= e

− hc
kBT

( 1
λ

− 1
λμ
)

(2.32)

can be deduced. This equation is also known as McCumber relation and is shown
for Er3+:YAG in Fig. 2.6. The exact derivation can be found in [5]. The chemical
potential wavelength λμ can be expressed by

λμ = hc

kBT

(
ln
Z1

Z2

)−1

. (2.33)

Spectroscopically, this quantity is given by the intersection between the spectro-
scopic absorption and emission cross sections. The McCumber relation allows the
determination of the emission cross section σe(λ) from the absorption cross section
σa(λ) or can be used as a proof of measured data together with the Füchtbauer-
Ladenburg relation, Eq. (1.76). It has to be noted, however, that the spectroscopic
measurements often contain large errors, especially when the cross sections are
low and the detection noise becomes important. Then a deviation is found between
the experimentally measured ratio and the McCumber relation, as can be seen in
Fig. 2.6. Nevertheless, for the peaks of the cross sections where detector noise is
low, the McCumber relation shows a good agreement with the measurements.

The fluorescence decay time τf of an excitation, often also called the (fluo-
rescence) lifetime of a manifold, however, is usually different from the rediative
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lifetime or spontaneous emission lifetime τ21,sp used in the Füchtbauer-Ladenburg
equation Eq. (1.76). As absorption and emission are coupled, an emitted photon
can always be reabsorbed at another position inside the sample. This process, called
radiation trapping, causes a systematic error on lifetime measurements and usu-
aly lengthens the measured values with respect to the intrinsic lifetime. To avoid
radiation trapping, the sample has to be excited near its surface and the measured
fluorescence also has to be taken from that surface, preferentially at a corner of the
sample.

Even if radiation trapping can be avoided by a good experimental setup, several
other processes affect the fluorescence lifetime. For solid-state lasers the relaxation
processes are mostly homogeneous broadening processes and the fluorescence life-
time is, as discussed in Sect. 1.4.2, given by the sum of the transition rates of the
radiative and relaxation processes by

1

τf
= 1

τ21,sp
+ 1

τr
, (2.34)

where τ21,sp is the radiative lifetime and τr is the relaxative, i.e. non-radiative life-
time. The radiative lifetime τ21,sp is the average spontaneous lifetime of a manifold
|2〉

1

τ2,sp
=
∑
j∈ |2〉

f2,j

τ2,sp,j
, (2.35)

so the intrinsic lifetime of level j inside the manifold |2〉 can be expressed by

1

τ2,sp,j
= 8πn2c

∑
i∈ |1〉

∫
σji(λ)di

λ4
dλ. (2.36)

At small ion concentrations the non-radiative contribution is mainly given by
multi-phonon relaxation, in which the energy gap �E between the two manifolds
is bridged by the emission of nP ≈ �E

EP
phonons to the crystal lattice. EP is the

dominating phonon energy. When the crystal lattice itself has a phonon occupation
number n∗, this results in a multi-phonon transition rate WMP given by [6]

WMP = 1

τr
= W0

(
n∗ + 1

)nP . (2.37)

Therein W0 is the spontaneous multi-phonon transition rate at T = 0 K as a result
of the zero-point fluctuations of the phonon field. Inserting the Boson occupation
average 〈n∗ 〉 = 1

e

EP
kBT −1

results in

WMP = 1

τr
= W0

(1 − e
− EP
kBT )nP

. (2.38)

The spontaneous multi-phonon transition rate W0 is often expressed in the form

W0 = Be−a�E, (2.39)
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wherein B and a are material-dependent parameters. They have to be determined
empirically. Resulting from the exponential dependence on the energy gap only the
multi-phonon relaxation from a level or manifold to the next lower level or manifold
has to be considered.

For the processes discussed so far, the measured fluorescence lifetime is inde-
pendent of the excitation density and the total active ion density of the sample under
non-lasing conditions and when radiation trapping can be neglegted. Density de-
pendent fluorescence lifetimes can occur and are connected with energy transfer
processes that will be discussed in Sect. 5.2.2.

Whilst on the one hand the low separation between the lower laser level and the
absolute ground state |1,0〉 in a quasi-three-level laser negatively affects the laser
performance as a result of the increased reabsorption, it allows highly efficient op-
eration in terms of relative photon energy as the conversion efficiency from pump to
laser signal photon energies of one closed-cycle transition, the quantum efficiency
ηQ, will be given by the ratio of the photon energies

ηQ = νs

νp
= λp

λs
. (2.40)

In this equation, the indices s and p denote the laser signal and pump radiation.

2.1.3 The Feedback Condition

Up to now we have investigated the possibility of the creation of a population inver-
sion, which is a necessary condition in order to realize an effective gain of G > 1
in a laser medium. It is a well known fact that a gain element can be turned into a
self-oscillating system by adding feedback to this element. Thus, to turn the optical
gain medium into a laser, an optical resonator needs to be added that reflects the
amplified radiation back and forth into the gain medium as shown in Fig. 2.7. This
resonator is often also called laser cavity.

Therefore, two mirrors are added at opposite ends of the medium, from which one
has a high reflection at the laser wavelength (HR mirror) whilst the other one has a
partial reflection at the laser wavelength (ROC < 1). This partially reflective mirror
is called output coupler (OC mirror), as it allows the internal radiation to leave
the resonator. From Fig. 2.7 the necessary population inversion of a laser oscillator
can be deduced. In this description, all internal passive losses of the resonator are
summed into the loss parameter Λ and are taken to occur at the HR mirror. From
self-consistency of the internal laser intensity after one round-trip starting at the OC
mirror in the left direction, we can deduce that

G × RHR × (1 − Λ) × G × ROC = G2RHR(1 − Λ)ROC = 1, (2.41)

resulting in a necessary single-pass gain G of

G = 1√
RHR(1 − Λ)ROC

. (2.42)
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Fig. 2.7 Schematic
representation of the feedback
in a laser and the resulting
self-consistent intensity
distribution

In the following, we will relate this gain equation to the manifold population densi-
ties of a laser medium in which the gain occurs from an effective population inver-
sion between the manifolds |2〉 and |1〉.

As the intensity varies locally caused by the gain in the laser medium, we have
to take into account axially varying population densities. Nevertheless, in order to
allow a simple description, the axial average along the laser axis

〈·〉 = 1

L

∫ L

0
· dz (2.43)

is introduced. Under the assumption that no other manifolds are involved, i.e. N1 +
N2 = N , Eq. (2.2) can be used and the corresponding population densities are given
by

〈N2 〉 = σa(λs)

σa(λs) + σe(λs)
〈N〉 + 1

L

lnG

σa(λs) + σe(λs)
, (2.44)

〈N1 〉 = σe(λs)

σa(λs) + σe(λs)
〈N〉 − 1

L

lnG

σa(λs) + σe(λs)
, (2.45)

where λs is the emission wavelength of the laser. This is the second condition that
has to be fulfilled in order to create a laser, stating that an effective population in-
version according to Eq. (2.3) is a necessary, but not sufficient condition for laser
operation. Furthermore, the internal losses and the outcoupling in the laser also need
to be compensated for. The population density ratio therefore results in

〈N2 〉
〈N1 〉 = σa(λs)〈N〉L + lnG

σe(λs)〈N〉L − lnG
. (2.46)

In this notation a true four-level laser is described by σa(λs) = 0 whilst for a true
three-level laser one finds σa(λs) = σe(λs), showing again that at least half of the
population needs to be in level |2〉. Then the population densities Ni refer to the
single levels.
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2.2 Spectroscopic Laser Rate Equations

In the following discussion, we will set up the laser rate equations including the
photon field of the resonator to investigate the general behaviour of a laser oscillator
in continuous wave (cw) operation in Sect. 2.2.1. This corresponds to the stationary
regime of these rate equations. Whenever this stationary solution is perturbed by
external influences or at the start of the laser, relaxation oscillations occur that will
be described in Sect. 2.2.2. We will use the spectroscopic laser rate equations as in
Sect. 2.1.3 to describe this condition. The difference between the three- and four-
level laser is thus, again, given by σa(λs) = σe(λs) and σa(λs) = 0, respectively,
with the quasi-three-level laser being in between of these two limits. In Sect. 2.3
a potential model of a laser is presented that describes the laser field intensity and
phase and can thus explain the coherence properties of the laser field.

2.2.1 Population and Stationary Operation

In this description, we refer to the manifold scheme in Fig. 2.4. In order to derive
the rate equation for the upper laser manifold population density N2 the relations
given in the Eqs. (1.70), (1.71) are used. This results in(

∂N2

∂t

)
em

= −
∫

1

hν

∂P̃

∂V
dν = −N2

∫
σe(ν)Ĩ (ν)

hν
dν = −N2

hc

∫
λσe(λ)Ĩ (λ)dλ

(2.47)

for the change of N2 per unit time caused by stimulated emission. For simplicity
reasons we assume a single laser frequency Ĩ (λ) = Isδ(λ − λs). In this case, the
rate equation for stimulated emission is given by(

∂N2

∂t

)
em

= − λs

hc
σe(λs)IsN2 = −W21N2. (2.48)

Therefore, it can be concluded that the transition rate W21 is proportional to the
incident intensity on the transition wavelength and is given by

W21 = λs

hc
σe(λs)Is . (2.49)

The corresponding transition rate of the reverse process, the absorption rate W12, is
determined by analogy with the emission rate, resulting in

W12 = λs

hc
σa(λs)Is . (2.50)

In the following discussion, a longitudinally pumped laser medium is analyzed
as shown in Fig. 2.8. The full rate equations for the population densities of this
longitudinally pumped laser medium under the assumption N2 +N1 = N , including
pump intensity Ip , laser intensity Is and spontaneous decay τ , are thus given by
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Fig. 2.8 Setup of a
longitudinally pumped laser
medium with integrated
mirrors

Fig. 2.9 Representation of
the intensity Is as a constant
photon density Φ in the
volume V = Al

∂N2

∂t
= λp

hc
α(z)Ip,0e

− ∫ z0 α(z′)dz′ + λs

hc
Is
[
σa(λs)N1 − σe(λs)N2

]− N2

τ (2.51)
∂N1

∂t
= −∂N2

∂t
,

where, α = σa(λp)N1 − σe(λp)N2 is the pump absorption coefficient and Ip,0 the
incident pump intensity that decreases along the propagation axis z as

Ip = Ip,0e
− ∫ z0 α(z′)dz′

. (2.52)

Introducing the pump absorption efficiency

ηabs = 1 − e− ∫ L0 α(z′)dz′
, (2.53)

the rate equations averaged over the laser axis can be written as

∂〈N2 〉
∂t

= λp

hc
Ip
ηabs

L
+ λs

hc

[
σa(λs)〈IsN1 〉 − σe(λs)〈IsN2 〉]− 〈N2 〉

τ (2.54)
∂〈N1 〉
∂t

= −∂〈N2 〉
∂t

.

By analogy, we will now set up a rate equation for the photon density in the cav-
ity. The photon density Φ is directly connected to the field intensity Is . To deduce
this relation we refer to Fig. 2.9. A laser intensity Is that strikes the surface A per-
pendicularly will propagate a length l = ct during the time t . This corresponds to a
total energy Es included in the volume V = Al given by

Es = IsAt = IsA
l

c
= Is

c
V

!= hνΦV. (2.55)

Thus, we can deduce the photon density as

Φ = λs

hc2
Is . (2.56)

The photon density in the resonator will change as a result of the stimulated emission
and absorption as well as resulting from losses and outcoupling (useful emission
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from the cavity), which can be described by a cavity photon lifetime τc. This results
in

∂Φ

∂t
= W21N2 − W12N1 − Φ

τc
. (2.57)

Including Eq. (2.56) yields

∂Φ

∂t
= c
[
σe(λs)N2 − σa(λs)N1

]
Φ − Φ

τc
, (2.58)

or as an axial average

∂〈Φ〉
∂t

= c
[
σe(λs)〈ΦN2 〉 − σa(λs)〈ΦN1 〉]− 〈Φ〉

τc
. (2.59)

As we assume a constant total population N = N2 + N1, i.e. no population in
other manifolds than |2〉 and |1〉, we can transform the rate equations (2.54), (2.59)
by introducing a new variable, the inversion �N = N2 − N1. This results in

∂〈�N〉
∂t

= 2
λp

hc
Ip
ηabs

L

+ c
([
σa(λs) − σe(λs)

]〈ΦN〉 − [σa(λs) + σe(λs)
]〈Φ�N〉)

− 〈N〉 + 〈�N〉
τ

(2.60)

∂〈Φ〉
∂t

= c

2

([
σa(λs) + σe(λs)

]〈Φ�N〉 − [(σa(λs) − σe(λs)
]〈ΦN〉)

− 〈Φ〉
τc

. (2.61)

The laser dynamics are thus described by two time-dependent variables only, the
average inversion density 〈�N〉(t) and the average photon density 〈Φ〉(t). The term
〈N〉 is explicitly not simplified to N because in this form the rate equations also
allow the description of laser media with axially varying dopant concentrations.

In order to derive some important properties of a laser, we may rewrite Eq. (2.61)
in the form〈

1

Φ

∂Φ

∂t

〉
=
〈
c

2

([
σa(λs) + σe(λs)

]
�N − [(σa(λs) − σe(λs)

]
N − 1

τc

)〉
. (2.62)

As laser operation can only occur for ∂〈Φ〉
∂t

≥ 0, and owing to Φ > 0, we can deduce
the necessary condition

[
σa(λs) + σe(λs)

]〈�N〉 − [σa(λs) − σe(λs)
]〈N〉 ≥ 2

cτc
, (2.63)

stating that the number of generated photons per unit time must at least compen-
sate for the number of photons per unit time that are lost in the cavity and emitted
through the outcoupling mirror. In the case of the equality in Eq. (2.63) this rela-
tion is consistent with the round-trip condition, Eqs. (2.44), (2.45), and allows the
deduction of the cavity photon lifetime τc, resulting in

τc = L

c lnG
= − 2L

c ln [ROC(1 − Λ)RHR ] . (2.64)
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Fig. 2.10 Population
inversion density and laser
output intensity, as a function
of the pump intensity below
and above threshold

Stationary Operation

In stationary operation, i.e. for ∂〈�N〉
∂t

= 0 and ∂〈Φ〉
∂t

= 0, the Eqs. (2.60), (2.61) can
be solved for 〈�N〉 and 〈Φ〉, resulting in two sets of solutions. The first one is given
by

〈�N〉 = 2
λpτ

hc
Ip,0

ηabs

L
− 〈N〉 (2.65)

〈Φ〉 = 0 (2.66)

and describes the pumping of the laser below threshold. In this regime, the popula-
tion inversion increases with pump intensity until the threshold pump intensity Ith is
reached, as shown in Fig. 2.10. It has to be noted that Eq. (2.65) is a transcendental
equation caused by the dependence of ηabs(〈�N〉), explicitly written as

〈�N〉 = 2
λpτ

hc

Ip,0

L

(
1 − e−[σa(λp)−σe(λp)]〈N〉L+[σa(λp)+σe(λp)]〈�N〉L)− 〈N〉.

(2.67)

Therefore, only numerical solutions exist for the behaviour below threshold.
For Ip > Ith the first solution becomes unstable and the second solution describes

the laser process,

〈�N〉 = 〈�N〉th = 2 lnG

[σa(λs) + σe(λs)]L + σa(λs) − σe(λs)

σa(λs) + σe(λs)
〈N〉 (2.68)

〈Φ〉 = λp

hc2

ηabs

lnG
(Ip − Ith). (2.69)

The threshold pump intensity results in

Ith = I
p
sat

ηabs

(
lnG + σa(λs)〈N〉L), (2.70)

with the pump saturation intensity

I
p
sat = hc

λp[σa(λs) + σe(λs)]τ . (2.71)

The transition between both regimes occurs at that point where both solutions result
in the same average inversion density 〈�N〉, which itself is given by the threshold
pump intensity Ith. As can be seen from Eq. (2.68) the inversion density 〈�N〉 is
clamped at its threshold level 〈�N〉th and any further increase in input power is
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transfered into the output. The output intensity I out
s of the laser is obtained from

the photon outcoupling lifetime using Eq. (2.64) considering the useful outcoupling
only,

τout = − 2L

c lnROC
, (2.72)

and using Eq. (2.55) as

I out
s = P out

s

A
= Es

τoutA
= IsAL

cτoutA
= − lnROC

2
Is . (2.73)

From Eq. (2.56) the important output-to-input intensity relation of the laser can be
deduced,

I out
s = λp

λs

− lnROC

2 lnG
ηabs(Ip − Ith), (2.74)

or in terms of power

P out
s = λp

λs

− lnROC

2 lnG
ηabs(Pp − Pth), (2.75)

The slope efficiency describes the differential slope of the output versus input power
of a laser and is thus given by

ηs = λp

λs

− lnROC

2 lnG
ηabs = λp

λs

− ln (1 − TOC)

2 lnG
ηabs, (2.76)

which includes the quantum efficiency ηQ of Eq. 2.40, the output coupler trans-
mission TOC = 1 − ROC and the pump absorption efficiency ηabs. The term 2 lnG
corresponds to the total losses of the laser cavity, see Eq. (2.42), and − ln (1 − TOC)

accounts for the useful outcoupling losses. For small outcoupling TOC � 1 one of-
ten finds the approximation − ln (1 − TOC) ≈ TOC .

In order to achieve the maximum efficiency for a given laser the amount of cavity
emission from the outcoupling mirror, or the output coupler reflectivity ROC , needs
to be optimized with respect to the relevant cavity conditions. A high value of out-
coupling will result in a high slope efficiency, but also in a high threshold, whilst
a low value of outcoupling, i.e. a high reflectivity of the OC mirror, will strongly
enhance the intra-cavity circulating intensity, and therefore, increase the effect of
the internal losses Λ. This optimization usually needs to be undertaken for a given
laser medium as the absorption efficiency, which is a function of the inversion and
thus of the gain G,

ηabs = 1 − e
2
σa(λp)+σe(λp)

σa(λs )+σe(λs )
lnG

e
(σe(λp)−σa(λp)+ σa(λp)+σe(λp)

σa(λs )+σe(λs )
[σa(λs)−σe(λs)])〈N〉L

, (2.77)

includes the spectroscopic properties of the laser medium. However, even if we do
not refer to a special laser medium, we can deduce the fundamental ideas of this op-
timization. Therefore, we neglect the dependence of ηabs and find from Eq. (2.76)
that − ln (1−TOC)

2 lnG should be optimized in order to get a high slope efficiency. In or-
der to get a low pump threshold, we must reduce lnG and, in a quasi-three-level
laser medium, the re-absorption σa(λs)〈N〉L, i.e. the length-concentration product
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Fig. 2.11 − lnROC
2 lnG and lnG as a function of the output coupler reflectivity ROC and the internal

cavity losses Λ

Fig. 2.12 Comparison of the
different laser schemes

of the laser medium, as follows from Eq. (2.70). However, the main influence on
the threshold is given by the term lnG. As can be seen in Fig. 2.11, the intra-cavity
losses mainly influence the slope efficiency whilst having a nearly negligible effect
on the threshold.

As a comparison, the input-to-output power curves of the three different laser
schemes are shown in Fig. 2.12. These are results of numerical calculations, which
are a bit more complex that the description discussed above [7]. Therein, the spec-
troscopic properties of a real existing Er3+:YAG laser emitting at λs = 1645 nm
are used for the model of the quasi-three-level laser. These data are then modified
to describe a hypothetical four-level and three-level laser with the same properties,
i.e. for the four-level laser the absorption cross section σa(λs) is artificially set to
zero, whilst for the three-level laser the absorption cross section σa(λs) is artificially
set to equal the emission cross section σe(λs). As already discussed previously, the
four-level laser shows the lowest threshold and the highest slope efficiency whereas
the three-level laser has the highest threshold and lowest slope efficiency. The non-
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linear start of the three-level and quasi-three-level laser comes from the effect that
the additional reabsorption loss in the cavity is saturated for high intracavity laser
intensities. Thus, quasi-three-level lasers show an increasing slope efficiency with
pump power that converges towards the four-level laser slope efficiency for very
high laser powers. The real quasi-three-level laser is found in between the two
limits, being as closer to a four-level laser for lower re-absorption cross sections
σa(λs) � σe(λs).

2.2.2 Relaxation Oscillations

As a result of the mixed products 〈Φ�N〉 in the rate equations (2.60), (2.61) no
analytic solution can be given for the full temporal behaviour of the laser. It is, how-
ever, possible to investigate the temporal behaviour of these equations for infinites-
imal deviations from the steady-state solution given in Eqs. (2.68), (2.69). These
deviations occur, for example, as a result of external perturbations like vibrations of
the mirrors or the laser setup itself. To calculate these effects we have to linearize
the rate equations and write the inversion density 〈�N〉(t) and the photon density
〈Φ〉(t) in the form

〈�N〉(t) = 〈�Nth 〉 + 〈Σ〉(t) (2.78)

〈Φ〉 = 〈Φcw〉 + 〈Π〉(t), (2.79)

with 〈Σ〉(t) � 〈�Nth 〉 and 〈Π〉(t) � 〈Φcw〉, where, 〈Φcw〉 denotes the steady-state
solution of Eq. (2.69). As a simplification, we additionally assume that the inver-
sion density shows no strong axial dependence, so that any averaged product can
be written as the product of the averages, e.g. 〈Φ�N〉 ≈ 〈Φ〉〈�N〉. By inserting
Eqs. (2.78), (2.79) into the rate equations (2.60), (2.61), neglecting doubly infinites-
imal terms such as 〈Π〉〈Σ〉, the linearized rate equations

∂〈Σ〉
∂t

= c
[
σa(λs) − σe(λs)

]〈Π〉〈N〉
− c
[
σa(λs) + σe(λs)

]〈Π〉〈�Nth 〉
− c
[
σa(λs) + σe(λs)

]〈Φcw〉〈Σ〉 − 〈Σ〉
τ

(2.80)

∂〈Π〉
∂t

∣∣∣∣〈Π〉=0
= c

2

[
σa(λs) + σe(λs)

]〈Φcw〉〈Σ〉, (2.81)

result, where, the equation for the photon density is linearized around 〈Π〉 = 0. By
taking the derivative of Eq. (2.81) with respect to time and inserting Eq. (2.80), the
product terms can be eliminated, which yields

∂2 〈Π〉
∂t2

+ 2ξ
∂〈Π〉
∂t

+ Ω2
0 〈Π〉 = 0. (2.82)
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Fig. 2.13 Calculated
normalized amplitude Π(t)

Π̂
of

the relaxation oscillations of
an Er3+ :YAG laser. The inset
shows an enlarged view on
the 100 µs scale

This is the equation of a damped harmonic oscillator, stating that the photon density

will oscillate around its steady state value with a frequency Ω =
√
Ω2

0 − ξ2 and an
amplitude that is damped with the time constant ξ as

〈Π〉(t) = Π̂e−ξ t cosΩt. (2.83)

The corresponding time constants are found to be

ξ = 1

2τ

[(
1 + σa(λs)〈N〉cτc

)( Ip
Ith

− 1

)
+ 1

]
(2.84)

Ω0 =
√

1

τ

(
1

τc
+ σa(λs)〈N〉c

)(
Ip

Ith
− 1

)
, (2.85)

which simplify for a four-level laser (σa(λs) = 0) to

ξ = 1

2τ

Ip

Ith
(2.86)

Ω0 =
√

1

ττc

(
Ip

Ith
− 1

)
. (2.87)

As an example we investigate these values for an Er3+:YAG laser with the pa-
rameters τ = 7.64 ms, ROC = 80 %, Λ = 2 %, L = 0.06 m, σa(1645 nm) =
6.67 × 10−22 cm2, 〈N〉 = 6.9 × 1025 m−3 and Ip = 5Ith, i.e. G = 1.129 and
τc = 1.65 ns. This results in

ξ = 923 s−1 (2.88)

Ω0 = 2π × 163 kHz, (2.89)

and corresponds to an oscillation frequency of ∼ 163 kHz and a damping time of
ξ−1 = 1.08 ms. The relaxation oscillation is shown in Fig. 2.13.
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Fig. 2.14 Calculated
“spiking” of a solid-state
laser under continuous
pumping starting at t = 0

Spiking

In a special form the relaxation oscillations occur always at the beginning of laser
oscillation, i.e. when a laser is turned on. This behaviour, which is given by the
transition between the two solutions below and above threshold, i.e. the transition
from 〈Φ〉 = 0 to 〈Φ〉 = 〈Φcw〉, differs from the standard relaxation oscillations,
described above, because the deviation from steady-state is not small compared with
the steady-state value. Therefore, in some texts this behaviour is especially refered to
as spiking. Spiking is always superimposed on the standard relaxation oscillations
whenever a strong external perturbation affected the laser. However, as a result of
the strong deviation from the steady-state the spiking cannot be calculated by the
linearized rate equations and a numerical solution needs to be used. The result of
such a calculation is shown in Fig. 2.14.

Resulting from strong pumping of the laser the inversion rapidly increases below
threshold whilst the cavity has no internal photon field 〈Φ〉 ≈ 0. As the photon
field needs at least several round-trips in oder to build up from the fluorescence
noise, it reacts to a change in population density and thus to a change in gain only
with a certain time delay. Thus, an inversion density 〈�N〉 > 〈�Nth 〉 can build up
for a short time after the pump is switched on, causing an exponential growth of
the internal cavity field, which strongly depletes the inversion. Thus, the laser may
even stop oscillating until a new cycle begins creating a second spike. As in each
cycle an increasing residual inversion is left after the spike, the spikes decrease
in intensity and the output power converges to the steady-state value after several
cycles of spikes.

There is still a question to be answered regarding Eqs. (2.60), (2.61): how can
the system make the transition from the first solution below threshold to the sec-
ond solution above threshold when the first solution provides 〈Φ〉 = 0 for all pump
powers below threshold. The answer is the existence of the spontaneous emission,
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resulting in 〈Φ〉 > 0 also being below threshold. This may be expressed by adding
a term cσe(λs)〈N2 〉Φ0 to Eq. (2.61), resulting in

∂〈Φ〉
∂t

= c
[
σe(λs)〈ΦN2 〉 − σa(λs)〈ΦN1 〉]− 〈Φ〉

τc
+ cσe(λs)〈N2 〉Φ0. (2.90)

Therein, Φ0 stands for the vacuum noise photon density in the laser mode. The
spectral intensity of these fluctuations is given by

Ĩs,0 = �Ωs

4π

8πn2hc2

λ5
s

, (2.91)

with �Ωs being the solid angle of the corresponding mode. Using Eq. (2.56), this
corresponds to an average photon density of

Φ0 = �Ωs

4π

8πn2

λ4
s

�λs (2.92)

in the wavelength bandwidth �λs . Then there is always a small but non-negligible
number of photons in the cavity that cause the laser to switch to the second solution,
as soon as the pump threshold is passed.

2.3 Potential Model of the Laser

Up to now we have only investigated the fundamental laser properties in terms of the
interaction between the population densities of the different levels and the photons
of the intra-cavity laser beam. This means that we described the laser medium by
its material properties and the laser radiation by its intensity. The laser radiation can
also be described by an electromagnetic wave, which itself is given by an intensity
and a phase. However, the above rate equation description only accounts for the
intensity. Therefore, we will investigate the phase properties of laser light in the
following discussion using a slightly different model, which describes the laser field
as being analogous to to a particle in a potential well [1].

The laser field in the laser resonator shown in Fig. 2.7 can be described by a
standing wave between the HR and OC mirror. We thus assume a linearly polarized
wave with a complex electric field amplitude given by

E(t, z) = E(t)e−iωt sinkz, (2.93)

with

k = π

L
s, s ∈ N. (2.94)

The temporal evolution of the complex amplitudeE(t) can be devided into the time-
dependent amplitude Ê(t) and the phase ϕ(t) as

E(t) = Ê(t)eiϕ(t). (2.95)
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The rate equation for the electric field amplitude equivalent to the photon density
rate equation (2.58) is

∂E(t)

∂t
= c

2

[
σe(λs)N2 − σa(λs)N1

]
E(t) − E(t)

2τc
, (2.96)

which can be easily prooved using the relation Is(t) =
√

ε0
μ0

|E(t)|2 and Eq. (2.56),

taking into account that

∂Is(t)

∂t
=
√
ε0

μ0

(
E∗(t)∂E(t)

∂t
+ E(t)

∂E∗(t)
∂t

)
. (2.97)

We introduce a term ε(t), which accounts for the spontaneous emission of the laser
medium into this equation as in Eq. (2.90). Thus, it adds a time-dependent statistical
fluctuation to the electric field, resulting in

∂E(t)

∂t
= c

2

[
σe(λs)N2 − σa(λs)N1

]
E(t) − E(t)

2τc
+ ε(t). (2.98)

In order to obtain the final equation for the electric field in this potential model,
the dependence of the inversion term g = c[σe(λs)N2 − σa(λs)N1 ] from the field
amplitude needs to be included. We can simplify this term in the following way:
The population densites N2 and N1 will be determined on one side by the optical
pumping (marked by ↑), which would result in an inversion term

g↑ = c
[
σe(λs)N2,↑ − σa(λs)N1,↑

]
(2.99)

in the absence of a laser field. On the other side, the inversion will be reduced
(marked by ↓), i.e. saturated, by the laser field and this effect may be approximated
as being proportional to the laser field intensity, as long as this intensity is not too
high. Thus, the inversion term g can be written under these assumptions as

g = g↑ − g↓ = g↑ − ζ
∣∣E(t)∣∣2, (2.100)

with an appropriate proportionality constant ζ . This leads to the fundamental equa-
tion of the potential model,

∂E(t)

∂t
= 1

2
(g↑ − A21)E(t) − ζ

∣∣E(t)∣∣2E(t) + ε(t). (2.101)

Using a mathematical “trick”, we can illustrate the meaning of Eq. (2.101) by a

mechanical example: By adding a term m
∂2E(t)

∂t2
, to the left hand side of Eq. (2.101)

we get

m
∂2E(t)

∂t2
+ ∂E(t)

∂t
= 1

2
(g↑ − A21)E(t) − ζ

∣∣E(t)∣∣2E(t) + ε(t), (2.102)

which is identical to the equation of motion of a particle of mass m

m
∂2x

∂t2
+ ∂x

∂t
= F(x) + ε(t), (2.103)

wherein F(x) = − dV
dx

describes the force created by the potential V (x) and ε(t)

describes external forces acting on that particle. The “mass” m of this particle has



46 2 The Laser Principle

Fig. 2.15 Potential V (x) for the two different cases below and above threshold and the corre-
sponding evolution of the laser field

of-course to be very small in order not to affect the main structure of the equation,

i.e. m∂2E(t)

∂t2
� ∂E(t)

∂t
. Identifying x with E(t), the corresponding potential V (x) can

be expressed by

V (x) = − 1

4
(g↑ − A21)|x|2 + 1

4
ζ |x|4, (2.104)

and is shown in Fig. 2.15 for the two cases of pumping below threshold g↑ < A21
and pumping above threshold g↑ >A21.

As the electric field is a complex variable, consisting of amplitude and phase, the
potential has a rotationally symmetric form. In the case of pumping below threshold
g↑ < A21, only one minimum exists and the laser field solution, expressed by the
“particle” in the potential, corresponds to this minimum location, i.e. to an average
electric field amplitude of zero. The external forces, i.e. the photons spontaneously
emitted into the laser mode, will cause fluctuations out of this minimum. However,
the repulsive force of the potential always drives the system back to its minimum so-
lution. In the case of pumping above threshold g↑ >A21, the potential form changes
and a ring-shaped valley results. The particle in this valley now corresponds to a
non-zero field amplitude, i.e. a nearly constant laser intensity. The external forces
then cause only slight fluctuations of this amplitude, showing that the laser exhibits
an amplitude stability. However, they cause a diffusion-like motion along the valley,
which corresponds to the phase diffusion of a laser that results from the sponta-
neous and thus non-coherent emissions, which add to the laser field. These phase
fluctuations are responsible for slight frequency shifts, and therefore, determine the
line width of the laser emission. As can be shown from laser theory, the average
amplitude fluctuations, as well as the laser line width (see Sect. 3.3) caused by the
phase fluctuations, decrease with the inverse laser intensity. This makes the laser a
highly coherent light source.
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Chapter 3
Optical Resonators

In this chapter, we investigate optical resonators that are used in a laser to provide
feedback to the gain medium and to control the oscillating modes and beam proper-
ties of the laser output. The most common type of optical resonators are the linear
resonators, which in their simplest form consist of two mirrors on the same opti-
cal axis with surfaces that are parallel and aligned, with respect to each other, and
perpendicular to this optical axis.

Such a resonator exhibits eigen-solutions for the electromagnetic field, which are
called resonator modes. As the mirror surfaces do not extend into infinity, diffrac-
tion occurs for the resonator modes and a curved mirror surface will be necessary
in order to refocus the diffracted beams into the resonator volume. Therefore, we
will discuss linear resonators with spherical mirrors in Sect. 3.1 and their mode
properties in Sect. 3.2.

3.1 Linear and Ring Resonators and Their Stability Criteria

An elegant and simple description of the stability properties of optical resonators,
i.e. the question whether eigen-solutions exist or not, can be achieved through use
of simple geometrical optics, using a matrix formalism presented in the following
section.

3.1.1 Basics of Matrix Optics

In geometrical optics electromagnetic radiation is represented by a light ray. In an
axially symmetric problem, this ray can be described by its distance from the optical
axis r(z) and the local slope r ′(z) at the axial position z, see Fig. 3.1, and may thus
be described by a vector

�r(z) =
(
r(z)

r ′(z)

)
=
(

r(z)

tanα(z)

)
≈
(
r(z)

α(z)

)
, (3.1)
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Fig. 3.1 Propagation of a
paraxial beam in vacuum

Fig. 3.2 Propagation of a
paraxial beam in vacuum

where, the paraxial approximation was used, stating that the slope of the beam
is small enough so that the “small angle” trigonometric functions sinα ≈ α and
tanα ≈ α of the propagation angle α may approximated as shown.

Using this definition for the optical ray, an optical system can be described by a
matrix M that transforms the incident beam into an exit beam according to [1]

�r2(z2) = M�r1(z1) =
(
M11 M12
M21 M22

)(
r(z1)

α(z1)

)
, (3.2)

as can be seen in Fig. 3.2. The ray matrices of different optical elements can be found
in Table 3.1. Any optical system that consists of N of these elements, including the
free space between the elements, can therefore be described by one single matrix
MS , which relates the input plane and the output plane of this system. This matrix
is then given by

MS = MN · MN−1 · . . . · M1 =
N←∏
i=1

Mi . (3.3)

It should be noted that it is important to multiply the matrices in reverse order with
respect to the beam propagation direction.

3.1.2 Stable and Unstable Linear Resonators

An optical two-mirror resonator with the mirror curvatures R1 and R2 and a mirror
separation L as shown in Fig. 3.3 can be represented by an infinite succession of
two lenses with focal lengths f1 = R1

2 and f2 = R2
2 . In order to deduce the stability

criteria for an optical resonator we investigate one round-trip inside this resonator
and its equivalent path in the infinite-lenses representation in Fig. 3.3. In this rep-
resentation the resonator can be described by the fundamental element shown in
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Table 3.1 Ray matrices for
paraxial optical elements Translation(

1 L
n

0 1

)

Thin lens(
1 0

− 1
f

1

)

Spherical mirror(
1 0

− 2
R

1

)

Spherical interface(
1 0

n2 −n1
R

1

)

Fig. 3.3 Two-mirror
resonator and the comparable
infinite-lenses representation

Fig. 3.4 Fundamental
element of the periodic
infinite-lenses representation
of a resonator

Fig. 3.4 consistent with this round-trip of a light ray within the cavity. It is formed
by a first half-lens, followed by the lens f2 after a distance L corresponding to the
reflection on mirror R2 and a second half-lens which is separated by the lens f2 by
a distance L.
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The corresponding fundamental matrix M0 of this element is thus given by

M0 =
(

1 0
− 1

2f1
1

)(
1 L

0 1

)(
1 0

− 1
f2

1

)(
1 L

0 1

)(
1 0

− 1
2f1

1

)
, (3.4)

which can be written in the form [2]

M0 =
(

2g1g2 − 1 2g2L

2g1
g1g2 −1

L
2g1g2 − 1

)
(3.5)

using the resonator parameters

g1 = 1 − L

R1
(3.6)

g2 = 1 − L

R2
. (3.7)

The modes of the resonator are given by the eigenvectors �ri of M0, corresponding
to the eigenvalues ξi according to

M0 �ri = ξi �ri , (3.8)

and may thus be calculated by the determinant relation

|M0 − ξI| = 0, (3.9)

resulting in

ξ2 − 2ξ(2g1g2 − 1) + 1 = 0. (3.10)

Depending on the resonator parameters, the eigenvalues may be real or complex
numbers and are given by

|2g1g2 − 1| > 1 ⇒ ξ1,2 = e±p with coshp = 2g1g2 − 1 (3.11)

|2g1g2 − 1| ≤ 1 ⇒ ξ1,2 = e±iq with cosq = 2g1g2 − 1. (3.12)

As the eigenvectors �r1 and �r2 form a basis any arbitrary ray �r can be expressed as a
linear combination of these two eigenvectors

�r = a1 �r1 + a2 �r2. (3.13)

Therefore, we can directly calculate the ray vector after N round-trips in this res-
onator, resulting in

�rN = MN
0 �r = a1ξ

N
1 �r1 + a2ξ

N
2 �r2. (3.14)

In a stable resonator no ray will leave the resonator, forcing |ξ1 | = |ξ2 | = 1. Oth-
erwise, the ray in Eq. (3.14) diverges in radial position and propagation angle or
converges to one of the basis vectors or the null vector. Thus, the stability criteria of
a two-mirror laser resonator are given by

0 ≤ g1g2 ≤ 1 ⇒ stable resonator, (3.15)

g1g2 < 0 ∨ g1g2 > 1 ⇒ unstable resonator. (3.16)
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Fig. 3.5 Stable and unstable
resonators and the
corresponding relative
orientation of the
curvatures [2]

Fig. 3.6 Stability diagram of
a two-mirror resonator [2]

Using Eqs. (3.6), (3.7), a simple geometrical rule can be deduced for these criteria,
based on the relative overlap between the curvature radii of the two mirrors as shown
in Fig. 3.5:

• A stable resonator corresponds to a partial overlap of the radii;
• An unstable resonator results when both radii do not overlap or when one radius

is fully comprised within the other.

A second way to visualize the resonator parameters is the stability diagram in
Fig. 3.6, in which the stable and unstable zones, as well as the point of operation of
the resonator, are shown.
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Fig. 3.7 A simple ring
resonator consisting of two
concave and one plane mirror
and the corresponding
fundamental round-trip
element

3.1.3 Stable and Unstable Ring Resonators

A simple optical ring resonator can be seen in Fig. 3.7. It consists in this example
of two concave mirrors with radii of curvature of R1 and R2 and a mirror separation
of L1, and of one flat mirror having the distances L2 and L3 to the two others.
The fundamental element of one round-trip is obtained by analogy with the linear
resonators above and also shown in Fig. 3.7. It differs from the one of the simple
two-mirror resonator by the asymmetry between the lenses.

In contrast with the linear resonator, a ring resonator exhibits two propagation di-
rections, clockwise and counter-clockwise, in which the optical elements are passed
through in one direction only. These two propagation directions have to be consid-
ered independently, which leads to two fundamental round-trip matrices, one for
clockwise (cw) and one for counter-clockwise (ccw) propagation.

The fundamental Matrix Mcw for clockwise propagation starting at the first half-
lens is given by

Mcw =
(

1 0
− 1

2f1
1

)(
1 L2 + L3
0 1

)(
1 0

− 1
f2

1

)(
1 L1
0 1

)(
1 0

− 1
2f1

1

)
,

(3.17)

which results in a form such as

Mcw =
(

g1 Leff
g1g2 −1
Leff

g2

)
, (3.18)

defining the resonator parameters g1 and g2 of a ring resonator [4]. As a result of
the usually higher number of variables in a ring resonator, these resonator parame-
ters often consist of more complex expressions. Performing the calculation for the
above example yields

g1 = 1 − Leff

R1
− L2 + L3

R2
(3.19)

g2 = 1 − Leff

R1
− L2 + L3

R2
+ 2

L2 + L3 − L1

R2
, (3.20)

where, Leff characterizes the effective resonator length

Leff = L2 + L3 + L1

(
1 − 2

L2 + L3

R2

)
. (3.21)
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The corresponding fundamental matrix Mccw for a counter-clockwise propaga-
tion starting at the first half-lens is obtained by analogy as

Mccw =
(

g2 Leff
g1g2 −1
Leff

g1

)
. (3.22)

Hence, the two matrices of the two propagation directions only differ by an ex-
change in the resonator parameters [4].

The eigenvalues ξi of the modes of this resonator, here for clockwise propagation,
are again obtained from the relation for the eigenvectors �ri of Mcw

Mcw �ri = ξi �ri (3.23)

solved by the determinant formula

|Mcw − ξI| = 0. (3.24)

This results in the characteristic eigenvalue equation

ξ2 − (g1 + g2)ξ + 1 = 0. (3.25)

Owing to the symmetry of this equation under exchange of g1 and g2, an identi-
cal characteristic eigenvalue equation results for the counter-clockwise propagation.
Hence, the eigenvalues for both propagation directions are identical. Depending on
the resonator parameters, the eigenvalues can again be real or complex numbers and
result in ∣∣∣∣g1 + g2

2

∣∣∣∣> 1 ⇒ ξ1,2 = e±p with coshp = g1 + g2

2
, (3.26)

∣∣∣∣g1 + g2

2

∣∣∣∣≤ 1 ⇒ ξ1,2 = e±iq with cosq = g1 + g2

2
. (3.27)

By analogy with the linear resonator description, the stability criterion of a ring
resonator results in

|g1 + g2 | ≤ 2 ⇒ stable resonator (3.28)

|g1 + g2 | > 2 ⇒ unstable resonator, (3.29)

and a corresponding stability diagram can be drawn, as shown in Fig. 3.8.

3.2 Mode Structure and Intensity Distribution

In the previous Sect. 3.1.2 we investigated the stability of optical resonators using
geometric optics based on ray matrices. This allows the determination of the stability
criteria of a resonator, but does not give an explanation on the distribution of the
modes in the resonator. To deduce this, we have to use the wave description of
the electromagnetic field of the eigenmode of the resonator using the scalar-field
approximation. This approximation is valid for resonators with large dimensions
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Fig. 3.8 Stability diagram of
a ring resonator [4]

compared with the wavelength, i.e. with a resonator length L 
 λ and a mirror
diameter 2a 
 λ, and for linearly polarized fields that are perpendicularly oriented
with respect to the propagation axis. Therefore, these modes are called transverse
electromagnetic modes or TEM-modes. Then, Huygens’ principle can be used to
calculate the propagation of the electromagnetic fields and to deduce the diffraction
losses of the resonator and its intensity distribution.

3.2.1 The Fundamental Mode: The Gaussian Beam

In order to derive the properties of the fundamental mode of a resonator we start
from the wave equation

∇ 2 �E = 1

c2

∂2 �E
∂t2

. (3.30)

As a mode can be described by a single frequency ω, we can assume an electric field
of the form

�E = E0(x, y, z)�εeiωt , (3.31)

which is assumed to be linearly polarized along the polarization vector �ε. Inserting
this into Eq. 3.30 results in the scalar wave equation

∇ 2E0 + k2E0 = 0, (3.32)

with k = ω
c

. Additionally we assume that the wave is propagating along the z-axis
so that we can write

E0(x, y, z) = Ê0ψ(x, y, z)e
ikz, (3.33)

where, Ê0 is the maximum field amplitude and ψ(x, y, z) describes the transverse
field distribution and is assumed to depend only weakly on z. Therefore, we can
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neglect the term ∂2ψ

∂z2 in the scalar wave equation, resulting in the paraxial wave
equation

�Tψ(x, y, z) − 2ik
∂ψ

∂z
= 0, (3.34)

where, �T = ∂2

∂x2 + ∂2

∂y2 denotes the transverse Laplacian operator.
To solve the paraxial wave equation we use the ansatz

ψ(x, y, z) = e
i(p+ kr2

2q ) (3.35)

with r2 = x2 + y2, resulting in

∂p

∂z
= − i

q
(3.36)

∂q

∂z
= 1. (3.37)

Thus, q(z) can be seen as the complex beam radius. Propagating from the axial
position z1 to z2 the complex beam radius evolves according to

q(z2) = q(z1) + z2 − z1. (3.38)

This is the fundamental equation that allows to calculate the beam parameters during
propagation. For the complex beam radius we define the real variables R and w as

1

q
= 1

R
− i

λ

πw2
, (3.39)

resulting in

ψ(r, z) = e−ipe−ik r
2

2R e
− r2

w2 . (3.40)

Thus, we can deduce that the electric field has a Gaussian transverse distribution

with a 1
e

field radius w. The term e−ik r
2

2R describes the transverse phase distribution.
Starting from a real spherical wave with an origin at z = 0 the corresponding phase
factor at z = R would be

e−ik
√
x2 +y2 +R2 ≈ e−ikRe−ik r

2
2R . (3.41)

This shows that the fundamental mode exhibits spherical phase fronts near the z-axis
and R(z) can be seen as the local phase front curvature radius.

In the plane where the Gaussian beam has a flat phase front, i.e. R → ∞, the
complex beam radius simplifies to

q0 = i
πw2

0

λ
= izR, (3.42)

defining the Rayleigh range zR . Assuming that this occurs at z = 0 we can write
the propagation of the complex beam radius as

q(z) = q0 + z = z + izR (3.43)
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Fig. 3.9 Beam radius and phase front radius of a Gaussian beam

and can then deduce the relations for the real beam radius and the phase front cur-
vature as

w(z) = w0

√
1 +
(
z

zR

)2

(3.44)

R(z) = z + z2
R

z
. (3.45)

The evolution of these two parameters is given in Fig. 3.9, showing that the beam
diverges with the distance slowly from the focus up to the Rayleigh range zR . For
larger distances from the focus the divergence increases and finally results in a beam
radius that increases linearly with a divergence angle of

θ(z) = arctan
λ

πw0
≈ λ

πw0
. (3.46)

At the Rayleigh range, the beam radius increased by a factor of
√

2. The absolute
radius of curvature of the phase front quickly decreases with separation from the
focus and shows a minimum of R(±zR) = 2zR at |z| = zR and then starts increasing
again with a linear increase for larger distances asR(z) ≈ z. For large distances from
the focus, the beam shows a phase front that is comparable with a spherical wave
emitted from the origin.

Finally, we need to integrate Eq. (3.36), resulting in

p(z) = −i lnw(z) − arctan

(
z

zR

)
. (3.47)

Thus, the last missing term in the field distribution can be solved. The full field
distribution of a Gaussian beam thus can be given by

ψ(r, z) = w0

w(z)
e−iφ(z)e

−ik r2
2R(z) e

− r2

w(z)2 , (3.48)

with φ(z) = arctan ( z
zR
), called the Gouy phase shift. Consequently, a phase shift

of π occurs when the beam crosses its focal region.
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Fig. 3.10 Position of
a Gaussian beam inside
a spherical-mirror resonator

The Gaussian beam is a solution of the free-space paraxial wave equation and
up to now no resonator parameters have been used to obtain a solution. However,
resulting from the fact that the phase front curvature of the Gaussian beam is spher-
ical, we can insert a spherical mirror with a radius of curvature of R(z1) into a
Gaussian beam at the position z1 and the beam will be retro-reflected exactly into
itself. By inserting a second mirror with a radius of curvature of R(z2) at the po-
sition z2, we created an optical resonator that is self-consistent with this Gaussian
beam, which therefore can be seen as the fundamental mode of this resonator. We
now only need to find a way to reverse this scheme, i.e. to find the Gaussian beam
for a given resonator, i.e. for given values of R1, R2 and L.

Referring to Fig. 3.10 and using Eq. (3.45) we find the relations

R1 = L1 + z2
R

L1
(3.49)

R2 = L2 + z2
R

L2
(3.50)

L = L1 + L2. (3.51)

This set of equations can be easily solved, resulting in

L1 = g2(1 − g1)
L

g1 + g2 − 2g1g2
(3.52)

L2 = g1(1 − g2)
L

g1 + g2 − 2g1g2
(3.53)

z2
R = g1g2(1 − g1g2)

(
L

g1 + g2 − 2g1g2

)2

. (3.54)

Thus, the position of the focus with respect to the two mirrors, as well as the cor-
responding Rayleigh range, can directly be calculated. However, from z2

R > 0 it
follows that 0 ≤ g1g2 ≤ 1 in order to yield a real result for the Rayleigh range. This
is again the stability criterion that resulted from the matrix formalism in Sect. 3.1.2.
Thus, we have found that the resonators that can be matched to a Gaussian beam
are simply the stable resonators; hence, we can conclude that the stable resonators
have a Gaussian beam as their fundamental mode. For an unstable resonator, no
Gaussian beam can be found that self-consistently matches this resonator and thus
no Gaussian eigenmode exists.
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Gaussian Beams and Ray Matrices

As the Gaussian beam is the fundamental solution to the paraxial wave equation and
as the ray matrix formalism in Sect. 3.1.1 was created for paraxial rays, a relation
exists that can be used to calculate the evolution of a Gaussian beam passing an
optical element, which is described by the matrix

M =
(
A B

C D

)
. (3.55)

This relation states that the complex beam radius q2 at the exit plane of the optical
system is connected to the complex beam radius q1 at the entrance plane by [3]

q2 = Aq1 + B

Cq1 + D
. (3.56)

Owing to their form the ray matrices are often also called ABCD-matrices. As an
example, the transformation of a Gaussian beam by a thin lens with a focal length
f is investigated. Using Table 3.1 the entrance and exit complex beam radii are thus
related by

1

q2
= 1

q1
− 1

f
. (3.57)

In a similar way, Eq. (3.56) allows to find the fundamental mode properties of com-
plex laser resonators. In order to do so, an arbitrary point O is chosen on the res-
onator axis inside the resonator, e.g. in front of the outcoupling mirror. From this
point O , on a beam propagating along the resonator axis, it encounters the output
coupler where a part will be reflected. This reflected beam then travels along all
resonator elements (mirrors, lenses, laser media with thermal lens, and other optical
elements) in backward propagation, gets reflected by the cavity end mirror and then
propagates in forward direction passing all elements again just up to the same point,
here in front of the outcoupling mirror. As a stable resonator mode has to reproduce
itself during one round trip, the complex beam radius at the beginning and at the
end of this round trip need to be equal. Thus Eq. (3.56) becomes

q = ARTq + BRT

CRTq + DRT
, (3.58)

where q denotes the (unknown) complex beam radius of the mode at this point O
and

MRT =
(
ART BRT

CRT DRT

)
. (3.59)

is the round-trip resonator matrix calculated along the path described above starting
from the chosen pointO within the resonator. The complex beam radius of the mode
at this point O is then found by solving

Cq2 + (D − A)q − B = 0. (3.60)
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3.2.2 Higher-Order Transverse Modes and Beam Quality

The Gaussian beam investigated in the previous chapter is only the lowest-order
mode of an infinite class of modes. In the most important case of a cylindrical
symmetry of the laser cavity using a confocal resonator, these are described by
Laguerre-Gaussian functions, with an electric field amplitude of [2]

Elp(r,φ, z) ∝ cos lφ
(2ρ)l

(1 + Z2)
l+1

2

Llp

(
(2ρ)2

1 + Z2

)
e

− ρ2

1+Z2

× e
−i(

(1+Z)πR
λ

+ ρ2Z
1+Z2 −(l+2p+1)[ π2 −arctan ( 1−Z

1+Z
)])
, (3.61)

with

ρ = r

√
2π

Rλ
(3.62)

Z = 2

R
z. (3.63)

In this description, l = 0,1,2, . . . describes the angular mode number, p =
0,1,2, . . . the radial mode number, R the radius of curvature of the mirrors that
are located at a distance of L = R and Llp(x) are the Laguerre polynomials that are
defined by the equation

Llp(x) = 1

p!x
−lex

dp

dxp

(
xp+le−x

)
. (3.64)

The first Laguerre polynomials thus are L0
0(x) = 1, Ll1(x) = l + 1 − x and

Ll2(x) = 1
2 (l + 1)(l + 2) − (l + 2)x + x2

2 . The corresponding intensity distribu-
tions Ilp ∝ |Elp|2 at z = 0 are shown in Fig. 3.11, from which we can deduce that
p corresponds to the number of radial minima in the intensity distribution while 2l
gives the number of angular minima on the full 2π angle. When we denote the beam
radius of the fundamental TEM00 beam with ω00, the equivalent beam radius of the
higher order Laguerre-Gaussian beams is given by

ωlp = ω00
√

2p + l + 1. (3.65)

Whenever the cylindrical symmetry of the laser cavity is broken, e.g. when rect-
angular mirrors are used with transverse dimensions comparable with the beam size,
so that non-symmetric losses occur, the modes may better be described in Cartesian
coordinates, resulting in Hermite-Gaussian modes. Also tilted optical elements in-
side the cavity, e.g. Brewster windows, can cause this effect. The Hermite-Gaussian
modes show the intensity distribution [2]

Emn(r,φ, z) ∝ 1√
1 + Z2

Hm

(
X

√
2

1 + Z2

)
Hn

(
Y

√
2

1 + Z2

)
e

− X2 +Y2

1+Z2

× e
−i(

(1+Z)πR
λ

+ (X2 +Y2)Z
1+Z2 −(m+n+1)[ π2 −arctan ( 1−Z

1+Z
)])
, (3.66)
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Fig. 3.11 Intensity distributions of some Laguerre-Gaussian beams (TEMlp modes)

with

X = x

√
2π

Rλ
(3.67)

Y = y

√
2π

Rλ
(3.68)

Z = 2

R
z. (3.69)
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Fig. 3.12 Intensity distributions of some Hermite-Gaussian beams (TEMmn modes)

In this description, m = 0,1,2, . . . and n = 0,1,2, . . . describe mode numbers cor-
responding to the x- and y-axis, respectively and Hm(x) are the Hermite polynomi-
als that are defined by the equation

Hm(x) = (−1)mex
2 dm

dxm

(
e−x2)

. (3.70)

The first Hermite polynomials thus are H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2
and H3(x) = 8x3 − 12x. The corresponding intensity distributions Imn ∝ |Emn|2

at z = 0 are shown in Fig. 3.12, from which we can deduce that m corresponds to
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Fig. 3.13 Brewster setup of
a laser cavity used for a
Cr2+ :ZnSe laser to avoid the
necessity of optical coatings
on the laser crystal

Fig. 3.14 Measured intensity
distributions of some
Hermite-Gaussian beams
(TEMmn modes) of a
Cr2+ :ZnSe laser at 2.3 µm [5]

the number of minima in the intensity distribution along the x-axis while n gives
the number of minima along the y-axis. When we denote the beam radius of the
fundamental TEM00 beam as ω00, the equivalent beam radius of a symmetric higher
order Hermite-Gaussian beam, i.e. with m = n, is given by

ωmm = ω00
√

2m + 1. (3.71)

In a laser setup the laser crystal is sometimes inserted into the resonator under
Brewster’s angle as shown in Fig. 3.13. This provides a linearly polarized laser out-
put directly, as only one polarization orientation passes the crystal with low Fresnel
reflection losses. It is also sometimes used to test crystal samples quickly in laser
operation, as it does not require the anti-reflection coating of the crystal, which is
usually used when the crystals are inserted under normal incidence. When the laser
medium is placed at Brewster’s angle in the resonator, this also causes a symmetry
breaking responsible for the occurrence of the Hermite-Gaussian modes. Figure 3.14
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shows the measured intensity distributions of some Hermite-Gaussian modes of a
Brewster-oriented Cr2+:ZnSe laser [5].

Beam Quality

The TEM00 fundamental mode is the same in both geometries and corresponds to
the Gaussian beam discussed in Sect. 3.2.1. As will be shown in the following dis-
cussion, the Gaussian beam also shows the smallest divergence angle and the lowest
focal spot size of all modes, and therefore, has the best beam quality. In construction
of a laser it is thus usually the aim to get TEM00 operation.

In order to deduce a quantity that describes the beam quality of a laser beam
along a certain transverse axis, e.g. the x-axis, we investigate the different statistical
moments of the field amplitudeψ(x) [3]. Therefore, we define the statistical average

〈
f (x)

〉=
∫∞

−∞ f (x)|ψ(x)|2dx∫∞
−∞ |ψ(x)|2dx

. (3.72)

The beam radius wx and the radius of curvature Rx can then be written as

wx = 2
√〈
x2
〉− 〈x〉2 (3.73)

1

Rx
= iλ

πw2
x

∫∞
−∞ |ψ(x)|2dx

×
∫ ∞

−∞

(
ψ∗(x)∂ψ(x)

∂x
− ψ(x)

∂ψ∗(x)
∂x

)(
x − 〈x〉)dx. (3.74)

The divergence θx of the beam along the x-axis, which describes the angular spread-
ing of the energy can be described by the Fourier transform of the amplitude distri-
bution and is given by

θx = 2λ
√〈
ξ2
〉− 〈ξ 〉2, (3.75)

where, 〈F(ξ)〉 denotes the moments in Fourier space, i.e.

〈
F(ξ)

〉=
∫∞

−∞ F(ξ)|Ψ (ξ)|2dξ∫∞
−∞ |Ψ (ξ)|2dξ

(3.76)

with Ψ (ξ) being the Fourier transform of ψ(x),

Ψ (ξ) = 1√
2π

∫ ∞

−∞
ψ(x)e−i2πξxdx. (3.77)

It can now be shown that the expression

M2 = π

λ
wx

√
θ2
x − w2

x

R2
x

(3.78)

is an invariant property of the beam. That means that passive optical systems, which
can be described by ray matrices, e.g. lenses or spherical mirrors, do not influence
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this value for a given beam. It is interesting to evaluate this expression for a col-
limated beam, i.e. at the position where Rx → ∞. The divergence is then given
by

θx = M2λ

πwx
= M2θ0, (3.79)

showing that the divergence of the real beam is M2 times stronger than the di-
vergence of a collimated Gaussian beam of same radius, see Eq. (3.46). Owing to
wx > 0 it follows that M2 is a positive quantity. It can also be deduced that a Gaus-
sian beam corresponds to M2 = 1 and that any other field distribution that deviates
from the Gaussian beam in amplitude or phase will result in an M2 > 1. Thus, M2

is referred to as the beam quality factor. The optimum beam quality corresponds to
M2 = 1, i.e. the Gaussian beam has optimum beam quality. An M2 > 1 will result
in a stronger divergence of the beam, and thus, in the reverse direction, a given aper-
ture and focal length of a lens results in a larger focal spot size than for a Gaussian
beam with equal diameter. When both beams are focused with the same divergence
angle, the focal spot of the general beam will be M2 times larger than the spot di-
ameter of a Gaussian beam. As a result of the influence of M2 on the divergence it
is sometimes also called beam propagation factor.

In formulae such as Eq. (3.79), the M2 always occurs together with the laser
beam wavelength λ. This expresses that the M2 determines the beam divergence
property in the same way as the wavelength. A beam propagation calculation,
e.g. collimation or focusing, of a beam with M2 > 1, can therefore, be performed
by the standard ray matrix formalism, using a hypothetic Gaussian beam with the
wavelength

λ′ = M2λ. (3.80)

As the spatial moments (the beam radius wx ) and the spatial frequency moments
θx are related by a Fourier transform, i.e. x and ξ are so-called conjugate variables,
we find by rewriting Eq. (3.79) in the form

θxwx = M2λ

π
= constant (3.81)

hence, aperture and divergence are related to each other in a form that may remind
us on the uncertainty relation Eq. (1.59). In this case, the conjugated variables were
time and energy. From this we can deduce that for any given collimated beam its
aperture-divergence product is constant and cannot be changed by any kind of pas-
sive optical element that may be described by a ray matrix. Whenever an optical
element is used that causes aberrations this product, and thus the M2 of the beam,
will increase after passing this element.

Transverse Mode Selection

Depending on the application of a laser it is often important to get single transverse
mode operation, in most cases on the TEM00 mode. Therefore, mode dependent
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Fig. 3.15 The Fresnel
number as the ratio of
reflected and lost power at a
resonator mirror

Fig. 3.16 Diffraction losses
as a function of the Fresnel
number for the TEM00 and
TEM10 modes in Fabry-Perot
and confocal resonators [2]

losses need to be included into the laser cavity, forcing the unwanted modes to
suffer from a higher loss so that they cannot reach threshold or not be sustained.

A good quantity to describe the diffraction losses of a resonator with circular
mirrors of diameter 2a and distance L is the Fresnel number

F = a2

λL
, (3.82)

which can be interpreted as the ratio between the reflected power of a cavity mir-
ror to the diffraction loss at that mirror [2]. This can be seen from the following
calculation, assuming mirrors with equal diameters as shown in Fig. 3.15. Starting
from the first cavity mirror the reflected light beam has a diameter d1 = 2a, and will
therefore, suffer from a diffraction that causes the beam to expand with an angle
θ ≈ λ

d1
. Assuming that the beam homogeneously expands towards the second cavity

mirror at the distance L results in a beam diameter of d2 = 2(a +Lθ) at the position
of the second cavity mirror. Therefore, the ratio between the power reflected from
that second mirror and the losses gives

πa2

π(a + Lθ)2
≈ a

2Lθ
= a2

λL
= F. (3.83)

High Fresnel numbers thus correspond to low loss resonators.
The simplest way of mode selection can already be done by choosing a proper

cavity design, e.g. a confocal resonator. According to Fig. 3.16 this cavity will not
only show lower total losses compared with the Fabry-Perot cavity, i.e. to a cavity
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Fig. 3.17 Transverse mode selection using an intracavity aperture or a soft aperture in a
quasi-three-level laser

that only consists of plane mirrors and is thus very sensitive to misalignment. The
confocal resonator also shows a much higher discrimination between the fundamen-
tal mode and the first higher-order mode, caused by the diffraction losses that are
given for large Fresnel numbers F > 1 by

δ00 ≈ 5 × 10−4F−7.67 (3.84)

δ10 ≈ 1 × 10−2F−7.67, (3.85)

resulting in a relative loss ratio of 20. In a Fabry-Perot cavity this ratio is only 2.53,
so only slight perturbations are necessary to cause mode changes in a Fabry-Perot
resonator. In the case of a confocal resonator based on quadratic mirrors of width
2a, i.e. one with Hermite-Gaussian modes, these losses are given by

δ00 ≈ 1 × 10−4F−13.3 (3.86)

δ10 ≈ 4 × 10−3F−13.3, (3.87)

resulting in an even higher relative loss ratio of 40.
If this does not provide enough loss discrimination between the modes to guar-

antee TEM00 operation, an aperture may be introduced into the cavity, e.g. a di-
aphragm at an inner focus or at a position where the difference between the fun-
damental mode diameter and the diameter of the next higher-order mode is large
(hard aperture). As a result of the higher beam radii of the higher order modes
compared with the fundamental mode, as shown in Eqs. (3.65), (3.71), this aper-
ture will provide a higher loss for higher-order modes, forcing the laser to operate
on the fundamental mode. In a quasi-three-level laser medium, this aperture may
also be through the pumped volume itself, which is called soft aperture. In this
case, the pump beam is chosen to be slightly smaller than the beam diameter of the
fundamental mode in the laser medium as shown in Fig. 3.17. Then the mode ex-
tends into the outer non-pumped parts of the laser medium and consequently suffers
from slight reabsorption. Higher-order modes will extend further out into the non-
pumped regions and therefore exhibit stronger losses. However, as in any of these
cases of mode selection, losses need to be introduced into the laser, mode selection
usually decreases the laser output power compared with an unselected multi-mode
operation of the same laser.
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3.2.3 Longitudinal Modes and Hole-Burning Effects

From the fields in the Eqs. (3.61), (3.66) the phase term can be used to derive the res-
onance conditions of the modes, i.e. the exact frequency of the mode of the confocal
resonator. Thus, we find

2L

λlpq
= 2L

c
νlpq = q + 1

2
(2p + l + 1) (3.88)

2L

λmnq
= 2L

c
νmnq = q + 1

2
(m + n + 1) (3.89)

for the Laguerre-Gaussian and the Hermite-Gaussian modes, respectively. In the
case of a general resonator with spherical mirrors the corresponding relation [2] is

2L

λlpq
= 2L

c
νlpq = q + (2p + l + 1)

arccos
√
g1g2

π
(3.90)

2L

λmnq
= 2L

c
νmnq = q + (m + n + 1)

arccos
√
g1g2

π
, (3.91)

where, q is the longitudinal mode index. In the case of a plane wave resonating in
a Fabry-Perot cavity, q would correspond to the number of half-cycles of the wave
along the cavity, i.e. L = q λ2 . For the fundamental mode this results in a frequency
spacing of the modes

�ν00 = c

2nL
(3.92)

for both cases, where we included the case of a resonator filled with an optical
medium of refractive index n. This quantity �ν00 is also referred to as the free
spectral range of the cavity. For the first higher-order mode the frequency spacing
results in

�ν10 = c

2nL

arccos
√
g1g2

π
, (3.93)

showing that these modes are usually non-degenerate with the fundamental mode.
Only when one mirror obeys the confocal condition gi = 0 all modes are degenerate
owing to g1g2 = 0.

In a loss-less resonator, the frequency spectrum of the modes, described by
Eqs. (3.90), (3.91), would be given by a series of δ-functions,

sLG(ν) =
∑
lpq

δ(ν − νlpq) (3.94)

sHG(ν) =
∑
mnq

δ(ν − νmnq), (3.95)

and correspond to an infinite photon lifetime for each mode in the cavity. However,
in real resonators losses occur as a result of diffraction, outcoupling or internal ab-
sorption within the resonator that will reduce the cavity photon lifetime to a finite
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Fig. 3.18 Spatial field and
gain distributions in a
standing wave resonator. The
lowest graph shows a possible
second longitudinal mode
that can be amplified by the
saturated gain distribution

value τc. As for the homogeneous line width of an atomic level, which is caused by
its natural lifetime, the finite cavity photon lifetime will broaden the resonance of
the cavity, resulting in a line width (full width at half maximum) given by

δν = 1

2πτc
= − c

4πL
ln
[
ROC(1 − Λ)RHR

]
. (3.96)

Using the mode spacing given in Eq. (3.92), the finesse Fc of a cavity can be defined
by

Fc = �ν00

δν
, (3.97)

describing the sharpness of the resonance of the cavity.
In special applications, in which a very highly monochromatic wave, i.e. a long

coherence length of the laser beam is necessary, e.g. in holography or precision
measurements, it is important that the laser oscillates not only on the transverse
fundamental mode TEM00, but also on only one longitudinal mode (single longi-
tudinal mode). However, most lasers will usually oscillate on many longitudinal
modes simultaneously. This arises as a result of the effects of spatial and spectral
hole burning.

Spatial Hole Burning

Spatial hole burning always occurs in linear resonators, in which the internal cavity
field corresponds to a standing wave. In the nodes of this standing wave the electric
field amplitude is always zero, and therefore, the local population inversion will not
be saturated as in the field maxima, see Fig. 3.18. Thus, a second longitudinal mode
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Fig. 3.19 Spectral gain and
cavity modes in a laser
resonator with a threshold
gain Gth for different line
broadenings. The solid line
describes the gain before
laser oscillation starts, the
dashed line corresponds to
the gain distribution during
laser oscillation

of a different frequency, which has a good overlap between its local maxima and the
saturated gain distribution, may have enough gain to oscillate even though the first
oscillating mode has already saturated the gain.

To avoid spatial hole burning, ring resonators are used, which consist of at least
three mirrors. Using special optical elements, such as Faraday rotators or acousto-
optic modulators, different losses for the two propagation directions can be induced
and a unidirectional propagation of the cavity mode results. Consequently, no stand-
ing wave will develop and the spatial hole burning is avoided.

Spectral Hole Burning

The second hole burning effect in a laser is spectral hole burning, which occurs
whenever the laser medium shows inhomogeneously broadened transitions. For a
homogeneous broadening, the mode with the highest gain, will start oscillating first,
and therefore, will reduce the gain as shown in Fig. 3.19.

In the case of an inhomogeneously broadened medium, each frequency compo-
nent of the gain can be saturated independently and every mode starts oscillating
for which the gain at the beginning of laser action is higher than the threshold gain
Gth. Thus, a “hole” is burned into the gain distribution at each frequency of a cavity
mode.

Longitudinal-Mode Selection

In order to force the laser to operate on a single longitudinal mode, a frequency
selective element needs to be included into the cavity. It increases the losses for all
other modes, so that the threshold gain for these modes is bigger than the actual gain
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Fig. 3.20 Spectral gain and
cavity modes in a laser
resonator for inhomogeneous
line broadening using an
etalon for longitudinal-mode
selection

of the laser medium at the corresponding mode frequency, as shown in Fig. 3.20.
Then only the selected mode reaches threshold and will start oscillating.

The frequency selection can by achieved by inserting an etalon, i.e. a plane-
parallel glass plate, into the cavity. Depending on the refractive index of the etalon
material and the thickness of the plate, the etalon acts as a small Fabry-Perot res-
onator. Therefore, it is only loss-free for the frequencies at which nodes occur on the
etalon surfaces. For all other wavelengths Fresnel losses occur that are added to the
cavity losses Λ. The thickness of the etalon is chosen so that when it is tuned to the
central laser frequency, by changing the beam incident angle, the next coincidence
between the modes of the resonator, and the maximum transmission frequencies of
the etalon occur outside the frequency range in which gain can exceed threshold.
Other possibilities are the use of coupled resonators, saturable absorbers or seeding
by a second laser. In the latter case, a single longitudinal mode laser of low power,
e.g. achieved by pumping just above threshold, thus oscillating on the gain peak;
as a result no other mode reaches threshold itself. This beam is injected into the
resonator of a laser dedicated for higher-power, single longitudinal mode operation.
Thus, the second laser locks to the frequency of the seed laser.

3.3 Line Width of the Laser Emission

The theoretical line width of the laser emission was first calculated by Schawlow and
Townes back in 1958, two years before the first laser was experimentally demon-
strated. They showed that the theoretical laser line width δνL (full width at half
maximum) is given by

δνL = 2πhν�ν2
c

Pout
, (3.98)

with ν being the laser line center frequency, �νc = 1
2πτc

the bandwidth of the pas-
sive laser resonator and Pout the laser output power.
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Here we deduce an equivalent expression of the laser line width that is also valid
for quasi-three-level lasers and gives some more insight into the fundamental laser
properties. We will use two equivalent descriptions for the Quality-factor (Q-factor)
of a resonator, which are given by

Q = ν

δνL
and (3.99)

Q = 2πEtot

�Eosc
= 2πνEtot

| ∂Etot
∂t

|
. (3.100)

The first expression defines the Q-factor as the ratio between the resonance fre-
quency ν and the resonance line width δνL (full width at half maximum), whilst
the second one uses the energy Etot inside the resonator and the loss of this energy
during one period of the oscillation �Eosc, which can be expressed in terms of the

time-averaged energy loss over one period, | ∂Etot
∂t

|. Both descriptions are equivalent,
as they are simply related to each other by Fourier transformation between the decay
of the intensity (or energy) I (t) of a damped oscillator and its frequency spectrum
Ĩ (ν).

We have to take into account that the total energy inside the resonator consists of
a coherent part Ec, which is created by stimulated emission and an incoherent part
Esp as a result of the spontaneous emission.

During cw laser operation the total internal resonator energy will be constant in
time, resulting in

Etot = Ec + Esp = const ⇒
∣∣∣∣∂Ec∂t

∣∣∣∣=
∣∣∣∣∂Esp

∂t

∣∣∣∣= Psp. (3.101)

Hence, the period-averaged loss of coherent energy is just given by the average
power Psp of spontaneously created photons emitted into the laser mode during
one oscillation period. The power that is needed to feed the resonator in order to
compensate for the losses given by the cavity photon lifetime τc can be written as

Ptot = Etot

τc
= Ec + Esp

τc
= Pc + Psp, (3.102)

where, Pc denotes the coherent power contribution that corresponds to the stimu-
lated emission. From Eq. (2.90) we can deduce that the stimulated emission contri-
bution and the spontaneous contribution are given by

Pc = hνc
[
σe(λs)〈N2 〉 − σa(λs)〈N1 〉]ΦcV (3.103)

Psp = hνcσe(λs)〈N2 〉Φ0V, (3.104)

under the assumption of an axially constant photon density with Φc being the den-
sity of the coherent photons in the cavity and V being the volume of the cavity. Thus,
we can deduce the ratio between the rates of stimulated and spontaneous emission
processes as

Pc

Psp
= σe(λs)〈N2 〉 − σa(λs)〈N1 〉

σe(λs)〈N2 〉
Φc

Φ0
=
(

1 − σa(λs)〈N1 〉
σe(λs)〈N2 〉

)
NP , (3.105)
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where, we used that the ratio between the coherent photon density Φc and the den-
sity of the photons of the vacuum fluctuations Φ0 in the same mode is just given by
the number of coherent photons in the mode NP as the quantum fluctuations corre-
spond to the zero-point fluctuation of that mode, and therefore, to one photon per
mode.

As a result, we can write the Q-factor of the oscillating cavity in the form

Q = 2πντc
Pc + Psp

Psp
= 2πντc

[(
1 − σa(λs)〈N1 〉

σe(λs)〈N2 〉
)
NP + 1

]
. (3.106)

By using the first definition of the Q-factor we can deduce the laser line width as

δνL = 1

2πτc[(1 − σa(λs)〈N1 〉
σe(λs)〈N2 〉 )NP + 1] = �νc

(1 − σa(λs)〈N1 〉
σe(λs)〈N2 〉 )NP + 1

. (3.107)

We may conclude that the laser line width mainly depends on the number of co-
herent photons in the laser mode, and thus, on the laser output power Pout when
using

NP + 1 ≈ 2

TOC

λsL

hc2
Pout. (3.108)

In the case of low reabsorption σa(λs) � σs(λs), or for a four-level laser, Eq. (3.107)
simplifies to

δνL = �νc

NP + 1
, (3.109)

which is equivalent to the Schawlow-Townes relation.
The laser emission line width will always be smaller than the cavity resonance

bandwidth and can reach extremely low values below 1 Hz. For a HeNe-laser
of 1 mW coherent output power at λs = 632.8 nm with the cavity parameters
L = 0.6 m and TOC = 0.02, we deduce τc = 198 ns, i.e. �νc = 803 kHz, and a
coherent photon number of NP = 6.38 × 108. This results in a theoretical line width
of δνL ≈ 10−3 Hz.

Such small line widths, however, will not be found in experimental lasers as all
kinds of external fluctuations, such as vibrations on the mirrors, and therefore, on
the cavity length, will cause a frequency modulation with a width that is many orders
of magnitude larger than the theoretical line width of the laser.
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Chapter 4
Generation of Short and Ultra-Short Pulses

In this chapter we investigate two of the main methods of laser-pulse generation,
which are Q-switching and mode-locking. Whilst of-course every laser may be
pulsed by just switching it on and off, these methods allow accumulation of pump
energy between two pulses, and can therefore, create pulse peak powers that are
several orders of magnitude higher than the corresponding cw laser output power.

4.1 Basics of Q-Switching

Q-switching is based on a modulation of the cavity losses, as shown in Fig. 4.1.
This modulation, caused by an externally driven intra-cavity modulator in active Q-
switching or by a saturable absorber in passive Q-switching, increases the internal
losses of the cavity during the pump phase. Thus the laser threshold is dramatically
increased and the laser cannot start oscillating, which allows the inversion to reach
much higher values than in cw operation. After this pumping phase the modulation
losses are switched off and the feedback on the laser medium is restored. Then a
laser field builds up from noise and will extract all available stored energy in one
giant pulse of high pulse energy. As the loss modulation changes the Q-factor of the
cavity, this pulse generation method is called Q-switching. The general temporal
evolution of the Q-switch is sketched in Fig. 4.2 for the case of an active Q-switch
that acts on the internal cavity losses Λ.

4.1.1 Active Q-Switching

In this section the fundamental properties of actively Q-switched lasers will be de-
duced, starting from the rate equations (2.60), (2.61).
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Fig. 4.1 Principle setup of an
actively Q-switched laser

Fig. 4.2 Evolution of gain,
loss and photon density
during the Q-switch

Pumping at Low Q-Factor

During the pump phase of duration Tp the cavity losses are assumed to be high
enough to prevent lasing at all, i.e. 〈Φ〉 ≈ 0. Thus, Eq. (2.60) may be written as

∂〈�N〉
∂t

= Rp − 〈N〉 + 〈�N〉
τ

, (4.1)

with the pump rate

Rp = 2
λp

hc
Ip
ηabs

L
. (4.2)

This can be easily solved under the assumption of a constant pump rate, resulting in
an inversion build-up according to

〈�N〉(t) = Rpτ
(
1 − e− t

τ
)− 〈N〉. (4.3)

It is interesting to note here that this build-up is identical to the charging of a capac-
itor C, as shown in Fig. 4.3. Q-switching in this sense can thus be seen as slowly
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Fig. 4.3 Analogy between
Q-switching and the charging
of a capacitor

Fig. 4.4 Pump efficiency as
a function of the pump pulse
width

charging a capacitor over a high resistor Rch = τ
C

and quickly discharging it over a
low resistor Rdis = τc

C
, which is connected to the much smaller cavity lifetime.

For a long time pumping, i.e. t → ∞, the inversion will thus saturate and reach
its upper limit

〈�N〉∞ = Rpτ − 〈N〉, (4.4)

showing that long pumping phases will result in a low efficiency. To calculate the
pump efficiency, we assume that the laser is pumped with a given pump energy Ep ,
which may be distributed over a variable pump time Tp in a square pulse. During
this time Np,max = RpTp excitations will be created, which however, suffer from
spontaneous decay. Therefore, at the end of the pump phase only

Np = 〈�N〉(Tp) + 〈N〉 = Np,max

Tp
τ
(
1 − e− Tp

τ
)

(4.5)

excitations are still in the upper state. Thus the pump efficiency ηp can be derived
as

ηp = τ

Tp

(
1 − e− Tp

τ
)
, (4.6)

giving the amount of absorbed pump energy that is stored inside the laser medium
excitation after the pump phase. As can be seen in Fig. 4.4, a pump pulse duration
of Tp < τ

2 should be used in order to get a pump efficiency > 80 %.

Pulse Build-Up at High Q-Factor

After the pump phase, the initial inversion 〈�N〉i is present in the laser medium
and the modulator is switched off, restoring the high Q-factor of the cavity. We will
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now derive the pulse build-up time, which is defined as the time the photon field
needs in order to build-up from noise to a value comparable to the photon field in
cw operation [1]. As the peak photon density in the Q-switch pulse will be much
higher than the cw value 〈Φ〉cw, we can assume that for 〈Φ〉 ≤ 〈Φ〉cw no significant
decrease in the inversion occurs. Thus, the inversion is treated as constant during this
time, and by using Eq. (2.63), the rate equation governing the temporal evolution of
the photon field can be rewritten as

∂〈Φ〉
∂t

= c

2

[
σa(λs) + σe(λs)

](〈�N〉i − 〈�N〉th
)〈Φ〉, (4.7)

where, we assume that the axial changes in the population and the photon field
are not too high, so that we can write the averaged products as the product of the
averages. Also, we simplify the cross-sections of absorption and emission at the
laser wavelength λs by σa = σa(λs) and σe = σe(λs) in the following. Using the
abbreviations

〈�N〉′
i = 〈�N〉i − σa − σe

σa + σe
〈N〉 (4.8)

〈�N〉′
th = 〈�N〉th − σa − σe

σa + σe
〈N〉 (4.9)

r = 〈�N〉′
i

〈�N〉′
th

= gi

gth
, (4.10)

as well as Eq. (2.63) again we can simplify Eq. (4.7) to the form

∂〈Φ〉
∂t

= 1

τc
(r − 1)〈Φ〉, (4.11)

with the solution

〈Φ〉(t) = Φ0e
(r−1) t

τc , (4.12)

where,Φ0 is the noise photon density caused by the vacuum fluctuations. The cavity
field, therefore, will start growing exponentially from the vacuum fluctuations with
the time constant τc

r−1 until it depletes the inversion significantly. The pump param-
eter r can also be expressed as the ratio between the initial logarithmic gain gi and
the logarithmic threshold gain gth using

gi = (σa + σe)〈�N〉i − (σa − σe)〈N〉 (4.13)

gth = (σa + σe)〈�N〉th − (σa − σe)〈N〉. (4.14)

As long as the depletion of the ground-state N1 can be neglected during pumping,
e.g. in high-repetition rate operation as discussed later on, the logarithmic gain is
proportional to the pump power, resulting in

r = gi

gth
≈ Pp

Pth
. (4.15)

Therefore, the pump parameter r is often identified with the “times-above-
threshold” operation point of the laser given by r − 1.
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Fig. 4.5 Pulse build-up time
as a function of the pump
parameter r

Defining the cavity build-up time Tb by 〈Φ〉(Tb) = 〈Φ〉cw results in

Tb = τc

r − 1
ln

〈Φ〉cw

Φ0
. (4.16)

In most laser systems, the ratio between the cw photon density and the noise is of
the order of 108 − 1012, giving

Tb ≈ (22.5 ± 5)
τc

r − 1
. (4.17)

As shown in Fig. 4.5, the pulse build-up time quickly decreases with increasing
pump power, shifting towards the time when the modulator opens. In order not to
loose efficiency, additional losses from the modulator must be avoided. Therefore,
the modulator has to be chosen so that the switching between the low-Q and the
high-Q state of the cavity occurs much faster than the build-up time of the laser
pulse.

Pulse Peak Power and Pulse Width

To derive the pulse width of the Q-switch pulse, we can assume that during the pulse
build-up and the pulse extraction time, we can neglect further spontaneous decay of
the upper level as well as pumping, which results in the rate equations

∂〈�N〉
∂t

= c
[
(σa − σe)〈N〉 − (σa + σe)〈�N〉]〈Φ〉 (4.18)

∂〈Φ〉
∂t

= c

2
(σa + σe)

(〈�N〉 − 〈�N〉th
)〈Φ〉. (4.19)

Dividing Eq. (4.19) by Eq. (4.18) yields the evolution of the photon field with inver-
sion as

∂〈Φ〉
∂〈�N〉 = 1

2

(σa + σe)(〈�N〉 − 〈�N〉th)

(σa − σe)〈N〉 − (σa + σe)〈�N〉 , (4.20)
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which can be integrated to give the photon field as a function of the inversion density,

2
∫ 〈Φ〉

Φ0

d〈Φ〉 =
∫ 〈�N〉

〈�N〉i
[σa + σe](〈�N〉 − 〈�N〉th)

([σa − σe]〈N〉 − [σa + σe]〈�N〉)d〈�N〉. (4.21)

This integral can be performed analytically and under the assumption that the photon
noise density is low compared with the one occurring during the pulse, i.e. we can
set the lower integration boundary to Φ0 ≈ 0, this results in

2〈Φ〉 ≈ 〈�N〉i − 〈�N〉

+
[
σa − σe

σa + σe
〈N〉 − 〈�N〉th

]
ln

( 〈�N〉i − σa−σe
σa+σe

〈N〉
〈�N〉 − σa−σe

σa+σe
〈N〉
)
. (4.22)

After the pulse is emitted the photon density will decrease to zero again and a resid-
ual (final) inversion 〈�N〉f is left inside the medium given by the relation

〈�N〉f − 〈�N〉i

=
[
σa − σe

σa + σe
〈N〉 − 〈�N〉th

]
ln

( 〈�N〉i − σa−σe
σa+σe

〈N〉
〈�N〉f − σa−σe

σa+σe
〈N〉
)
. (4.23)

This is the main equation describing the Q-switch process. Using the abbreviations
in Eqs. (4.8)–(4.10) and accordingly

〈�N〉′
f = 〈�N〉f − σa − σe

σa + σe
〈N〉 (4.24)

the fundamental Q-switch equation can be rewritten in the simple form

〈�N〉′
f

〈�N〉′
i

= 1 − 1

r
ln

〈�N〉′
i

〈�N〉′
f

, (4.25)

showing that the whole Q-switch pulse evolution only depends on the initial inver-
sion 〈�N〉′

i and the cavity parameters included in 〈�N〉′
th.

To derive the pulse peak power, we first have to find the time of the pulse peak
itself. As already shown in Fig. 4.2, the peak is reached when no further net ampli-
fication is possible, i.e. it will occur exactly when the gain, and thus the inversion,
crosses the threshold values. Using Eq. (4.22) thus gives the peak photon density
inside the cavity as

〈Φ̂〉 = r − 1 − ln r

2
〈�N〉′

th. (4.26)

Therefore, it only depends on the cavity parameters and r . As these photons will
leave the cavity with the cavity photon lifetime τc, the peak power of the Q-switched
pulse can be directly given by

P̂ = hν

τc
〈Φ̂〉V = r − 1 − ln r

2
〈�N〉′

th
hν

τc
V . (4.27)
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Fig. 4.6 Extraction efficiency and relative pulse width of a Q-switch pulse as a function of the
pump parameter r

Additionally, we define the energy extraction efficiency ηe by the fraction of ex-
tracted inversion as

ηe = 1 − 〈�N〉′
f

〈�N〉′
i

. (4.28)

Using Eq. (4.25) the energy extraction efficiency ηe(r) can be calculated indepen-
dently from the actual laser parameters by the transcendental equation

r = − ln [1 − ηe(r)]
ηe(r)

. (4.29)

Hence, we can approximate the pulse width tp of the Q-switch pulse as the ratio
between the extracted energy Es = 1

2hνV (〈�N〉′
i − 〈�N〉′

f ) and the pulse peak

power P̂ by

tp ≈ Es

P̂
= rηe(r)

r − 1 − ln r
τc. (4.30)

The factor 1
2 in the energy takes into account that in the �N each excitation is

counted twice.
As can be seen in Fig. 4.6 the extraction efficiency quickly approaches unity for

r > 4, whilst the pulse width asymptotically decreases towards the cavity lifetime.
This shows that short pulses on the order on several ns to 1 µs are possible with
Q-switched lasers, depending on the cavity lengths and lifetimes.

4.1.2 Experimental Realization

Q-switching is most often achieved through use of two main techniques, in which
either an acousto-optic modulator (AOM) or an electro-optic modulator (EOM) is
used to modify the cavity losses. The initial technique was to rotate the HR mir-
ror of the cavity around an axis perpendicular to the beam propagation axis. This
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generates a Q-switch pulse, because only during the short time when the mirror is
perpendicularly aligned to the beam, a high-Q cavity is formed. A special pulse-
generation method is cavity dumping, in which the laser is Q-switched between two
HR mirrors. Then the pulse builds up and is finally extracted by using the modulator
a second time. This last technique usually needs fast switching times as especially
the switching to extract the pulse has to be much faster than the cavity round-trip
time. Therefore, only electro-optical modulators are used in this case.

Acousto-Optic Modulators

The usual setup of an acousto-optically Q-switched laser is shown in Fig. 4.7. The
modulator consists of a transparent material, e.g. silica glass (SiO2) or tellurium
dioxide (TeO2), to which an ultrasonic transducer is bonded to create a sound wave
inside the bulk modulator material. Owing to the photo-elastic effect, this sound
wave generates an index of refraction distribution inside the modulator material,
which behaves as an optical phase grating that causes a part of the incident power
to be diffracted out of the cavity, thus creating losses. By switching off the radio-
frequency (rf) power to the transducer, the glass block returns to its homogeneous
index state and the high Q-factor of the resonator is restored [3].

Depending on the length Lm of the modulator material, the wavelengths of the
optical wave and the sound wave, two diffraction regimes are observed, which are
the Raman-Nath regime and the Bragg regime.

In Raman-Nath scattering the interaction length Lm is short or the sound wave-
length λa is large, thus λsLm � λ2

a . In this case, the incident light is scattered into
many diffraction orders, with a maximum of diffracted power occurring when the
sound wave interacts perpendicularly with the light wave, as shown in Fig. 4.8. The
amplitude of the phase grating is given by

�φ = 2π�n
Lm

λs
= π

√
2Lm
λ2
s

M2
Pa

b
, (4.31)

with b being the width of the sound wave, Pa the acoustic wave power and M2 the
so-called figure of merit of the acousto-optic material. It can be calculated from the
refractive index n, the photoelastic coefficient in the chosen geometry p, the density
of the acousto-optic material ρ and the velocity of sound va as

M2 = n6p2

ρv3
a

. (4.32)

Finally, the intensity scattered into the nth order is given by

In = Î0J
2
n (�φ), (4.33)

where, Jn(x) is the Bessel function of nth order and Î0 the incident laser intensity.
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Fig. 4.7 Setup of an actively
Q-switched laser using an
acousto-optic modulator [3]

Fig. 4.8 The two operation
regimes of an acousto-optic
modulator: The Raman-Nath
regime and the Bragg
regime [3]

In Bragg scattering, described by λsLm 
 λ2
a , a zero-order and first-order

diffraction beam become predominant under the Bragg condition [3], in this case
the sound wave and the light wave interact at the Bragg angle θB , given by

sin θB = λs

2nλa
. (4.34)

The internal deflection angle is given by 2θB and by taking into account the re-
fraction on the output side of the modulator, one finds an external diffraction angle
of

θ ′ = 2nθB ≈ λs

λa
. (4.35)

The intensity of the scattered beam is then given by

I1 = Î0 sin2 �φ

2
, (4.36)

and the intensity of the transmitted beam I0 is reduced by this amount compared
with the off-state of the modulator.
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Fig. 4.9 Layout of a Pockels
cell as an electro-optic
modulator and the induced
change in the refractive index
ellipsoid [3]

Electro-Optic Modulators

Whilst acousto-optic modulators may also be used with unpolarized light, an
electro-optic modulator uses the electro-optic effect, i.e. the birefringence induced
in an optical medium by an externally applied electric field. This is achieved in a
Pockels cell, in which the refractive index change depends linearly on the applied
electric field (Pockels effect). The external electric field will induce a birefringence,
which results in a so-called slow-axis and a fast-axis with different indices of re-
fraction. The electro-optic crystal, e.g. potassium dihydrogen phosphate (KDP), is
oriented in such way that the incident laser light will have its polarized aligned un-
der 45◦ with respect to the slow or fast axis, see Fig. 4.9. Then, the induced change
in refractive index will cause a phase shift between the slow- and fast-axis electric
field components of the beam. This results in a change of the state of polarization of
the radiation, developing from an incident linear polarization to an elliptical polar-
ization and a circular polarization during its propagation along the cell axis.

For a given cell length Lc two specific voltages exist for which the output po-
larization corresponds to a circular polarization or a linear polarization rotated by
90◦ with respect to the incident polarization orientation. These voltages are called
quarter-wave Uλ

4
and half-wave voltage Uλ

2
, respectively,

Uλ
4

= λs

4n3
0r63

, (4.37)

Uλ
2

= λs

2n3
0r63

, (4.38)

as the cell acts like a quarter- or half-wave plate in this case. In this formulae,
wherein n0 is the ordinary index of refraction, λs is the laser wavelength and r63
is the electro-optic coefficient. Combining such a Pockels cell with an intracavity
polarizer now allows efficient and fast switching of the internal beam as the electro-
optic effect has a response time much smaller than the cavity time constants. The
switching time only depends on the high-voltage power supply and its ability to
charge the Pockels cell, which is electrically charged just like a capacitor.

The quarter-wave setup only needs one intra-cavity polarizer, since the beam
passes the Pockels cell twice resulting in a total polarization rotation of 90◦ as shown
in Fig. 4.10. In the half-wave setup a second polarizer is needed to couple out the
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Fig. 4.10 Setup of an
actively Q-switched laser
using an electro-optic
modulator [3]

Fig. 4.11 Setup of a
cavity-dumped ruby laser [3]

all the incident radiation when the voltage is applied. By switching off the voltage
in both cases the electro-optic crystal will return into its non-birefringent state and
the cavity is restored, causing the Q-switch pulse to build up.

Cavity Dumping

In cavity dumping the half-wave setup of a Pockels cell is used and the laser is
Q-switched with nearly 100 % reflectivity cavity mirrors in order to obtain very
short Q-switch pulses. At the peak of the Q-switched pulse, the Pockels cell is used
to switch the closed cavity rapidly to its output port, provided by an intracavity
polarizer. Thus, the width of the Q-switched pulse is only a function of the cavity
length and its round-trip time, and not of the spectroscopic parameters of the laser
medium. In the example in Fig. 4.11 the ruby laser rod is oriented so that the c-axis is
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perpendicular to the plane of the page. Without any voltage on the Pockels cell, the
laser medium is pumped and an inversion is created. The crystal only provides a high
optical gain for a laser polarization in this plane, so that the generated fluorescence
does not “see” the second cavity mirror as it leaves the cavity by passing through
the polarizer. Then the half-wave voltage is applied to the Pockels cell, causing the
polarized fluorescence to be reflected from the polarizer. Hence, the laser cavity is
closed and the laser pulse builds up. On the maximum laser pulse power, the voltage
is removed from the Pockels cell in less than 2–5 ns and the cavity photons will all
leak out by passing the polarizer, thus creating a pulse with a width of the round-trip
time of the resonator.

If the laser medium does not provide a polarized output itself, a second polarizer
can be inserted into the cavity to provide the decoupling of the second cavity mirror
during the off-state of the Pockels cell.

4.1.3 Passive Q-Switching

In contrast to active Q-switching, where an external signal is applied to open the cav-
ity and to restore the high Q-factor to generate the pulse, passive Q-switching uses a
saturable absorber. This is an additional medium inside the cavity that absorbs on
the laser wavelength, thus decreasing the Q-factor (or increasing the internal cavity
losses). However, this absorption is intensity dependent and quickly saturates to-
wards a highly transmissive state of that material, restoring the high Q-factor of the
cavity, which causes the build-up of the pulse intensity. This switching can be seen
in Fig. 4.12, in which the transmission of a saturable medium is shown with respect
to the incident fluence

J =
∫
Isdt (4.39)

on the absorption line. By analogy with the Frantz-Nodvik model [2], this transmis-
sion can be calculated by

T (J ) = Jsat

J
ln
[
1 + (e J

Jsat − 1
)
T0
]
, (4.40)

where, T0 is the initial, i.e. unpumped, transmission of the saturable medium and
Jsat is the saturation fluence, given by

Jsat = hc

λs[σa(λs) + σe(λs)] = τ ∗I ssat, (4.41)

with τ ∗ being the excitation lifetime of the saturable absorber and

I ssat = hc

λs[σa(λs) + σe(λs)]τ ∗ (4.42)

being the saturation intensity of the absorber on the laser line. It should not be
confused with the pump saturation intensity in Eq. (2.71), in which the pump wave-
length λp occurs.
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Fig. 4.12 Transmission of a
saturable medium as a
function of the incident
fluence at an initial
transmission of T0 = 0.6

Owing to the additional saturable absorber inside the cavity, a new rate equation
has to be added to describe this system. The passive Q-switch on the time scale of
the pulse generation, i.e. when pumping and spontaneous decay can be neglected, is
therefore given by the coupled equations

∂〈�N〉
∂t

= c
[
(σa − σe)〈N〉 − (σa + σe)〈�N〉]〈Φ〉 (4.43)

∂�N∗

∂t
= c
[(
σ ∗
a − σ ∗

e

)
N∗ − (σ ∗

a + σ ∗
e

)
�N∗]〈Φ〉 − �N∗ + N∗

τ ∗ (4.44)

∂〈Φ〉
∂t

= c

2
(σa + σe)

(〈�N〉 − 〈�N〉th
)〈Φ〉

+ c

2

[(
σ ∗
a + σ ∗

e

)
�N∗ − (σ ∗

a − σ ∗
e

)
N∗]〈Φ〉, (4.45)

where, �N∗ and N∗ are the inversion density and total absorber density of the
saturable absorber, τ ∗ its excitation lifetime and σ ∗

a = σ ∗
a (λs) and σ ∗

e = σ ∗
e (λs)

the saturable absorber cross-sections of absorption and emission at the laser wave-
length λs .

A saturable absorber usually has a very low excitation lifetime τ ∗ < ns, much
lower than the Q-switch pulse widths created. It often uses dyes or semiconductor
materials. Thus, the inversion density of the saturable absorber �N∗ in Eq. (4.44)
will nearly instantaneously react on the photon density 〈Φ〉. Therefore, we can ap-
proximately solve this rate equation as being in the steady state compared to all
other processes during the Q-switch. This results in

�N∗ = cτ ∗(σ ∗
a − σ ∗

e )〈Φ〉 − 1

cτ ∗(σ ∗
a + σ ∗

e )〈Φ〉 + 1
N∗. (4.46)

At the beginning of the Q-switch process, it can be assumed that the laser medium
has its initial inversion density 〈�N〉i and that the saturable absorber is still unex-
cited, i.e. �N∗ ≈ −N∗. Therefore, Eq. (4.45) gives

∂〈Φ〉
∂t

= c

2
(σa + σe)

(〈�N〉i − 〈�N〉th
)〈Φ〉 − cσ ∗

a N
∗ 〈Φ〉, (4.47)



88 4 Generation of Short and Ultra-Short Pulses

which results in an exponentially growing photon field 〈Φ〉(t) = Φ0e
γ0t with a time

constant

γ0 = c

2
(σa + σe)

(〈�N〉i − 〈�N〉th
)− cσ ∗

a N
∗. (4.48)

In contrast to the temporal behaviour of the saturable absorber inversion den-
sity, the inversion density 〈�N〉(t) of the laser medium will be determined by the
integrated photon flux. By taking the approximate exponential growth solution of
Eq. (4.47), and the analytical solution of

∂f

∂t
= (af (t) + b

)
u(t), (4.49)

given by

f (t) = ea
∫ t

0 u(t
′)dt ′
(
f (0) + b

∫ t

0
e−a

∫ t ′
0 u(t ′ ′)dt ′ ′

u
(
t ′)dt ′

)
, (4.50)

Eq. (4.43) can be analytically solved, giving

〈�N〉 = e
− c(σa+σe)

γ0
〈Φ〉(t)

(
〈�N〉i + c(σa − σe)〈N〉

∫ t

0
e
c(σa+σe)

γ0
〈Φ〉(t ′)〈Φ〉(t ′)dt ′

)
.

(4.51)

Inserting these results into Eq. (4.45), the exponential time constant of the photon
field can be described by

1

〈Φ〉
∂〈Φ〉
∂t

= γ0 +
(
c2σ ∗

a

(
σ ∗
a + σ ∗

e

)
τ ∗N∗ − c2(σa + σe)

2

2γ0
〈�N〉i

)
〈Φ〉 + · · · ,

(4.52)

wherein a series development in the power of 〈Φ〉 was used.
If the coefficient of the linear term in 〈Φ〉 has a negative sign, the exponential

time constant will decrease with increasing photon flux, which means that the gain
provided by the laser medium saturates before the absober can saturate. This will
thus not result in a Q-switch pulse. However, when the sign of this linear term is
positive, the exponential time constant will increase with increasing photon flux
as the saturable absorber bleaches much faster than the gain of the laser medium
is reduced owing to amplification. Then, a Q-switch pulse is emitted as shown in
Fig. 4.13. Passive Q-switching thus depends on two thresholds: a first threshold that
needs to be passed by pumping strongly enough that the generated gain exceeds
the unsaturated losses of the cavity including the saturable absorber, and a second
threshold that is given by passing the point after which the photon flux grows faster
than exponentially. If we denote the single-pass gain before saturation occurs with
G0, the logarithmic round-trip gain results in g0 = 2 lnG0. Hence, the exponential
time constant γ0 may be approximated by

γ0 ≈ g0

�tRT
, (4.53)
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Fig. 4.13 Evolution of gain,
loss and photon density
during the passive Q-switch

neglecting the cavity photon lifetime, see Eq. (2.62). Therein, �tRT is the cavity
round-trip time. Then, the second threshold can be expressed by

N∗ > (σa + σe)
2

σ ∗
a (σ

∗
a + σ ∗

e )

�tRT

τ ∗
〈�N〉i

2g0
, (4.54)

stating the minimum absorber density necessary to pass the second threshold.

4.1.4 Scaling Laws of Repetitive Q-Switching

In this section we will investigate repetitive Q-switching, i.e. a periodic opening and
closing of the cavity by the modulator at a repetition rate νRep and with an opening
time tG, called a gate. Of-course, the gate tG has to be at least as long as the pulse
build-up time. As a result from the finite pulse build-up time an upper limit will
exist for the repetition rate, given by the fact that during the corresponding repetition
period TRep = 1

νRep
enough inversion, and thus, gain has to build-up so that the pulse

will be created within the gate duration, i.e. during the high-Q state of the cavity.
In repetitive Q-switching under equilibrium conditions, i.e. when all pulses show

equal pulse energy, it follows from the dependence of the Q-switch pulse evolu-
tion in Eq. (4.25) that the initial inversion before each pulse emission has to be
equal. As the initial inversion of the nth pulse is coupled to the final inversion of
the n − 1th pulse, by the pumping between the two pulses, we can conclude from
self-consistency, using Eq. (4.1), that

〈�N〉i = (〈�N〉f − Rpτ + 〈N〉)e− TRep
τ + Rpτ − 〈N〉

= 〈�N〉∞ − (〈�N〉∞ − 〈�N〉f
)
e

− 1
νRepτ . (4.55)
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Fig. 4.14 Evolution of the
inversion with time for
high-repetition-rate
Q-switching

Using the abbreviations in Eqs. (4.8)–(4.10), (4.24) and accordingly

〈�N〉′∞ = 〈�N〉∞ − σa − σe

σa + σe
〈N〉, (4.56)

Eq. (4.55) can be rewritten to

〈�N〉′
i = 〈�N〉′∞ − (〈�N〉′∞ − 〈�N〉′

f

)
e

− 1
νRepτ . (4.57)

The other two equations necessary to derive the scaling laws are rewritten forms of
Eqs. (4.25), (4.30) and are given by

〈�N〉′
i − 〈�N〉′

f = 〈�N〉′
th ln

〈�N〉′
i

〈�N〉′
f

, (4.58)

�tp = 〈�N〉′
i − 〈�N〉′

f

〈�N〉′
i − 〈�N〉′

th(1 + ln
〈�N〉′

i

〈�N〉′
th
)
τc. (4.59)

In the case of low repetition rates, i.e. νRep � 1
τ

, Eq. (4.57) yields 〈�N〉′
i ≈

〈�N〉′∞ and thus, using Eq. (4.58), that 〈�N〉′
f ≈ constant. Therefore, also the pulse

width �tp , pulse peak power P̂ and pulse energy Es are constant and the average
power, given by

〈Ps〉 = 1

2
hνV
(〈�N〉′

i − 〈�N〉′
f

)
νRep, (4.60)

scales with the repetition rate.
For high repetition rates, i.e. νRep 
 1

τ
, this calculation is a little bit more com-

plex. In this case, we can assume 〈�N〉′
i ≈ 〈�N〉′

f , as shown in Fig. 4.14, and we
can thus develop the logarithm in Eq. (4.58) to third order,

lnx � − (x − 1)2

2
+ x − 1, (4.61)

resulting in

〈�N〉′
f

〈�N〉′
th

� 2 − 〈�N〉′
i

〈�N〉′
f

. (4.62)
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Table 4.1 Scaling laws of the repetitively Q-switched laser

Repetition rate Average power Pulse width Peak power Pulse energy

νRep � 1
τ

〈Ps〉 ∝ νRep �t ∼ const P̂ ∼ const Es ∼ const

νRep 
 1
τ

〈Ps〉 ∼ const �t ∝ νRep P̂ ∝ 1
ν2

Rep
Es ∝ 1

νRep

As we can also assume 〈�N〉′
i ≈ 〈�N〉′

th, we can use the same third-order develop-
ment in Eq. (4.59) and insert the result of Eq. (4.62), giving

�tp � τc
〈�N〉′

i − 〈�N〉′
f

〈�N〉′
th

2 (1 − 〈�N〉′
i

〈�N〉′
f

)2
. (4.63)

Using the equivalent of Eq. (4.58),

〈�N〉′
i

〈�N〉′
f

= e

〈�N〉′
i

−〈�N〉′
f

〈�N〉′
th � 1 + 〈�N〉′

i − 〈�N〉′
f

〈�N〉′
th

(4.64)

for
〈�N〉′

i−〈�N〉′
f

〈�N〉′
th

� 1, we can deduce

�tp � 2τc〈�N〉′
th

〈�N〉′
i − 〈�N〉′

f

. (4.65)

As νRep 
 1
τ

, it follows from Eq. (4.57) that

〈�N〉′
i − 〈�N〉′

f � 〈�N〉′∞ − 〈�N〉′
f

τνRep
, (4.66)

and from 〈�N〉′
f � 〈�N〉′∞ we finally obtain

�tp ∝ νRep

〈�N〉′∞
. (4.67)

Thus, the pulse width will increase linearly with repetition rate for a constant
pump power, and it will decrease with increasing pump power, i.e. with increas-
ing 〈�N〉′∞. Using Eq. (4.60) and the relation

P̂ = 〈Ps〉
�tpνRep

(4.68)

we obtain the other scaling laws shown in Table 4.1.
As for high repetition rates, the average output power is constant; this regime

of operation is also often called quasi-continuous operation. Resulting from the
linear increase in pulse width, as well as the fact that with increasing repetition rate,
the pulse energy is distributed over an increasing number of pulses, the peak power
will strongly decrease with the inverse square of the repetition rate. For low rep-
etition rate operation, the continuous pumping will saturate the inversion and the
initial inversion becomes pump duration, i.e. repetition period, independent. There-
fore, every pulse has the maximum pulse energy given by the completely inverted
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Fig. 4.15 Evolution of the laser output parameters with repetition rate for a continuously-pumped
Q-switched laser [3]

population in the laser medium and the average output power simply increases with
repetition rate. However, it has to be noted here that this case is usually difficult to
achieve. In most lasers the fully inverted laser medium corresponds to such a high
pulse energy that the optical damage threshold of the coatings on some intracavity
components, such as the mirrors or the laser medium itself will be exceeded, result-
ing in the destruction of this component. The transition between the two repetition
frequency regimes is non-linear and makes a numerical solution of the rate equations
necessary. In summary, the dependence of the output parameters of a continuously-
pumped Q-switched Nd3+:YVO4 laser is shown in Fig. 4.15.

4.2 Basics of Mode Locking and Ultra-Short Pulses

As we investigated in the previous chapter, short laser pulses on the order of the
cavity lifetime τc, i.e. with a duration of several ns to µs, can be created with the
Q-switch technique. In a careful design the laser, these pulses may correspond to
a single longitudinal mode. If much shorter pulses are necessary, the longitudinal
mode structure of the laser needs to be exploited, as pulse width and laser spec-
trum are coupled by an uncertainty-like relation. To investigate this, we consider a
Gaussian laser pulse with an electric field amplitude

E(t) = E0e
−ξ t2eiω0t (4.69)

with a Gaussian parameter

ξ = a − ib. (4.70)

Thus, the laser pulse intensity I (t) ∝ |E(t)|2 will be

I (t) = I0e
−4 ln 2( t

τp
)2

, (4.71)
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Fig. 4.16 Electric field of a
chirped Gaussian pulse

where, the pulse width τp is given by

τp =
√

2 ln 2

a
. (4.72)

We can interpret a = �(ξ) as being connected to the pulse width, while b = �(ξ) is
connected to the chirp of the pulse, i.e. the time-dependent frequency shift during
the pulse. This can be seen directly from Eq. (4.69), which results in a total pulse
phase given by

φ = ω0t + bt2, (4.73)

so that the actual laser frequency is given by

ω = ∂φ

∂t
= ω0 + 2bt. (4.74)

Therefore, b describes a linear chirp, i.e. a linearly increasing laser frequency during
the pulse, as shown in Fig. 4.16.

In order to derive the relation between laser pulse width and the spectral output,
the frequency spectrum of the electric field is calculated by its Fourier transform,

Ẽ(ω) = Ẽ0e
− (ω−ω0)

2

4ξ = Ẽ0e
− 1

4 (
a

a2 +b2 +i b

a2 +b2 )(ω−ω0)
2

. (4.75)

Therefore, the spectral intensity distribution Ĩ (ω) ∝ |Ẽ(ω)|2 is given by

Ĩ (ω) = Ĩ0e
− 1

2
a

a2 +b2 (ω−ω0)
2 = Ĩ0e

−4 ln 2(
ω−ω0

2π�νp
)2

. (4.76)

Thus, the pulse bandwidth results in

�νp =
√

2 ln 2

π

√
a

(
1 +
(
b

a

)2)
, (4.77)

and the time-bandwidth product is given by

τp�νp = 2 ln 2

π

√
1 +
(
b

a

)2

≈ 0.44

√
1 +
(
b

a

)2

. (4.78)
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For a Gaussian pulse without chirp this product will be given by τp�fp = 0.44 and
the pulse is thus (Fourier) transform limited. This shows that for the generation of
ultra-short pulses laser media with broad gain spectra are necessary.

4.2.1 Active Mode Locking

In this section we derive how ultra-short pulses can be obtained by mode-locking
of a laser, i.e. by generating a multi-longitudinal mode emission in which all the
longitudinal modes are coupled in phase. This can be obtained by use of an intra-
cavity frequency modulator such as an acousto- or electro-optic modulator, which
induces a frequency shift on to the laser signal that corresponds exactly to the free-
spectral range, and thus, the mode spacing of the cavity. Let us assume that the laser
starts oscillating on the strongest line first, corresponding to a longitudinal mode
index q0. Then, after passing through the modulator, a fraction of the laser power
will be shifted towards the modes q0 ± 1, that can be seen as sidebands to the main
mode and which are also amplified, as the gain spectrum is assumed to be broad. As
this shifted fraction usually has a much higher intensity than the spontaneous emis-
sion at that wavelength, the laser medium will predominantly amplify these shifted
photons, which have a unique phase relation to the central mode q0 with a phase
difference φ. The amplified sidebands get shifted again, locking the modes q0 ± 2
to the central mode q0 in phase with a phase difference 2φ. This scheme will go
on until the shifted modes are outside of the amplification spectrum, as shown in
Fig. 4.17. Therefore, an inhomogeneously broadened laser medium has to be used
that provides gain for all the different longitudinal modes within its amplification
spectrum.

To see that these locked modes correspond to a train of short pulses, we inves-
tigate the electric field of the laser emission [4]. For simplicity we assume that the
locked modes are symmetrically distributed around the central mode q0 and that
they all have the same amplitude E0. The electric field is then directly given by

E(t) = E0

m∑
k=−m

e2πi[(ν0 +k�νFSR)t+kφ]. (4.79)

As the cavity of length L is usually long compared with the length of the laser
medium, the free spectral range can be approximated by

νFSR = c

2L
. (4.80)

The summation in Eq. (4.79) can be performed analytically, resulting in an electric
field

E(t) = A(t)e2πiν0t , (4.81)

with a time dependent amplitude

A(t) = E0
sin [(2m + 1) 2π�νFSRt+φ

2 ]
sin [ 2π�νFSRt+φ

2 ] . (4.82)
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Fig. 4.17 Build-up of the
longitudinal mode spectrum
in a mode-locked laser after
the laser emission started on
the maximum gain line

Fig. 4.18 Temporal pulse
shape of phase-locked modes
for two different values of m

The laser output intensity I (t) ∝ A2(t) will therefore show an amplitude enve-
lope on the high-frequency carrier oscillation ν0 that corresponds to a train of pulses
of width τp and a repetition period TRep, that can be seen in Fig. 4.18. The form of
Eq. (4.82) is well known from a multi-slit interference experiment, in which the
waves of the evenly spaced slits interfere after a certain distance on a screen. Here,
this interference is not an interference in space, but in time, and the different slits
correspond to the longitudinal modes that have a evenly distributed phase. The pulse
maxima then occur at the times when the denominator in Eq. (4.82) is zero, which
corresponds to a repetition rate

TRep = 1

�νFSR
= 2L

c
, (4.83)
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and which is just the round-trip time of the laser cavity. Therefore, this pulse train
can also be seen as a single pulse with pulse width τp that circulates in the cavity.
This pulse width can also be derived from Eq. (4.82), resulting in [4]

τp � 1

(2m + 1)�νFSR
, (4.84)

which will approach the inverse gain bandwidth of the laser medium under strong
pumping, as then all modes may oscillate. As a result of the temporal interference
of the different modes, the pulse peak power will be (2m + 1)2 times higher than
for a laser in which the same modes are oscillating in an uncorrelated manner. Thus,
mode-locking allows not only the generation of very short pulses, but also the gen-
eration of extremely high peak powers in the output beam.

An equivalent way of looking at the generation of mode-locked pulses is the case
in which a loss is used as the frequency modulator in the cavity near to one of the
cavity mirrors. This modulator is then driven by an external signal that causes a loss
modulation with a frequency identical to the longitudinal mode spacing�νFSR. This
amplitude modulation now causes the creation of sidebands, as discussed previously.
An alternative view of this effect is the following: as the modulator causes loss
minima at a frequency corresponding to the round-trip time of the resonator, the
temporal evolution of the laser field that will have lowest loss is a short pulse that
circulates inside the resonator and passes the modulator just at those times when
the losses are low. The Fourier spectrum of this pulse can of-course only consist
of several longitudinal cavity modes, and in order to create the pulse-like temporal
evolution, they have to be locked in phase as shown in Eq. (4.79).

The first mode-locking of a laser used this type of loss modulation in a He-Ne
laser in 1964. Pulses generated with this mode-locking technique usually are on the
order of several ps.

4.2.2 Passive Mode Locking

As in passive Q-switching, the use of a saturable absorber in a laser cavity can also
cause mode-locking. Therefore, the saturable absorber is placed just in front of the
cavity end mirror. When the laser medium now is pumped the laser flux will start
spiking as soon as the threshold of the cavity, including the absorber, is reached.
This first intensity spike, which will circulate in the cavity with the round-trip time,
saturates the absorber more than all other fluctuations of the growing laser field. It
will, therefore, see the lowest round-trip loss and has thus maximum amplification
and growth rate. As soon as this growing pulse dominates the inversion reduction,
the laser will oscillate on a pulse train, which can again be described by Eq. (4.79).
However, this point of operation, at which the saturable absorber has enough ab-
sorption to favor only one strong noise spike, can be difficult to achieve.

In a temporal scheme the saturable absorber will shorten the rise time of an inci-
dent pulse owing to the increasing transmission with increasing pulse intensity. The
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amplifying laser medium itself creates the opposite process: as a result of the extrac-
tion of energy, and thus the reduction in gain, it will shorten the pulse by shortening
the fall time of the pulse. However, in most solid-state lasers this effect is low com-
pared with the shortening on the leading edge caused by the saturable absorber, as
the upper-state lifetime is usually several orders of magnitude longer than the cavity
round-trip time. The only case where both effects are dominant, is in the case of dye
lasers, which show excitation lifetimes of the order of the cavity round-trip time.
Therefore, ultra-short pulses on the fs-scale were mostly generated with dye lasers
in the past.

Using special semiconductor quantum-well structures as saturable absorber and
cavity mirror in one (SESAM), which exhibit a strong non-linear response, ultra-
short pulses can also created with solid-state lasers. In this case, often a second
mode-locking technique is used at the same time, to shorten the pulses further: this
is Kerr-lens mode-locking.

Kerr-Lens Mode-Locking

A special way of passive mode-locking is Kerr-lens mode-locking (KLM), in which
the self-focusing of an intense laser beam inside an optical medium is used. This
effect is based on the Kerr-effect, the increase of the refractive index with increasing
intensity n(I) = n0 + n2I , and has a response time on the order of fs. In Kerr-lens
mode-locking the laser medium is often used as the Kerr medium and an aperture is
introduced into the cavity, either by insertion of a solid aperture or by a soft aperture,
i.e. by the pumped volume. Assuming a parabolic intensity distribution inside the
Kerr medium and a focal length much longer than the Kerr medium itself, it can be
shown that the focal length of the Kerr lens is approximatively given by [3]

fKerr ≈ w2

4n2I0L
, (4.85)

where, I0 is the laser peak intensity, L the length of the Kerr medium and w the
beam radius inside the Kerr medium. For a Ti:sapphire laser rod of L = 4 mm (n2 =
3.45 × 10−16 cm2

W ) and a 200 kW peak power beam focused to w = 50 µm, i.e. a
peak intensity of

I0 = P

πw2
= 2.5

GW

cm2
, (4.86)

we obtain a focal length of fKerr ≈ 18 cm.
A Gaussian intensity distribution, e.g., thus exhibits a higher refractive index in

its center compared with the wings of the radial intensity distribution. Hence, the
Kerr medium acts as a positive lens and will focus the beam. Owing to the short
response time, the strength of this focusing will be time dependent and only the
temporally inner part of a laser pulse will see low losses at the aperture, as shown
in Fig. 4.19. The leading and falling edge will be cut off, as their intensity is not
sufficient to focus the beam through the aperture with low losses. In the case of a
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Fig. 4.19 Kerr-lens mode-locking

soft aperture, the focusing will increase the overlap between the beam and the pump
volume, thus creating a higher gain for the high-intensity parts of the pulse, which
also shortens the pulse. Using KLM in combination with a SESAM, it was possible
to generate pulses of ∼ 6.5 fs from a Ti:sapphire laser, a solid-state laser with a large
gain bandwidth.

4.2.3 Pulse Compression of Ultra-Short Pulses

As already mentioned in Sect. 4.2, short pulses can exhibit a chirp. To understand
how this chirp can build-up and how pulses can be compressed by reducing this
chirp will be discussed in the following section. Therefore, we investigate the evo-
lution of an incident laser pulse with an electric field amplitude of

Ei(t) = E0e
−ξ0t

2
eiω0t (4.87)

propagating in a dispersive medium, where, the Gaussian parameter of the incident
pulse is given by

ξ0 = a0 − ib0. (4.88)

The spectrum of this pulse is then expressed by

Ẽi(ω) = Ẽ0e
− (ω−ω0)

2

4ξ0 . (4.89)

In a dispersive medium, the propagation constant β(ω) will show a non-linear de-
pendence on ω, and can thus be approximated around the center frequency ω0 by

β(ω) ≈ β0 + β1(ω − ω0) + β2(ω − ω0)
2. (4.90)

Thus, the spectrum of the pulse will change during the propagation according to

Ẽ(ω, z) = Ẽi(ω)e
−iβ(ω)z. (4.91)

Using the Fourier transformation, this corresponds to a time dependence of the elec-
tric field of

E(t, z) = E0e
i(ω0t−β0z)e−ξ(z)(t−β1z)

2
, (4.92)
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where, ξ(z) is given by

1

ξ(z)
= 1

ξ0
+ 2iβ2z. (4.93)

From Eq. (4.92) it can be seen that β0 causes a propagation-distance-dependent
phase delay as for any plane wave in a medium with an effective refractive index
neff > 1, which can be expressed in terms of the phase velocity

vph = ω0

β0
. (4.94)

In an optical medium with refractive index n, the phase velocity is given by vph = c
n

and β0 = kz corresponds to the wave vector component in the propagation direc-
tion. However, in optical waveguides such as optical fibers the dispersion and index
properties of the medium are changed resulting from the wave-guiding effect.

The influence of β1 affects the Gaussian envelope of the electric field by intro-
ducing a delay on the envelope, which now propagates with the so-called group
velocity

vg =
(
∂β

∂ω

)−1∣∣∣∣
ω=ω0

= 1

β1
, (4.95)

and the effect of β2 is a change in the Gaussian parameter ξ(z) with propagation
distance, thus changing the shape of the pulse envelope, i.e. its pulse width and the
chirp. As β2 can be expressed as

β2 =
[
∂

∂ω

(
1

vg(ω)

)]
ω=ω0

, (4.96)

it is also called group-velocity dispersion. This influence on the pulse can be de-
rived from Eq. (4.93), from which the real and imaginary part of the Gaussian pa-
rameter ξ(z) = a(z) − ib(z) can be deduced as

a(z) = a0

(1 + 2β2b0z)2 + (2β2a0z)2
, (4.97)

b(z) = b0 + 2β2z(a
2
0 + b2

0)

(1 + 2β2b0z)2 + (2β2a0z)2
. (4.98)

From Eqs. (4.97), (4.97), we can deduce why ultra-short pulses usually exhibit a
chirp. Assuming a chirp-free Gaussian pulse, i.e. b0 = 0, we find that by propagating
this pulse in a dispersive medium, e.g. an output coupler mirror substate, vacuum
windows or an optical fiber with non-zero group-velocity dispersion, it will exhibit
an increasing chirp, which after a propagation length z in this medium is given by

b(z) = 2β2za
2
0

1 + (2β2a0z)2
= 1

2β2

z

z2 + (
τ 2
p

4β2 ln 2 )
2
. (4.99)

This chirp build-up is shown in Fig. 4.20, where, the reference length z0 is given by

z0 = τ 2
p

4β2 ln 2
. (4.100)
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Fig. 4.20 Increasing chirp of
an unchirped pulse
propagating in a medium with
group-velocity dispersion

Fig. 4.21 Increasing pulse
width of an unchirped pulse
propagating in a medium with
group-velocity dispersion

The pulse width then results in

τp(z) = τp(0)

√
1 +
(
z

z0

)2

, (4.101)

a relation equivalent to the evolution of a the radial width of a Gaussian beam, see
Eq. (3.44). Thus the incident pulse width will increase with propagation distance, as
shown in Fig. 4.21.

However, as can also be seen from Eqs. (4.97), (4.98), a chirped pulse with in-
cident chirp b0  = 0 can be compressed in pulse width if a medium with proper
group-velocity dispersion is used. The optimum group-velocity dispersion interac-
tion length is given by

2β2Lopt = − b0

a2
0 + b2

0

, (4.102)

which results in a maximum of a(z) at b(z) = 0, and therefore, in a minumum pulse
width

τp,min = τp(0)√
1 + (

b0
a0
)2
. (4.103)
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Fig. 4.22 Pulse compression
using a pair of diffraction
gratings

This corresponds to a pulse from which all chirp has been removed and transformed
into its short pulse width. A large chirp will thus yield a high pulse width compres-
sion ratio with a final pulse that is Fourier transform limited when all chirp has been
removed, as can be seen by inserting this result into Eq. (4.78).

Pulse Compression Methods

Depending on the actual chirp of the pulse, a medium or optical system with the
proper group-velocity dispersion, is necessary in order to compress the pulse. In-
stead of using a massive medium with its natural dispersion, optical systems con-
sisting of gratings or prisms are mostly used in these laser designs.

The grating design uses two diffraction gratings as shown in Fig. 4.22. Owing
to the wavelength dependent diffraction angle, the internal optical path length of
this grating system differs for different wavelengths, and will consequently create
the necessary wavelength-dependent time delay to compress the pulse. Use of this
technique enables large dispersion effects can be generated to compress pulses with
strong chirps. The path length �L between the common incident point on the first
grating and the point on the common exit plane of the grating compressor E, is
given by

�L = l1 + l2 = d

cosβ
+ d

cosβ
sinγ = d

cosβ
(1 + sinγ ). (4.104)

Using the grating equation

λ

g
= sinα − sinβ, (4.105)

in which g is the grating period, the spatial dispersion is given by

∂�L

∂λ
= ∂�L

∂β

∂β

∂λ
= λd

g2 cos3 β
= λd

g2(1 − (sinα − λ
g
)2)

3
2

. (4.106)

Therefore, the internal path length of the grating compressor will increase with
wavelength, and will thus, create a larger time delay between the entry and exit
planes for larger wavelengths. Hence, it will compress a pulse with a positive chirp.



102 4 Generation of Short and Ultra-Short Pulses

Fig. 4.23 Prism dispersion
compensator for intracavity
applications

Fig. 4.24 Setup of a
chirped-pulse amplifier, using
gratings to stretch and
compress the pulse and a
prism pair for dispersion
compensation [3]

A second alternative, which is mostly used to introduce a small correction to the
cavity dispersion in a laser resonator for short-pulse mode-locking, is based on a
system of prisms, which again shows a wavelength-dependent optical path length.
In this case the prism material, as well as the geometry (prism angle γ ), can be
chosen so that the laser beam is incident on to the prism surfaces at Brewster’s
angle, for which the reflection losses are greatly reduced. The design in Fig. 4.23
also allows an easy insertion into an existing resonator, as the input and output
beams are colinear. The strength of the dispersion introduced by this system, is
lower than for a grating compressor; however, this prism compressor can be used to
generate both signs of dispersion, i.e. either β2 < 0 or β2 > 0.

Chirped-Pulse Amplification

A main application of pulse compressors and its counterparts, pulse stretchers, is
found in chirped-pulse amplification. This technique, depicted in Fig. 4.24, allows
the generation of high-pulse-energy fs pulses. First, a standard fs mode-locked laser
oscillator is used to generate fs pulses at a repetition rate of around 80 MHz with
pulse energies on the order of some nJ. The oscillator pulses are then stretched in
pulse width by passing an anti-parallel grating pair including a 1 : 1 telescope, cre-
ating a strong chirp on the pulse. Consequently, the pulse width is increased, e.g. by
a factor of 3000 from 200 fs to 600 ps, decreasing enormously the pulse peak power.
This now allows a high amplification of the pulses to pulse energies of several mJ
without reaching the optical damage thresholds of the components in the amplifier.
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The amplifier setup shown in Fig. 4.24 is a regenerative amplifier. The input pulses
enter the amplifier by an intracavity polarizer. Then one pulse is selected by switch-
ing the Pockels cell to its half-wave voltage to rotate the polarisation of this pulse by
90◦. It now passes the second polarizer and gets reflected by the cavity end mirror.
At that time the Pockels cell is switched off. Thus the pulse keeps its polarisation
and resonates back and forth in the amplifier cavity, where it passes a Ti:sapphire
laser gain element twice for each round-trip.

In order to compensate for the internal cavity dispersion, a prism pair is also
inserted into the amplifier cavity. When the pulse has made sufficient round-trips to
reach its maximum pulse energy, the Pockels cell is switched to its half-wave voltage
again while the pulse travels on the prism side of the cavity. Thus, when it comes
back to the Pockels cell, it will be rotated by 90◦ and leaves the cavity by the second
polarizer. Finally, the pulse chirp is removed in a grating compressor, reducing the
pulse width back to the fs scale of the input pulse. Usually, the final pulse width
is a bit longer than the original pulse width of the input pulse as a result of some
additional higher-order chirp accumulated during the amplification steps. Whilst
the damage threshold of the optical components in the stretched part of the setup
are usually high enough, a critical point is the final grating of the compressor, at
which the high-energy pulse has been compressed to its short pulse width, resulting
in extreme peak powers. In order to prevent damage on that gratings, the beam
diameter has to be strongly increased, making large-aperture gratings necessary.

References

1. A.E. Siegman, Lasers (University Science Books, Sausalito, 1986)
2. L.M. Frantz, J.S. Nodvik, J. Appl. Phys. 34, 2346 (1963)
3. W. Koechner, Solid-State Laser Engineering (Springer, Berlin, 1999)
4. F.K. Kneubühl, M.W. Sigrist, Laser (Teubner, Stuttgart, 1999)



Chapter 5
Laser Examples and Their Applications

In this chapter we will investigate different types of practical lasers that are of-
ten used in the laboratory. Owing to the recent advances in high-power and high-
brightness laser diodes, diode-pumped solid-state lasers are the most important
lasers today and into the future. Therefore, the lasers described below all belong
to the solid-state laser category, with the exception of the HeNe laser, a gas laser,
which is a well known device still widely used as precision alignment laser in the
laboratory. Another important gas laser is the CO2 laser, which uses a molecular
transition excited via electronically excited N2 molecules, using a He buffer gas for
cooling and reduction of the lifetime of the lower laser level. This laser is the most
efficient gas laser with electrical-to-optical efficiencies of up to 30 %.

Other laser types are, e.g. dye lasers, in which a dye solution is used as the active
medium. These lasers were often used to provide wide-band tunable sources from
the ultra-violet to the infrared spectral region or to generate ultra-short pulses, as the
missing long-range order in the liquid laser medium results in broad transitions.

Also lasers without an active medium exist, the free-electron lasers. In these de-
vices, a relativistic electron beam is sent into an alternating-pole spatially-periodic
magnetic field, which forces the electrons on to an undulating path. As these elec-
trons are accelerated charges, they emit a synchrotron radiation with a wavelength
that depends on the period of the magnets, the relativistic contraction of this pe-
riod in the frame of the electron beam and the relativistic Doppler shift back to the
laboratory frame.

5.1 Gas Lasers: The Helium-Neon-Laser

The HeNe laser was the first cw laser and also the first gas laser realized. While at
that time the strongest transition at 1.15 µm was used, the HeNe lasers today are
mainly operated on the visible lines, with the mostly used line at 632.8 nm in the
red spectrum. Other important lines are the green 543.3 nm, the yellow 594.1 nm
and the orange 611.8 nm lines. Other infrared lines are the near-infrared lines at
1152.3 nm and 1523.1 nm as well as the 3391.3 nm mid-infrared line.
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Fig. 5.1 Energy scheme of
the HeNe laser including the
main transitions

In the HeNe laser [1] the laser active medium is the neon gas. The addition of
helium is only used for the pumping process. It also contributes to the cooling of
the gas mixture due to the high thermal conductivity of He. Usually, a mixture of
about 0.1 mbar Ne in 1 mbar He is used. As can be seen in Fig. 5.1, the pumping
of the Ne atoms occurs in an electric discharge in a two-stage process: excitation
of He and energy transfer to Ne. First the He atoms are excited by collisions with
the electrons in the discharge, bringing them into the metastable levels 2 3S and
2 1S, with lifetimes of 0.1 ms and 5 µs, respectively. Then, owing to the nearly
coincidence between these levels and the 2s and 3s levels of Ne, the stored energy
will be transferred to the Ne atoms in atomic collisions between He and Ne. As
the lifetime of the 2s and 3s levels of Ne is on the order of 100 ns, a population
inversion results with respect to the 2p and 3p levels, which exhibit a lifetime of
only around 10 ns. As a result of the selection rules of electric dipole transitions the
Ne atoms can only emit on lines connecting a s and a p state, resulting in the above-
mentioned laser transitions. From the p states the Ne ions quickly relax to the 1s
state by fluorescence emission. As this state is also metastable, i.e. long lived, the Ne
ions would be re-excited into the 2p state by electron collisions, where they would
cause a re-absorption on the laser lines terminating in this state. To avoid a strong
population of this 1s state, small bore discharge tubes are used to cause a decay of
this state back to the ground state by collisions with the wall of the laser tube.

Resulting from the dependence of the emission cross-section

σe(νs) ∝ g(νs)

ν2
s

(5.1)
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Fig. 5.2 Cut through a typical HeNe laser tube. Here, the resonator mirrors are bonded to the glass
tube directly in “hardseal” technology

on the laser frequency νs , as shown in Eq. (1.74), and the dependence of the domi-
nating Doppler broadening line form factor from Eq. (1.84), given by

g(νs) ∝ 1

νs
, (5.2)

the maximum gain of the HeNe laser will be proportional to λ3
s and will thus occur

on the mid-infrared transition at 3391.3 nm. Therefore, this line will usually show
the lowest pump threshold and the HeNe laser would only emit at this line. In order
to avoid this effect and to operate the laser on the other lines, special cavity mirrors
are used that do not reflect the mid-infrared radiation, thus greatly increasing the
threshold power at this line well above the thresholds of the visible lines. A second
possibility is to insert a quartz-glass plate, preferentially at Brewster’s angle, into the
cavity. This strongly increases the intra-cavity losses on the mid-infrared line owing
to the internal infrared absorption of the glass whilst nearly no losses are added for
the visible-to-near-infrared transitions. Additionally, the laser output will be linearly
polarized, as only the s-polarization of the cavity mode will be transmitted through
the Brewster plate without Fresnel reflection loss.

The experimental construction scheme of a HeNe laser is shown in Fig. 5.2. The
geometry of the capillary has to be chosen in a way so that the product of total gas
pressure p and capillary bore diameter d is about pd � 4.8–5.3 mm mbar, whilst
the optimum mixture between He and Ne depends on the emission line. For the
632.8 nm line, a partial pressure ratio of He : Ne = 5 : 1 is used, whereas an optimum
ratio of He : Ne = 9 : 1 was found for the 1152.3 nm line. A third parameter is
the discharge current density, which is especially important for the 632.8 nm and
3391.3 nm lines.

The main applications of HeNe lasers today are as alignment sources with high
beam quality, caused by the low beam distortions generated in a gas laser, and as
highly coherent laser sources in holography, interferometry and ring-laser gyro-
scopes. As a result of the fact that the laser transitions occur between very high-
energetic levels, as can be seen in Fig. 5.1, the quantum efficiency of the HeNe laser
is around 10 %. However, the total electrical-to-optical efficiency of the HeNe laser
is very low, usually around 0.1 %, which is caused by the low efficiency excitation
mechanism within the plasma discharge [1].
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Fig. 5.3 Schematic setup of
a Czochralski growth
apparatus [12]

5.2 Solid-State Lasers

The most important lasers today are solid-state lasers, in which ionic impurities
doped into transparent crystals or glasses act as the laser active species. In general,
two main types of hosts and two main types of active ions can be distinguished:
crystals and glasses on the one side, and rare-earth ions and transition-metal ions on
the other side.

In rare-earth ions, the laser active electronic states are located in the inner 4f
shell of the ion. Therefore, they are shielded to a great extent from the crystal field
by the outer shell electrons (5s2 and 5p6 electrons). Thus, the crystal field and the
coupling of the ionic states to the phonons of the host lattice is low, resulting in
usually narrow line widths for the optical transitions. In the spectra of the rare-earth
ions in crystalline media, the different lines of the transitions between the various
Stark levels are clearly visible as already shown in Fig. 2.6.

If these rare-earth ions are doped into a glass matrix, the arguments concerning
the influence of the crystal field on to the transitions is still valid. However, the glass
is an amorphous solid and the geometric structure of the glass matrix, and thus the
crystal field varies locally, causing a spatially dependent line shift. This causes an
inhomogeneous broadening of the emission spectrum and results in a very broad
gain of these laser media. This is important to make broadly tuneable lasers, as well
as for the generation of ultra-short pulses.

In contrast to the rare-earth ions, the optically active electrons in transition-metal
ions are located in the outer shells of the ion and are thus fully affected by the crystal
field. They, therefore, show a very strong coupling to the lattice phonons in crystals,
which result in mixed electronic-vibronic states. Owing to this effect the widths of
the transition lines are also extremely broad, making e.g. the Ti:sapphire laser so
important for the generation of ultra-short pulses.

Crystal Growth Most of the laser crystals used today are grown by the Czochral-
ski method shown in Fig. 5.3. This technique uses a single-crystalline seed, which
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Fig. 5.4 Atomic structure of
the YAG crystal and the sites
of the Nd3+ ion in YAG [13]

is used to pull a large single crystal from a melt, consisting of a stoichiometric
composition of primary chemicals. In the case of the well-known laser host yttrium-
aluminum-garnet (YAG, Y3Al5O12), this is a mixture of yttrium oxide and alu-
minum oxide, to which a small amount of rare-earth oxide, e.g. neodymium oxide,
is added, determining the rare-earth dopant concentration of the final laser crystal.
The composition is melted in a crucible consisting of a metal of high melting point,
such as iridium, which is heated by induction from an external, water-cooled rf coil.
The crucible itself is embedded with thermally insulating pellets, such as zirconia.
A single crystalline seed is mounted on a rotating rod and brought into contact with
the melt. Then, this rotating rod is slowly pulled with a speed of some mm per hour,
causing the single crystal to grow. When the growth process is completed, the fin-
ished crystal is slowly cooled down to room temperature to anneal internal stress
that may have built up during growth.

5.2.1 The Nd3+-Laser

The neodymium laser is one of the mostly used lasers today, operating often on
a true four-level transition with an emission wavelength of 1064 nm for Nd3+ in
YAG as the host crystal. This special host crystal is shown in Fig. 5.4. Where, the
Nd3+ ion replaces the Y3+ ion. However, owing to the larger ionic radius of Nd3+
compared with Y3+, only a small fraction of the Nd3+ ions are incorporated into the
crystal structure during growth, resulting in Nd3+ dopant concentrations of usually
0.1–1.2 %, as well as a doping gradient along the growth direction. This gradient is
caused by the increased concentration of the Nd3+ ions in the melt during growth,
resulting in an increase in Nd3+ dopant concentration in the crystal towards the end
of the growth process.

The energy level scheme of Nd3+ ions in different hosts is shown in Fig. 5.5.
The upper laser level lifetime in YAG is 250 µs. It is the 1064 nm transition, which
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Fig. 5.5 Energy scheme of the Nd3+ ion in various hosts and the main pump and laser transitions

shows the largest fluorescence, to which 60 % of all radiatively decaying ions in
the 4F3/2 manifold contribute to. The fluorescence corresponding to the quasi-three-
level transition around 900–950 nm is caused by 25 % of the decaying ions and the
second four-level transition at around 1.34 µm arises from a contribution of 14 % of
the total decay. The mid-infrared transitions around 2 µm are so weak that they are
not used for any practical laser. Owing to the relatively large emission cross section
of the 1064 nm transition compared with the 946 nm and the 1342 nm transition,
special care has to be taken whenever these two weaker transitions are to be used.
In this case, special cavity mirrors and laser media, which are anti-reflection coated
at 1064 nm have to be used in order to suppress any feedback on the 1064 nm line.
Otherwise, the laser would oscillate on this 1064 nm line, making emission on the
other lines impossible by fixing the upper level population to a value that does not
allow the threshold gain for the other transitions to be achieved.

The Nd3+ ion is either pumped by flashlamps or more recently by high-power
laser diodes, which can be directly designed to match the absorption spectrum of
the two most important pump transitions at around 808 nm and 875 nm. As a result
of this absorption-matched pumping laser-diode-pumped Nd3+ lasers show high
efficiencies 
40 %, whilst only a small part of the full emission spectrum of a
flashlamp will be absorbed by the Nd3+ ion, resulting in a total efficiency of usu-
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Fig. 5.6 Pump absorption coefficients for Nd3+ in different hosts. (Source: Northrop Grumman
Corporation, USA)

ally <1 % in flashlamp-pumped lasers. Therefore, flashlamp-pumped Nd3+ laser
crystals are often co-doped with Cr3+ ions, which show a large absorption for the
flashlamp emission spectrum. The energy absorbed by the Cr3+ ions is then trans-
ferred to the Nd3+ ions in a direct ion-ion energy transfer process. Diode pumping
at around 808 nm on the absorption lines shown in Fig. 5.6 is very popular and led to
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Fig. 5.7 Schematic of simple externally-triggered flashlamp circuits

a large production of laser diodes at this wavelength, which are therefore, relatively
cheap. Today laser diodes with high diode output powers are available, generating
up to 100 W out of a 200 µm pump delivery fiber.

Flashlamp-Pumped Nd3+ Lasers

In a flashlamp-pumped laser, a bank of capacitors is discharged into a flashlamp to
produce a high-energy pump pulse for the laser medium. In order to obtain a specific
pump pulse duration and pulse form, the electrical characteristics of a flashlamp and
the discharge circuit have to be taken into account. Usually, as shown in Fig. 5.7,
a charged capacitorC is connected to a flashlamp F via a series inductanceL, which
determines the discharge time constant

T = √
LC. (5.3)

The charging voltage is, however, too low to “ignite” the flashlamp itself in most
cases. Therefore, an external trigger wire is attached to the outside of the flashlamp
and a high voltage ignition pulse is applied to this wire to cause a slight ionization
of the gas contained in the flashlamp. Then, a small discharge channel is created
between the flashlamp electrodes and the main discharge will develop within some
10 µs by increasing the ionization and the diameter of the discharge, until it fills the
whole flashlamp tube. For short trigger pulses, the inductor L shows a high dynamic
resistance. Thus, the trigger pulse may also directly be connected to the high-voltage
side of the flashlamp after the inductor. The inductor then shields the capacitor from
the short high-voltage-trigger pulse and the fast rise in voltage across the flashlamp
causes breakdown of the gas in the flashlamp. A third possible trigger circuit uses
the inductor itself as a secondary of a transformer, and the trigger pulse is applied
to the primary. Thus, the trigger pulse will induce a high voltage in the secondary,
which adds to the voltage of the capacitor and causes breakdown of the flashlamp.

After the discharge has fully developed and fills the whole flashlamp tube, the
flashlamp shows a non-linear resistance and the voltage across the flashlamp U is
connected to its current I by [3]

U = K0
√
I , (5.4)
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Fig. 5.8 Schematic of a
standard RLC circuit

where, K0 is a parameter of the flashlamp, which is given by the manufacturer or
can be measured experimentally. It depends on the geometry of the flashlamp, i.e. its
arc length l and the inner tube diameter d , and the gas parameters as

K0 = k
l

d
. (5.5)

For 450 torr xenon-filled flashlamps, a value of k = 1.27 �
√

A is found. Including
the dependence on the gas pressure, the flashlamp constant can be described by

K0(P ) = K0(P0)

(
P

P0

) 1
5

(5.6)

for xenon-filled flashlamps. The reference pressure in this case is P0 = 450 torr. For
krypton, approximately the same flashlamp constant is found [3]. Thus, the electric
resistance of the flashlamp can be described by

RF = K0√
I

(5.7)

when the discharge has fully developed.
Another important parameter of a flashlamp is its explosion energy, which gives

the amount of electrical input energy that will cause catastrophic damage to the tube
wall. This damage is caused by the high temperature of the plasma and especially
the acoustic shock wave generated by the plasma, which itself heats up during the
pulse from 300 K to about 12000 K. The explosion energy is related to the surface
of the inner tube wall ld and the duration of the pulse tp by

EX = kXld
√
tp, (5.8)

where, kX is a parameter that depends on the gas filling and gas pressure. Using
the definition of the explosion energy the lamp life, i.e. the number of shots N a
flashlamp can usually be used at an electrical pulse energy per shot of E0, can be
derived empirically and is related to its single-shot explosion energy by

N ≈
(
EX

E0

)8.5

. (5.9)

Therefore, the lamps usually are operated well below their explosion energy, result-
ing in a nominal lifetime of 106–108 shots.

In the case of a constant load resistance R instead of a flashlamp, a standard
RLC circuit results as shown in Fig. 5.8. The differential equation governing the
discharge evolution of the capacitor in this case is given by
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L
∂2Q

∂t2
+ R

∂Q

∂t
+ Q

C
= 0, (5.10)

where, Q is the charge of the capacitor C and the initial condition is Q(0) = CU0
with ∂Q

∂t
(0) = 0. The solution of this equation can be easily found, resulting in a

voltage U(t) across the resistor R of

U(t) = U0
γ

ω
e−γ t
(
eiωt − e−iωt

)
, (5.11)

with

γ = R

2L
(5.12)

ω =
√

1

LC
− γ 2. (5.13)

The circuit thus shows three different cases of discharge behaviour, depending on
the actual values of the components:

• Underdamped discharge. Here

R < 2

√
L

C
, (5.14)

resulting in a real value of ω. Thus, the current will show an oscillatory behaviour,
which is exponentially damped due to the energy dissipation in the resistance R.

• Overdamped discharge. Here

R > 2

√
L

C
, (5.15)

resulting in an imaginary value of ω. Therefore, no oscillatory current will build
up. The high resistance results in a low peak current and it will take a long time
until the capacitor is fully discharged. Both of these operation regimes are usually
not desired in flashlamp circuits for lasers. The oscillatory discharge causes an
erosion of the flashlamp electrodes, which are designed for a specific polarity,
and the overdamped discharge results in low pump peak intensities.

• Critically damped discharge. In this special case

R = 2

√
L

C
, (5.16)

i.e. ω = 0, the current will not show an oscillatory behaviour and the stored en-
ergy is delivered to the load in the shortest possible time without oscillation. The
absolute values of the current and the voltage follow the relation [3]

I (t) = Ipeak
t

T
e− t

T
+1, (5.17)

U(t) = 2U0
t

T
e− t

T , (5.18)

with Ipeak = 2U0
eR

being the peak discharge current and T = √
LC being the time

constant of the LC circuit. The current pulse form and the corresponding capaci-
tor voltage is shown in Fig. 5.9.
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Fig. 5.9 Characteristic
current and voltage evolution
of a critically-damped
discharge circuit

However, in a flashlamp circuit the flashlamp shows a non-linear, current-
dependent resistance [3]. Using the definition of the wave resistance

Z0 =
√
L

C
, (5.19)

the damping factor γ for the flashlamp is given by

γ = K0

T
√
U0Z0

, (5.20)

and thus, depends on the starting voltage of the capacitor. The critically damped case
usually employed in a laser system corresponds to γ = 0.8T −1, for which a pulse
width of tp = 3T can be deduced, defined as the time between the 10 % points of
the current pulse, and corresponding to approximately 97 % of the total discharge
energy delivered to the flashlamp. Using the relation of the stored energy E0 in the
capacitor,

E0 = 1

2
CU2

0 , (5.21)

the necessary capacity is found from (5.20) as

C3 = 2γ 4T 4

9

E0t
2
p

K4
0

, (5.22)

resulting for γ = 0.8T −1 in

C3 = 0.091
E0t

2
p

K4
0

. (5.23)

Hence, the necessary inductance is

L = t2p

9C
. (5.24)

It has to be noted that this calculation gives the design for a critically-damped circuit
at a certain lamp energy E0, and therefore, for a certain capacitor voltage U0. When
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Fig. 5.10 Characteristic
current and voltage evolution
of an inductance-free
discharge circuit

the capacitor is charged to a higher voltage, the system is no longer critically damped
and discharge oscillations will occur. For this critically-damped case, it has been
found empirically [3] that the explosion energy of a xenon-filled flashlamp can be
described by,

EX = 1.2 × 104 J cm−2 s−1/2ld
√
tp, (5.25)

i.e. a parameter kX = 1.2 × 104 J cm−2 s−1/2.
In some cases, especially for extremely compact lasers and circuits where induc-

tors are not used, then this circuit corresponds to the completely overdamped case.
Then, by taking the non-linear resistance of the flashlamp into account, Eq. (5.10)
becomes

K0

√
−∂Q

∂t
+ Q

C
= 0, (5.26)

where, the current was taken as I = − ∂Q
∂t

. We define the effective time constant of
the discharge by

τeff = K2
0C

U0
, (5.27)

which depends on the charging voltage U0 of the capacitor. Then, we obtain for the
capacitor voltage U(t) and the circuit current I (t)

U(t) = U0
t
τeff

+ 1
, (5.28)

I (t) = I0

( t
τeff

+ 1)2
, (5.29)

with a peak current of

I0 = U2
0

K2
0

. (5.30)

The characteristic pulse form is shown in Fig. 5.10. The energy delivered to the
flashlamp during the time τeff is given by
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Fig. 5.11 Schematic of a transmission-line flashlamp circuit for rectangular pulses

E(τeff ) =
∫ τeff

0
U(t)I (t)dt = 3

4
E0. (5.31)

After a time of 2τeff , ∼89 % of the total energy has been delivered to the flashlamp.
Often, a more rectangular pulse shape is required, especially in free-running

lasers, which should emit a rectangular laser pulse. In this case, the total capac-
ity Ctot and the total inductance Ltot have to be devided as shown in Fig. 5.11, to
form a transmission line [3]. Each mesh of this transmission line consists of an LC
circuit with Li = Ltot

n
and Ci = Ctot

n
, with n being the number of meshes within the

transmission line. The characteristic impedance of the transmission line,

Z =
√
Ltot

Ctot
, (5.32)

is then chosen to match the load resistance of the flashlampR(I) = Z at the requisite
current. It is convenient to define the pulse width t∗

p in this case, as the time between
the 70 % points of the current pulse, resulting in

t∗
p = 2

√
LtotCtot = 2T , (5.33)

from which the necessary total capacity

Ctot = t∗
p

2Z
(5.34)

and the inductance

Ltot = t∗
pZ

2
(5.35)

can directly be calculated. The peak current of the discharge is then given by

Ipeak = U0

2Z
. (5.36)

Thus, the charging voltage of the transmission line needs to be set in order to achieve
the impedance matching between the transmission line and the current-dependent
resistance of the flashlamp. The rise time of the pulse measured between the 10 %
and the 80 % point decreases with the number of meshes n as

t∗
r = t∗

p

2n
. (5.37)
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Fig. 5.12 Schematic setup of
a fiber-coupled
laser-diode-pumped
Nd3+ :YVO4 laser [3]

A high number of meshes results in a more and more rectangular pulse. The neces-
sary total capacity can be derived from (5.21), (5.33) and (5.36) and results in

C3
tot = 1

8

E0t
∗2
p

K4
0

. (5.38)

Laser-Diode-Pumped Nd3+ Lasers

A Nd3+ laser, pumped by fiber-coupled laser diodes, is shown in Fig. 5.12 as an
example of a longitudinally pumped Nd3+:YVO4 medium. The cavity is folded by
the use of two dichroic mirrors, which are highly reflecting under the chosen angle
of incidence for the laser radiation, whilst being highly transmissive for the diode
pump beam. The pump output of the delivery fiber is first collimated by a lens and
then focused into the crystal with an appropriate focal length in order to get a pump
spot that is well matched to the fundamental mode distribution of the cavity inside
the laser crystal. The fibers used for high-power pumping are usually multi-mode
fibers. Thus, the pump beam propagation can be described by standard geometrical
optics. The two main important parameters of the fiber, are its core diameter d and
its numerical aperture NA, which is determined by the refractive-index difference
in a step-index fiber as

NA =
√
n2

core − n2
cladding. (5.39)

The numerical aperture also describes the half-angle θf of the radiation emitted by
the fiber, given by

NA = sin θf . (5.40)

Usually, the pump optics consist of a two-lens telescope, where, the first lens colli-
mates the beam emitted by the fiber, and the second lens refocuses the beam to form
the pump spot in the crystal. When we denote the magnification

M = 2rp
d

(5.41)
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of the telescope as the ratio between pump-spot diameter to fiber core diameter, the
internal angle of the pump radiation in the crystal can be described by

θi = arcsin

(
1

n
sin

[
arcsin NA

M

])
≈ NA

nM
, (5.42)

which can be approximated in most cases for small values of the NA, where, n is
the refractive index of the laser crystal. Thus, especially when long laser media are
used, the pump beam inside the crystal is no longer a cylindric volume. To describe
the laser behaviour in this case, especially the threshold pump power, we have to
define an effective pump beam radius wp,eff and thus, an effective pump beam area
Aeff . To model the laser output power, the already known linear relation with respect
to pump power given by

Pout = ηslope(Pp − Pth) (5.43)

is used, with the threshold pump power

Pth = I
p
satAeff

ηabs

(
lnG + σa(λs)〈N〉L) (5.44)

and the slope efficiency

ηslope = ηmode
λp

λs

− ln (1 − TOC)

2 lnG
ηabs, (5.45)

where, TOC = 1 − ROC is the output coupler transmission,

ηabs = 1 − e−αpL (5.46)

the fraction of absorbed pump power, αp the pump absorption coefficient, 〈N〉 the
average dopant ion density, Ipsat the pump saturation intensity, G the single-pass
gain, and A = πw2

eff the effective pump beam area. As pump and laser beam often
do not overlap exactly, a mode fill efficiency ηmode is introduced into the slope ef-
ficiency. To find a description for the effective pump beam radius, we have to take
into account the fact that the beam radius will change axially as a result of focusing
and that the pump intensity will, in addition, change owing to the absorption along
the crystal. The axial evolution of the real pump beam radius can be described by

wp(z) = rp

√
1 +
(
z − z0

rp
tan θi

)2

, (5.47)

where, rp denotes the pump beam focal spot radius inside the crystal and z0 the
position of the focus. As the local pump efficiency depends on the local pump in-
tensity, the effective pump beam radius can be described by the absorption-averaged
beam radius along the crystal

wp,eff =
∫ L

0 wp(z)e
−αpzdz∫ L

0 e−αpzdz
. (5.48)

Using these equations, the behaviour of a longitudinally-diode-pumped solid-state
laser can be calculated in a simple way to a good approximation. In order to de-
termine the optimum position of the focus, the minimum of wp,eff with respect to
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z0 has to be found. However, as Eq. (5.48) cannot be calculated analytically, this
can only be solved numerically. Therefore, another possibility can be investigated,
leading to an analytical solution: As the threshold depends on the square of the
pump beam radius, another effective pump beam radius w′

p,eff can be defined, the
quadratic effective pump beam radius

w′
p,eff =

√√√√
∫ L

0 w2
p(z)e

−αpzdz∫ L
0 e−αpzdz

. (5.49)

As there is no root in the integral expression, the integrals can both be calculated
analytically, resulting in

w′
p,eff =

√√√√
r2
p +
[
(z0αp − 1)2 + 1

α2
p

−
L2 − 2Lz0 + 2 L

αp

eαpL − 1

]
tan2 θi . (5.50)

The minimum of this expression with respect to z0 can be found easily. As the
minimum of w′

p,eff coincides with the minimum of w′2
p,eff , we use

∂w′2
p,eff

∂z0
= 0 (5.51)

to find the minimum quadratic effective pump spot radius. This yields an optimum
focus position of

z0,opt = 1

αp
− 1 − ηabs

ηabs
L, (5.52)

which approximately minimizes the threshold pump power. Thus, the approximate
optimum focus position can be directly calculated from the laser medium param-
eters. It is surprisingly independent of the divergence angle θi and the pump spot
diameter rp .

A second pumping geometry especially suited for high power lasers or amplifier
heads is transverse or side pumping, in which the laser diodes are aligned along
the side of a laser rod. The pump radiation is then absorbed in a single transverse
passage through the rod. This is of course, only possible and efficient for laser media
which show a pump absorption length smaller than the rod diameter. This may be
achieved using high-spectral-brightness laser diodes pumping the Nd3+ ion on its
peak absorption, which allows this side-pumping. A sectional view of such a pump
arrangement is shown in Fig. 5.13. A big challenge in this layout is the construction
of the pump chamber and the complex water flow between the different diode heat
sinks and the central flow tube around the laser crystal. As a result of the fact that the
diode heat sinks are usually connected electrically in series, they exhibit a potential
difference between each other and need to be electrically mutually insulated. As the
cooling water, however, forms one closed circuit, one has to control the conductivity
of the water, usually below 5 µS, in order to avoid electro corrosion between the
different electrical potentials in the cooling circuit.
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Fig. 5.13 Schematic setup of a transverse diode-pumped rod laser [3]

Recently, optical pumping at around 875 nm has become more and more popular,
as this pump line directly excites the ions to the upper laser level. Thus no fast relax-
ation is necessary and the laser quantum efficiency is increased through reduction
of the quantum defect. This results in a lower heat load per pump transition and thus
in a higher laser output power, which can be reached before thermal effects become
significant.

Applications

The Nd3+ laser, especially using the YAG host, is widely used in industry and re-
search applications. In industry, the lasers are mostly used for marking and engrav-
ing applications, for spot welding and line welding as well as for hole drilling. In
research the laser is mostly used as a high power pump source with high beam qual-
ity compared to laser diodes, either by using the laser radiation itself or by frequency
doubling of the 1.064 µm line to 532 nm, which is an ideal pump for the Ti:sapphire
laser, as discussed in Sect. 5.2.3.

5.2.2 The Tm3+-Laser

The Tm3+ laser is a typical quasi-three-level laser operating around 1.9–2 µm. As
an example, Fig. 5.14 shows the energy level scheme in three different hosts and
Fig. 5.15 the corresponding emission and absorption cross sections for Tm3+:YAG.
The specialty of Tm3+ lasers is their unique pumping scheme allowing for the use
of highly efficient ∼790 nm AlGaAs laser diodes for pumping. As an example,
Fig. 5.16 shows the corresponding pump absorption cross section for Tm3+:YAG.
This is based on a cross-relaxation process 3H4 + 3H6 → 2 × 3F4, which is very
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Fig. 5.14 Energy scheme of
the Tm3+ ion in various hosts
and the main laser transitions

Fig. 5.15 Absorption and
emission cross sections of
Tm3+ :YAG around 2 µm

Fig. 5.16 Pump absorption
cross section for Tm3+ :YAG

efficient in nearly all hosts. This process is shown in Fig. 5.17 on the example of
a Tm3+:YLF laser: The medium is pumped at a wavelength of 792 nm into the
3H4 manifold. Owing to the close match in energy between the 3H4 − 3F4 transition
and the 3H6 − 3F4 transition, the excited Tm3+ ion makes a transition to the 3F4
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Fig. 5.17 Cross-relaxation process between two Tm3+ ions in YLF

manifold. This transition transfers the corresponding energy to a second, unexcited
Tm3+ ion, which uses this energy to excite its 3F4 manifold. Therefore, two excited
ions in the upper laser manifold have been created by one absorbed pump photon.
Thus, the number of extracted laser photons per absorbed pump photon, which is
called quantum yield, can be greater than 100 % in Tm3+ lasers.

This process can, of course, also occur in the reverse direction, i.e. that of two
Tm3+ ions in the 3F4 manifold,from which one can make a transition to the ground-
state manifold 3H6, whilst transferring the generated energy to the other ion to excite
it from the 3F4 manifold into the 3H4 manifold. This process is called upconversion.

Different Hosts for Thulium Lasers

Among the hosts presented in Table 5.1, YLF (YLiF4) provides the highest fluo-
rescence lifetimes and reasonable high pump absorption and laser emission cross-
sections, shown in Fig. 5.18 and Fig. 5.19, resulting in low saturation intensities
for efficient laser operation. As YLF is a birefringent laser host, different absorp-
tion and emission cross sections are needed depending on the polarization of the
light with respect to the crystallographic axes. However, the relative re-absorption
and thermal lower level population is higher than in YALO or YAG, as shown in
Fig. 5.20. YALO, and especially YAG, on the other hand suffer from high saturation
intensities. So high brightness pump diode systems are necessary to provide low
threshold operation. For the two most important fiber materials, ZBLAN and silica,
the spectroscopic data are summarized in Table 5.2. Owing to the very low phonon
energy of ZBLAN the fluorescence lifetime is not strongly affected by multi-phonon
relaxation. However, in silica the spontaneous lifetime τsp is about 4.75 ms, which is
dramatically reduced by a strong multi-phonon relaxation. Whilst the saturation in-
tensity of Tm3+:ZBLAN is comparable with the ones presented for the crystalline
hosts in Table 5.1, Tm3+:silica shows a ten-fold higher saturation intensity com-
pared with ZBLAN. Due to the amorphous nature of the glasses, the optical transi-
tions are inhomogeneously broadened, resulting in broad absorption and emission
bands. An example is given for ZBLAN glass in Fig. 5.21 for the laser transition and
in Fig. 5.22 for the most important pump band. Also, in the glass media the cross-
relaxation pumping is very efficient and results in high overall laser efficiencies.
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Fig. 5.18 Pump absorption
cross section for Tm3+ :YLF

Fig. 5.19 Laser emission
cross section for Tm3+ :YLF

Fig. 5.20 Calculated
emission-to-absorption
cross-section ratio and lower
laser level population of
Tm3+ in different hosts as a
function of the crystal
temperature
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Table 5.1 Important data on Tm3+ -doped laser hosts. Some data are taken from [5–9]

Host crystal YAG YALO YLF

3F4 levels [cm−1] 5556, 5736, 5832,
5901, 6041, 6108,
6170, 6224, 6233

5622, 5627, 5716,
5722, 5819, 5843,
5935, 5965

5605, 5757, 5757,
5760, 5827, 5944,
5967, 5967, 5977

fu,0 0.459 0.228 0.286

τf [ms] 10.5 5.0 15.6

3H6 levels [cm−1] 0, 27, 216, 241,
247, 252, 588,
610, 690, 730

0, 3, 65, 144, 210,
237, 271, 282, 313,
440, 574, 628, 628

0, 31, 31, 56, 282,
310, 324, 327, 327,
374, 375, 375, 409

fg,(i) 0.018 (6) 0.010 (12) 0.032 (9)

λs [nm] 2013 2000 1912

σe(λs) [10−21 cm2 ] 1.53 5.0 4.0 (π)
σe(λs )
σa(λs )

25.8 22.3 9.05

I ssat [kW/cm2 ] 5.91 3.80 1.50

3H4 levels [cm−1] 12607, 12679,
12747, 12824,
12951, 13072,
13139, 13159

12515, 12574,
12667, 12742,
12783, 12872,
12885, 12910,
12950

12621, 12621,
12644, 12644,
12741, 12825,
12831, 12831,
12831

λp [nm] 786 795 792

σa,p(λp) [10−21 cm2 ] 8.67 7.5 4.0 (σ ), 6.0 (π)
σe,p(λp)

σa,p(λp)
0.63 1.05 0.88

I
p
sat [kW/cm2 ] 15.1 9.57 3.62

Table 5.2 Spectroscopic
data on Tm3+ -doped glasses.
Some data are taken from
[2, 4]

Host glass ZBLAN Silica

τf [ms] 10.9 0.34

λs [nm] 1940 1970

σe(λs) [10−21 cm2 ] 0.93 2.6
σe(λs )
σa(λs )

23.6 32.3

I ssat [kW/cm2 ] 9.69 110.6

λp [nm] 791 790

σa,p(λp) [10−21 cm2 ] 3.25 9.93
σe,p(λp)

σa,p(λp)
1.44 ∼1

I
p
sat [kW/cm2 ] 23.8 276

Emax
P [cm−1 ] 590 1100
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Fig. 5.21 Absorption and
emission cross sections of
Tm3+ :ZBLAN around 2 µm

Fig. 5.22 Pump absorption
cross section of
Tm3+ :ZBLAN around
790 nm

The following section gives an overview over energy-transfer processes and its
descriptions.

Energy-Transfer Processes

Fast energy-transfer rates are of the order of 107 s−1, whilst the interaction between
the active ion and the host phonons occurs at a much faster rate on the order of
1011 s−1 [10]. Therefore, energy transfer can be seen as an incoherent process and
Fermi’s golden rule may be applied to the interaction Hamiltonian between the inter-
acting electrons of the donor ion (index D) and the acceptor ion (index A), given by

HDA = 1

2κ

∑
i,j

e2

| �rDi − �rAj | . (5.53)

This corresponds to an interaction that is caused by the electric or magnetic field
of the ions, with the electric field contribution being several orders of magnitude
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Fig. 5.23 Most important
energy-transfer processes in
which donor D and acceptor
A can be the same or different
ion species (denoted by the
rare-earth ions RE 1 or RE 2)

stronger than that of the magnetic field contribution [11]. Here, �r are the positions
of the electrons in ions D and A, κ is related to the polarizability of the medium
and the sum is over all electrons in the corresponding ion [14]. Applying Fermi’s
golden rule and a multipole expansion of the interaction Hamiltonian results in an
interaction rate [15, 17]

WDA = Cdd

R6
+ Cdq

R8
+ Cqq

R10
+ · · · , (5.54)

in which R is the distance between the two ions and the different constants C rep-
resent dipole-dipole (dd), dipole-quadrupole (dq) and quadrupole-quadrupole (qq)
contributions. As long as the ion spacings R are not too small, the first term in
Eq. (5.54) dominates. The interaction lengths may then correspond to several nm
[15, 16]. A second interaction mechanism can be caused by the direct overlap be-
tween the electronic wave functions of the donor ions and the acceptor ions [18–20];
however, this may only occur at very short inter-ionic distances between the donor
and the acceptor, and therefore, only for extremely high dopant concentrations. A
special case of this energy-transfer process is the super-exchange, where, the donor
and acceptor wave functions overlap not directly, but both overlap with an interme-
diate ligand ion [21].

For the dipole-dipole interaction, the coupling parameter was shown to be linked
to the overlap between the donor emission cross section σDe (λ) and the acceptor
absorption cross section σAa (λ) by Dexter [17]

Cdd
DA = 9χ2c

16π4n2

∫
σDe (λ)σ

A
a (λ)dλ. (5.55)

Therein, χ2 ∼ 2
3 accounts for an orientational average.

Whilst this approach deals with the microscopic interaction between two ions, it
is important to have a description of the macroscopic behaviour of an active medium
in order to model its excitation processes. The most important energy-transfer pro-
cesses occurring in rare earth doped solid-state materials are shown in Fig. 5.23.
They are migration, cross relaxation and upconversion. Migration is the energy
transfer between ions of the same species involving the same transition levels in
both ions, called donor-donor transfer. Thus, the corresponding coupling parameter
is given by

CDD = 3c

8π4n2

∫
σe(λ)σa(λ)dλ (5.56)
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by analogy with Eq. (5.55). Here, σe(λ) and σa(λ) are the absorption and emission
cross sections of the same transition between two manifolds. Three types of migra-
tion may be distinguished, depending on the relative strength of the donor-donor and
donor-acceptor coupling parameters: diffusion, fast migration and super-migration.

In the case of CDD � CDA, the migration can be described by a diffusion process
[22], resulting in a macroscopic de-excitation rate of the donors of

∂ND

∂t
= − 16π2

3

(
1

2

) 3
4

C
1
4
DAC

3
4
DDN

0
DNDNA, (5.57)

where N0
D is the total density of donors that can contribute to the migration process,

ND the density of excited donors andNA the density of acceptors. This macroscopic
rate is valid for long times given by [12]

t >
16π3

9

CDA

W 2
DA

N2
A ≈ 16π3

9

R12
DA

CDA
N2
A, (5.58)

with RDA being the donor-acceptor distance.
The fast migration (CDD 
 CDA) is often the dominant process with donor-donor

coupling parameters CDD that are some orders of magnitude larger than those for
the donor-acceptor energy transfer CDA given by Eq. (5.55). This can be explained
as the donor-acceptor interaction depends on two different transitions, which need
to overlap spectrally to yield a large energy-transfer parameter, whilst the donor-
donor interaction relies upon the same transition, so the overlap is guaranteed by
Eq. (2.32). In the case of fast migration, a donor excitation can migrate significantly
before it interacts with an acceptor, thus increasing the macroscopic probability for
the donor-acceptor transfer processes to occur. Whenever CDD ≥ CDA, the macro-
scopic de-excitation rate can be described by the hopping model [23], resulting in

∂ND

∂t
= −π

(
2π

3

) 5
2√

CDACDDN
0
DNDNA (5.59)

for long times as given by Eq. (5.58). In the case of upconversion (N0
D = NRE2,

ND = N2′ and NA = N2) this rate equation is often rewritten as

∂N2′

∂t
= −kupN2N2′ (5.60)

with

kup = π

(
2π

3

) 5
2√

C
up
DAC

up
DDNRE2, (5.61)

C
up
DA =

∫
σ2′ →1′,e(λ)σ2→3,a(λ)dλ, (5.62)

C
up
DD =

∫
σ2′ →1′,e(λ)σ1′ →2′,a(λ)dλ, (5.63)
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whilst for cross relaxation (N0
D = NRE1, ND = N3 and NA = N1′ ) one often finds

that
∂N3

∂t
= −kcrN1′N3 (5.64)

with

kcr = π

(
2π

3

) 5
2√

Ccr
DAC

cr
DDNRE1, (5.65)

Ccr
DA =

∫
σ3→2,e(λ)σ1′ →2′,a(λ)dλ, (5.66)

Ccr
DD =

∫
σ3→1,e(λ)σ1→3,a(λ)dλ. (5.67)

Upconversion and cross relaxation are reverse processes on the microscopic
scale, which are thermodynamically linked to each other. Using Eqs. (2.32), (5.55)
the relation

Ccr
DA

C
up
DA

=
∫
σ3→2,e(λ)σ1′ →2′,a(λ)dλ∫
σ2′ →1′,e(λ)σ2→3,a(λ)dλ

= Z2′Z2

Z1′Z3
(5.68)

can be deduced as the ratio of the microscopic transfer parameters. It depends only
on the partition functions Zi of the involved manifolds. In the special, but most
important case, in which RE 1 and RE 2 are the same ion species, this expression
simplifies to

Ccr
DA

C
up
DA

=
∫
σ3→2,e(λ)σ1→2,a(λ)dλ∫
σ2→1,e(λ)σ2→3,a(λ)dλ

= Z2
2

Z1Z3
(5.69)

As a result of the principal difference between the migration processes in upcon-
version and cross relaxation, such a simple relation cannot be set up for the rate-
equation parameters kcr and kup. However, it can be shown from the equations above
that

kcr

kup
= NRE1

NRE2

Z2′

Z1′Z3

√√√√√Z1Z2

∫
e

− hc
kBT λ σ 2

1→3,a(λ)dλ∫
e

− hc
kBT λ σ 2

1′ →2′,a(λ)dλ
, (5.70)

and for the case of identical species this simplifies to

kcr

kup
= Z2

Z3

√√√√√Z2

Z1

∫
e

− hc
kBT λ σ 2

1→3,a(λ)dλ∫
e

− hc
kBT λ σ 2

1→2,a(λ)dλ

. (5.71)

The regime of super-migration is reached when the actual acceptor concentration
cA, i.e. the probability of occupation of a possible lattice site by an acceptor, exceeds
the critical concentration c∗,

cA > c∗ =
(
CDA

CDD

) 1
8

. (5.72)
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Fig. 5.24 Atomic structure
of the Al2O3 host crystal [28]

Owing to cA < 1 the super-migration can only occur for CDD >CDA. Then the fast
migration distributes the energy over all donors before the donor-acceptor transfer
can occur.

It has to be noted that even if the absorption and emission spectra in Eq. (5.55)
do not overlap, an energy-transfer process may still exist for this transition; pro-
vided the excess energy that would be needed to make the cross sections overlap is
compensated for by the emission or absorption of a lattice phonon [24–27].

5.2.3 The Ti3+:Al2O3 Laser

In contrast to the two solid-state lasers discussed before, which are examples of rare-
earth-ion-based laser media, the Ti3+:sapphire laser (Ti3+:Al2O3) uses the trivalent
transition-metal titanium ion as the active ion. The host medium is single-crystalline
aluminum oxide Al2O3, the same host as used in the first laser, the ruby laser
(Cr3+:Al2O3). In this context, it should be noted that the name “Ti3+:sapphire laser”
is tautological, as “sapphire” is already the name for Ti3+-doped aluminum oxide,
just as “ruby” denotes the Cr3+-doped aluminum oxide. Thus, one could also speak
of the “sapphire laser” itself. In the following, we will discuss the special energy
structure and the resulting laser properties arising from the transition-metal nature
of the active ion, as well as some applications of the Ti3+:Al2O3 laser.

The Laser Medium

Being a 3d transition metal, the Ti3+ ion exhibits a single 3d electron in its outer
shell, which is the “active laser” electron. The free ion is thus similar to a hydrogen
atom and higher-lying electronic states cannot be excited by the energies accessible
during optical pumping. The whole pump and laser process thus takes place between
the different levels that are created by the splitting of the five-fold-degenerate free-
ion ground state 2D in the host matrix. This host matrix is shown in Fig. 5.24.

In contrast to the splitting scheme discussed in Fig. 2.3 for the rare-earth ions,
the optically active electron here is not shielded from the crystal field. This causes
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Fig. 5.25 Energy level
diagram of the crystal-field
splitting of the Ti3+ ion in
Al2O3 [28]

a crystal-field splitting which dominates the spin-orbit splitting. Whilst the actual
energy of this splitting is, of course, a host- and ion-dependent value, the theoretical
description of the strong-crystal-field splitting can be generalized. In this perturba-
tional description, the scale of the splitting energy is given by the parameter product
Dq , in which

D = 1

4πε0

35

4

Ze2

a5
(5.73)

accounts for the strength of the crystal field, caused by the charge of the ligand −Ze

at a distance a from the central ion, and

q = 2

105
〈3d|r4 |3d〉 (5.74)

is proportional to the quantum-mechanical radial integral of the 3d wave functions
that has to be calculated to obtain the energy difference. The ground-state splits by
a total amount of 10Dq , for which the ratio between the amount of energy decrease
of the lower state and the amount of increase of the upper state depends on the sym-
metry of the external ligand ions and the resulting degeneracy of the final levels. In
the case presented here, there are the six oxygen ions around the Ti3+ ion, resulting
in an octahedral coordination, causing a splitting into a doubly-degenerate 2E state
and a triply-degenerate 2T2-state. As the total energy change of the splitting needs
to be zero, the 2E state is raised 6Dq above the initial, free-ion ground state, whilst
the 2T2-state is lowered by 4Dq with respect to the initial ground state as shown in
Fig. 5.25. As these octahedra are trigonally distorted, as can be seen in Fig. 5.24,
the 2T2-state is split further. The 2E excited state degeneracy is also lifted by the so
called Jahn-Teller effect, which states that the degeneracy of an electronic state in a
non-linear complex will be lifted by a spontaneous deformation of the surrounding
lattice. However, strictly speaking, no optical dipole transitions should occur be-
tween these states as they all have even parity. The fact that there are optical dipole
transitions is a direct result of the breaking of inversion symmetry as soon as an
Al3+ ion is replaced by a Ti3+ ion. This causes a mixing of the odd-parity wave
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Fig. 5.26 Energy level
diagram showing the
electron-phonon coupling of
the Ti3+ ion in Al2O3 [28]

functions of the oxygen ions with those on the Ti3+ ion, allowing optical-dipole
transitions within the split ground state.

Up to this point, there is no principle difference of this energy scheme with the
ones discussed for the rare-earth ions. However, the energy levels here are a direct
consequence of the crystal field, and thus, of the spatial positions of the oxygen ions
in the crystal lattice. Their energies are therefore very sensitive to this configuration.
The phonons of the host crystal now cause vibrations of the oxygen ions and thus
a modulation of the crystal field, which will have an influence on to the energies of
those levels. Quantum-mechanically, this strong electron-phonon coupling results
in so-called vibronic states, mixed states between the electronic states of the ion
and the phonon states of the lattice. They can be described by the configurational
coordinate model. In this model, the energy of the levels is plotted as a function
of the configurational coordinate Q, which can be seen as a parameter describing
the distance of the oxygen atoms of the vibrating octahedra with respect to the Ti3+
ion. In this description, the energy variation of a level can be described for small
changes in configuration by a parabolic potential as shown in Fig. 5.26, and thus at
each level, a harmonic oscillator can be assumed. For the ground state, this results
in three paraboloids oriented around the origin Q = 0, from which Fig. 5.26 shows
a cut along one radial Q-axis through the minimum of one of the paraboloids. For
the excited state, two paraboloids result, which are also shifted outward from the
origin Q = 0. As the Jahn-Teller effect is different for the ground and the excited
state, it causes a different lattice distortion, and thus, the corresponding configura-
tional coordinate of the parabola minimum Q0 and Q′

0 is also different. Taking into
account that the transition probability depends on the overlap of the wave functions,
which are also indicated in Fig. 5.26, a strong wavelength shift exists between ab-
sorption and emission. This is called Franck-Condon shift. After the absorption
process, the excitation will quickly thermalize within the upper harmonic oscillator
levels owing to the strong interaction with the phonons, which created these levels.
Thus, the emission process with the highest probability will start from the lowest
levels in the excited state. However, from this state only transitions to higher states



5.2 Solid-State Lasers 133

Fig. 5.27 Upper-state
fluorescence lifetime of the
Ti3+ ion in Al2O3 as a
function of the temperature
[28]

within the ground-state parabola yield a high overlap in wavefunction, as the co-
ordinates of the minima are different (Franck-Condon principle). This causes the
strong wavelength shift between absorption and emission.

A second effect of the vibronic states is the large fluorescence bandwidth, and
thus, the tunability of the Ti3+:Al2O3 laser. Owing to the spatially oriented three
paraboloids in the ground state, a transition from an excitation at a fixed coordinate
Q can occur towards a huge number of possible final states and phonon energies in
the ground state.

The Ti3+:Al2O3 laser crystals are grown by the Czochralski method. In contrast
to Nd3+:YAG, where the dopant concentration is limited by the ionic radius of the
neodymium ion to approximately 1 %, or compared with Tm3+:YAG, in which the
thulium ion concentration can reach several 10 %; the Al2O3 crystal can only be
doped with Ti3+ on the order of 0.1–0.25 %. One reason for this low concentration
is the higher ionic radius of Ti3+ (0.067 nm) compared with Al3+ (0.053 nm), the
other reason can be related to the Jahn-Teller effect, as a higher doping concentration
would cause a ground-state degeneracy, which itself would result in a Jahn-Teller
splitting, creating a lattice deformation that is not compatible with the Al2O3 lattice.

Laser Parameters

The lifetime of the Ti3+:Al2O3 fluorescence at room temperature is around 3.1 µs,
and thus three orders of magnitude shorter than the fluorescence lifetimes of many
rare-earth doped crystals, such as those using Tm3+, Ho3+ or Er3+ as the active
ion. Owing to the electron-phonon coupling, this lifetime strongly depends on the
crystal temperature as shown in Fig. 5.27. As the optical transitions are a result of
the statically broken inversion symmetry, mixing odd-parity wave functions into the
ground state, and not a result of the vibronic states, the spontaneous optical emission
rate τ−1

sp is temperature independent. However, also non-radiative transitions from
the excited state into the ground state exist. These relaxation transitions show a rate
τ−1
r , resulting in a total fluorescence lifetime of
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Fig. 5.28 Absorption
coefficient of a
0.1 %-by-weight-doped
Ti3+ :Al2O3 crystal and its
fluorescence intensity for the
polarizations parallel (π ) and
perpendicular (σ ) to the
c-axis [28]

τ−1
tot = τ−1

sp + τ−1
r . (5.75)

This relaxation rate is strongly temperature dependent and is caused by a tunneling
of the upper level excitations in the 2E parabolas into the ground-state parabolas. As
the energy gap (tunnel distance) is smaller for highly excited levels, the increasing
fractional excitation of the higher levels in the 2E parabolas with temperature causes
a strong increase in the non-radiative transition rate. As can be seen from Fig. 5.27,
this process starts at a temperature around 200 K and then quickly reduces the flu-
orescence lifetime for higher temperatures. The quantum yield of the laser at room
temperature, which is the amount of fluorescence photons with respect to the total
amount of transitions, thus results in

ηQY = τtot(300 K)

τsp
= 3.1 µs

3.85 µs
= 0.8. (5.76)

The fluorescence of Ti3+:Al2O3 is a maximum for light polarized parallel to
the crystallographic c-axis as shown in Fig. 5.28 together with the absorption
coefficient. This results in a peak emission cross section for this polarisation of
3.5 × 10−19 cm2 at 795 nm, which has been determined from its fluorescence
spectrum using the Füchtbauer-Ladenburg relation Eq. (1.77) in Fig. 5.29. It can
be clearly seen that the emission cross section is shifted towards lower wave-
lengths with respect to the fluorescence. The absorption band is very broad, result-
ing in a large variety of possible pump sources. Whilst in the past mainly Ar+ ion
lasers at 514 nm have been used as a pump, today, frequency-doubled Nd3+:YAG,
Nd3+:YVO4 or Nd3+:YLF lasers are used owing to their much higher efficiency
compared with the Ar+ laser. Also pulsed pumping by flashlamps is possible, how-
ever, as a result of the short upper level lifetime, high pump intensities and short
pump pulses are necessary, which needs specially designed low-inductance flash-
lamp circuits and flashlamps for high operation lifetime. Especially the flashlamp
design is critical when it comes to high pump energies of several 100 J as the short
pulse width on the order of 2–10 µs also corresponds to a low flashlamp explosion
energy, see Eq. (5.8).
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Fig. 5.29 Emission cross
section and fluorescence
intensity of a Ti3+ :Al2O3
crystal for the polarization
parallel (π ) to the c-axis [28]

Fig. 5.30 Absorption and
emission cross sections of
Cr2+ :ZnSe [29]

Applications

The main application of the Ti3+:Al2O3 laser today arises from its large tuning and
amplification range. It is the generation of ultra-short pulses, already discussed in
Sect. 4.2, as well as the amplification of ultra-short pulses discussed in Sect. 4.2.3,
where these lasers are dominant. Another important application is in spectroscopy,
to generate broadly-tunable radiation with a small linewidth. Similar spectral prop-
erties can be achieved with Cr3+:LiSrAlF6 and Cr3+:LiCaAlF6, which show an
emission band shifted towards the infrared compared with Ti3+:Al2O3. However,
the fluoride crystals are hygroscopic, which is a drawback for efficient cooling of
the laser rods. A comparable laser medium in the 2.3 µm region is Cr2+:ZnSe, which
shows a broad emission range at 2–3 µm, as shown in Fig. 5.30. This allows the gen-
eration and amplification of ultra-short pulses in the mid-infrared spectrum.

5.3 Special Realisations of Lasers

In the following section we will investigate two of the most important laser geome-
tries today, which are the fiber laser and the thin-disk laser. Both of these laser archi-
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Fig. 5.31 Radial temperature
profile in a
homogeneously-heated,
surface-cooled laser rod

tectures attempt to solve the main problematic issue in solid-state lasers: the thermal
management of the laser medium. In standard rod lasers as discussed above, the heat
dissipated inside the laser medium has to be extracted through the outer crystal sur-
face, and a temperature profile will result from the finite heat transfer coefficient of
the laser medium. This profile can be calculated from the heat-transfer equation [3]

∂2T

∂r2
+ 1

r

∂T

∂r
= q

λth
, (5.77)

assuming a cylindrical symmetry, where, T (r) is the rod temperature,

q = Ptherm

πR2
0L

(5.78)

the volumetric heat load, L the length of the rod, Ptherm the power dissipated as heat
in the medium and λth the heat-transfer coefficient of the medium. In the case of a
homogeneous heat load q , this results in a parabolic temperature profile

T (r) = T (R0) + q

4λth

(
R2

0 − r2), (5.79)

with R0 being the radius of the rod and T (R) the temperature on the outer crys-
tal surface. This temperature profile is shown in Fig. 5.31 and has two important
influences on the laser medium, which are discussed in the following section.

5.3.1 Thermal Lensing and Thermal Stress

Thermal Lensing

As the index of refraction of the laser medium is usually temperature dependent, this
temperature profile with the gain medium will create a refractive index distribution
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resulting in the formation of a thermal lens. The corresponding index distribution
is given by

n(r) = n0 + ∂n

∂T

(
T (r) − T (R0)

)
, (5.80)

wherein n0 = n(R0) is the refractive index of the rod at the surface. The ther-
mal lens can have a positive or negative focal length depending on the sign of
the thermal index coefficient ∂n

∂T
of the laser medium. YAG, for example, has

∂n
∂T

= 9.9 × 10−6 K−1 and thus a positive thermal lens, whilst, for example YLF,
with ∂n

∂T
= −2 × 10−6 K−1 for a polarization along the a-axis, shows a negative,

i.e. diverging, thermal lens. Taking into account that a parabolic index profile

n(r) = n0 − 1

2
n2r

2, (5.81)

which is constant in axial direction along a (rod) length L, acts like a lens with a
focal length of

f = 1

n2L
, (5.82)

we obtain for the thermal lens

fth = 2λthπR
2
0

∂n
∂T
Ptherm

, (5.83)

where, it has to be taken into account that Eq. (5.82) is only valid for f 
 L. In
some laser media, such as ZnSe or YAlO3 (YALO), the thermal lensing can be
strong enough that focal lengths shorter than the rod may result, especially for long
crystals. But this is usually connected simultaneously to a very strong beam qual-
ity degradation as a result of aberrations caused by the non-parabolic temperature
profile, and is therefore avoided in most lasers.

However, the measured values of thermal lenses differ from the simple relation
in Eq. (5.83), because additional effects have to be considered: We also have to take
into account that the rod will show a local thermal expansion, which will create a
thermal stress. This stress itself causes an additional change in the refractive index
by the photoelastic effect. All these material dependent effects can, however, be
summed into one parameter ξ . For isotropic laser media such as YAG, the focal
length of the total thermal lens can be expressed by

fth = πR2
0

ξPtherm
. (5.84)

For YAG, a value of ξ = 5.09 × 10−7 m
W has been measured.

Finally, we have to take into account that the total thermal expansion will cause
a bulging of the end faces of the rod, which itself is a positive contribution to the
total thermal lens. This effect depends on the length of the crystal and results in a
modified parameter [3]

ξ ′ = ξ + αthR0(n0 − 1)

λthL
, (5.85)
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which replaces the ξ in Eq. (5.84), where, αth is the coefficient of thermal expansion
of the medium.

In designing a laser resonator, the formation of a thermal lens has to be taken into
account in order to maintain performance over an extended period. However, from
the power dependence of the thermal lens it directly follows that in a laser with a
medium that is affected by strong thermal lensing, the resonator has to be calculated
and optimized for the operation point of the laser, i.e. for a certain thermal lens that
will build up at the nominal pump and output power of the laser. A direct result
of thermal lensing will mean that the laser is designed for a certain pump power
only. The use of differing pump powers will cause a change in the laser mode size
and waist position inside the resonator, and therefore, will lead to a varying overlap
with the pump beam. Therefore, the laser slope efficiency can depend on the pump
power. Also the true laser threshold can be different from the theoretical one, as
with thermal lensing the threshold depends also on the stability range of the cavity,
which becomes pump-power dependent.

Thermal Stress

In an actively cooled laser rod the inner volume has a higher temperature, and there-
fore, a larger thermal expansion than the outer part of the rod. This results in the
formation of mechanical stresses. In a cylindrical laser rod, the stresses in radial,
tangential and axial (z-axis) direction can be calculated from the temperature dis-
tribution in the plain strain approximation, which is valid for long, surface cooled
laser media. This results in [49]

σr(z, r) = αT E

1 − ν

(
1

R2

∫ R0

0
T
(
z, r ′)r ′dr ′ − 1

r2

∫ r

0
T
(
z, r ′)r ′dr ′

)

σt (z, r) = αT E

1 − ν

(
1

R2

∫ R0

0
T
(
z, r ′)r ′dr ′ + 1

r2

∫ r

0
T
(
z, r ′)r ′dr ′ − T (r, z)

)
(5.86)

σz(z, r) = σr(z, r) + σt (z, r) = αT E

1 − ν

(
2

R2

∫ R0

0
T
(
z, r ′)r ′dr ′ − T (z, r)

)
,

with σr , σt and σz being the radial, tangential and axial stress components, re-
spectively, E being Young’s modulus, ν Poisson’s ratio, αth the thermal expansion
coefficient and R the radius of the rod. The equation for σz is valid for a laser
medium where the ends are free to move. Inserting the temperature distribution
from Eq. (5.79) for the homogeneously heated laser rod, we obtain

σr = αT E

16λth(1 − ν)
q
(
r2 − R2

0

)= σ0
(
r2 − R2

0

)
, (5.87)

σt = αT E

16λth(1 − ν)
q
(
3r2 − R2

0

)= σ0
(
3r2 − R2

0

)
, (5.88)

σz = αT E

8λth(1 − ν)
q
(
2r2 − R2

0

)= 2σ0
(
2r2 − R2

0

)
. (5.89)
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Fig. 5.32 Stress components
in a homogeneously-heated,
surface-cooled laser rod

Table 5.3 Thermal-shock
parameter of several laser
media [3]

Host crystal YAG GSAG Al2O3 SiO2 glass

Rs 7.9 W
cm 6.5 W

cm 100 W
cm 1 W

cm

The stress distributions are plotted in Fig. 5.32. A positive value corresponds to a
tensile stress in the corresponding direction, whilst a negative value denotes a com-
pressive stress. These stresses will cause refractive index changes, which is called
stress-induced birefringence. This can change the polarization of the laser mode
and thus degrades polarization quality in laser systems. However, these effects can
be compensated for by more complex laser designs, in which several laser rods and
polarization rotators are used.

The main problem for high average power lasers, however, is the tensile stress on
the outer crystal surface. Owing to the perpendicularity of the tangential and axial
stress, the total stress on the surface results in

σtot =
√
σ 2
t + σ 2

z = 2
√

2σ0R
2
0 (5.90)

If this tensile stress exceeds a certain value σmax, it will lead to a growth of mi-
croscopic cracks on the outer crystal surface, which finally results in a total crystal
fracture. Using Eq. (5.78), this maximum stress corresponds to a maximum power
dissipation per crystal length of [3]

Pmax
therm

L
= 8π

λth(1 − ν)√
2αthE

σmax = 8πRs, (5.91)

which is independent of the rod diameter, where, Rs is the thermal-shock param-
eter, which is shown in Table 5.3 for several laser hosts. This effect yields for YAG,
that a thermal extraction of approximately 200 W/cm will fracture the rod. However,
this value depends strongly on the surface finish of the laser rod and the real value
at which fracture occurs can differ from this value by up to a factor of three.
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Fig. 5.33 Geometry and
refractive index profile of two
step-index fibers. The
standard fiber only allows
core propagation while the
double-clad fiber is coated by
an outer polymer with lower
refractive index than the
cladding and thus also allows
guiding in the cladding

In order to avoid all these temperature-dependent effects to a great extent, the
following laser types have been developed, namely, the fiber laser and the thin-disk
laser.

5.3.2 The Fiber Laser

An optical fiber consists of a core with radius a and a refractive index ncore, and a
cladding with radius b, showing a lower refractive index ncladding < ncore as shown
in Fig. 5.33. In a fiber laser, this core is in addition doped with laser-active ions,
which are pumped by a pump radiation also guided in the fiber.

Owing to the high surface-to-volume ratio

2πaL

πa2L
= 2

a
(5.92)

and the small fiber radii a < 1 mm, the heat transfer from the active core to the large
surface occurs over a small distance. Thus, the resulting temperature differences are
low, even for the lower thermal conductivities of glass materials. This causes a lower
temperature in the active region, and therefore, a higher laser efficiency, especially
for quasi-three-level lasers. In a rotationally symmetric fiber a parabolic temperature
profile will develop; however, this will only cause a refractive index difference of

�ntherm ≈ Ptherm

4πλthL

∂n

∂T
= 8 · 10−6 (5.93)

for a Pth = 1 kW dissipating, L = 100 m-long silica fiber (n ≈ 1.45) with NA =
0.04, λth ≈ 1 W

K m and ∂n
∂T

= 10−5 K−1. Comparing this with the refractive-index
difference causing the guiding in the fiber, we obtain

�nguide ≈ NA2
core

2n2
core

= 5 · 10−4. (5.94)
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Fig. 5.34 Path of a light ray coupled into the cladding of a fiber

Thus, even for very high thermal power dissipations, the fundamental guiding prop-
erties of the fiber stay unchanged, and therefore, the beam quality of the fiber laser
will be preserved in the case of a single-mode fiber even for high output powers in
the kW range.

Double-Clad Fibers

As a protection the fiber is usually coated by an outer polymer. Its refractive index
n3 therefore determines, whether light may be guided in the cladding or not. As
the refractive index profiles consist of several steps, this fiber type is called step-
index fiber. The cladding diameter is usually much larger than the wavelength, and
therefore the propagation within the cladding can be calculated in the scope of geo-
metrical optics. Thus, all light that will hit the fiber end within an acceptance solid
angle �Ω0 with a half angle θi will be guided inside the cladding, see Fig. 5.34.
This angle can be calculated from the total-internal-reflection angle inside the fiber
as

�Ω0 = 2π(1 − cos θi) = 2π
(
1 −
√

1 − NAcladding
2). (5.95)

This acceptance cone thus only depends on the numerical aperture of the cladding,

given by NAcladding =
√
n2

cladding − n2
3.

In a standard fiber, the polymer usually has a higher refractive index than the
cladding, so that no total-internal reflection is possible. This is mostly used for pas-
sive fibers, e.g. in telecommunication. In the opposite situation, the cladding can
also transport light, and the fiber is called a double-clad fiber.

The guiding in the core can be explained in the same way, however, as a result
of the smaller core sizes the guiding needs to be calculated by wave optics, which is
discussed later. As the guiding core has a higher refractive index than the cladding,
the light guided in the cladding can also pass the core of the fiber. This is important
for high-power fiber lasers, in which the pump radiation is coupled into the cladding
of the fiber, from which it will be absorbed each time it passes the core. The fluores-
cence is then emitted from the excited ions into the core and the cladding. However,
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Fig. 5.35 Double-clad fiber
with symmetric and D-shaped
geometry

only those photons will be amplified to a great extent which only propagate inside
the core. Thus, the laser radiation will be guided in the core. Owing to the smaller
core size, the laser radiation exhibits a much higher beam quality than the pump
radiation. Therefore, the double-clad fiber laser can also be seen as a brightness
transformer (or brightness enhancer), transforming the light of the cladding (with a
low brightness, a high number of modes and therefore a low beam quality) into the
light guided in the core, which shows a high brightness and is emitted into only a
few or a single mode, thus having a very high beam quality. Of-course, this is not a
true transformer, as the emitted light shows a frequency different from the incoming
pump radiation.

However, in double-clad fibers it has to be taken into account that skew waves
can build up in completely rotational symmetric index profiles. These skew waves
do not pass through the core during their propagation inside the fiber, and therefore,
would not be absorbed by the active ions. To obtain a maximum pumping efficiency,
these skew waves have to be suppressed, which can be obtained by breaking the
rotational symmetry of the fiber. This can be done in several ways, from which
the easiest one consists of milling a flat surface on to the fiber preform prior to
fiber pulling. This results in the geometry shown in Fig. 5.35. Usually, about 10–
15 % of the fiber diameter are cut away (c ≈ 1.8b), creating a linear reflection edge
which breaks the rotational symmetry and makes self-consistent rays that do not hit
the core impossible. Assuming a homogeneous filling of the cladding by the pump
radiation, which is a direct consequence of the large amount of excited modes in the
cladding, the effective pump absorption inside a double-clad fiber can be expressed
by

αeff = Acore

Acladding
αp = Acore

Acladding
σa(λp)N1. (5.96)

Thus, in a double-clad fiber laser, the pump absorption length can be chosen inde-
pendently from the length of the laser medium within certain limits. As the cladding
can be fabricated with a high numerical aperture using a low-index outer polymer, a
high numerical aperture of the cladding can be chosen without changing the mode
properties of the fiber core. Thus, very high pump powers can be used. In particular,
fiber coupled laser diodes can directly pump such a fiber laser without the need for
a high-beam-quality pump laser.
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Propagation in the Core

The step in the refractive index between core and cladding, together with the diam-
eter of the core, determine how the light propagates in the core. As the core radius
a is usually comparable with the wavelength of the laser emission, we have to solve
the wave equation, resulting in the existence of modes in a similar way to those in
the laser resonators. Here, we use the scalar wave equation in cylindrical coordinates

∂2Ψ

∂r2
+ 1

r

∂Ψ

∂r
+ 1

r2

∂2Ψ

∂φ2
+ ∂2Ψ

∂z2
+ n(r)2k2

0Ψ = 0, (5.97)

where, Ψ corresponds to a component of the electric or magnetic field of the light
inside the fiber, n(r) is the refractive index and k0 = 2π

λs
the wave vector of the laser

radiation in vacuum. In order to solve this equation, we assume a wave propagating
along the fiber axis with a propagation constant β as

Ψ (r,φ, z) = ψ(r)e−ilφe−iβz, l = 0,±1,±2, . . . , (5.98)

where, we already took into account that the wavefunction needs to be unambigu-
ous in the azimuthal direction, resulting in an azimuthal mode number l. Using the
abbreviations k2

1 = n2
corek

2
0 − β2 and k2

2 = β2 − n2
claddingk

2
0 , Eq. (5.97) can be trans-

formed into a standard differential equation

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+
(
k2

1 − l2

r2

)
ψ = 0, r < a, (5.99)

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+
(
k2

2 + l2

r2

)
ψ = 0, r > a. (5.100)

These are the Bessel differential equations, which are solved by the Bessel functions
Jl and Kl

ψ(r) ∝ Jl(k1r), r < a (5.101)

ψ(r) ∝ Kl(k2r), r > a. (5.102)

In the case of small refractive index differences �n = NA2
core

2n2
core

< 0.01, the modes

guided by the fiber are linearly polarized [30]. They are therefore called LP modes.
To describe these modes, the fiber parameter, V parameter, or normalized fre-
quency

V = 2πaNAcore

λ
, (5.103)

is used. Therein, NAcore =
√
n2

core − n2
cladding is the numerical aperture of the core.

The fiber parameter can also be used to express the number of propagating modes
M of the fiber, given by

M = 4V 2

π2
+ 2 for V 
 1. (5.104)
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Fig. 5.36 Intensity
distribution of a Gaussian and
a Bessel function

It can be shown that for V < 2.405, i.e. the zero of the lowest Bessel function, only
the fundamental mode LP01 is guided in the fiber. These fibers are called monomode
or single-mode fibers. However, it has to be taken into account that two LP01 modes
exist which have perpendicular polarizations.

The transverse intensity profile of this fundamental mode LP01 is, however, very
similar to the one of a Gaussian beam with power P as can be seen in Fig. 5.36,
especially for the central lobe which is the one propagating in the fiber. Thus, we
can assume a Gaussian distribution in the fiber core given by [48]

I (r) = 2P

πw2
0

e
− 2r2

w2
0 , (5.105)

for which the mode field radius can be calculated by the empiric formula

w0 = a
(
0.65 + 1.619V −1.5 + 2.876V −6). (5.106)

Spectroscopic Properties of Fiber Lasers

In the following we will discuss the spectroscopic properties of fiber lasers. They
differ from the properties of bulk solid-state lasers as a result of the influence of the
waveguide effect in the fiber. As an example, we will investigate a Tm3+:ZBLAN
fiber laser. Comparing the overlap between absorption and emission in Fig. 5.37, it is
evident that a Tm3+-doped ZBLAN fiber laser can be operated as a laser or amplifier
in a range between 1.85 µm to over 1.95 µm. Below this range the reabsorption will
be too high and one would have to use small fiber lengths and thus small pump
volumes. Above this range the gain becomes too low and the intrinsic losses thus
result in high laser thresholds and low efficiencies.

In this context, it has to be noted that the emission cross section can only be
determined either by measuring the fiber preform or by recording the fluorescence
emitted perpendicularly from the outer fiber surface. This arises from the fact that
the waveguiding along the fiber axis strongly changes the fluorescence spectrum of
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Fig. 5.37 Cross sections of
stimulated emission and
absorption of Tm3+ :ZBLAN
[31, 32]

the guided light. To model this, we start from the radiation transport equation of the
spectral signal power in a pumped medium

∂P̃s(z)

∂z
= Γ
[
σeN2(z) − σaN1(z)

]
P̃s(z) + σeΓ P̃0N2(z), (5.107)

wherein N1 and N2 are the population densities of the lower and upper laser level,
respectively. The mode overlap factor between the guided Gaussian mode and the
doped core is given by

Γ = 1 − e
− 2a2

w2
0 . (5.108)

Assuming that all ions are either in the ground state or the excited state so that
N1(z) + N2(z) = Ng = NTm is the total Tm3+-doping density, we obtain for the
amplification of a signal at a wavelength λs in a fiber of length L

G(λs) = e
∫ L

0 Γ [σe(λs)N2(z
′)−σa(λs)N1(z

′)]dz′
. (5.109)

We now assume that the maximum amplification of the fiber is Gmax and occurs at
a wavelength λmax, which can be calculated from

∂G(λs)

∂λs
= 0. (5.110)

The maximum gain wavelength thus solves the equation

∂σe(λs)

∂λs
= ∂σa(λs)

∂λs

(
σe(λs) + σa(λs)

lnGmax
ΓNgL

+ σa(λs)
− 1

)
. (5.111)

In this equation, only the spectroscopic properties of the fiber and its length occur. It
is therefore independent of the real axial repartition of the ion densities Ni(z). The
cross sections are then expressed by a sum of Gaussian functions and a numeric root
finding algorithm can be used to obtain λmax.

However, in order to obtain the fluorescence spectrum at the fiber end, we have
to integrate the radiation transport equation including spontaneous emission. For
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Fig. 5.38 Calculated
fluorescence solid line) and
gain profile (dashed line) of a
Tm3+ :ZBLAN fiber. The
fiber lengths correspond from
left to right to 0.3 m, 0.5 m,
1 m and 3 m, following the
maxima in the curves

Fig. 5.39 Measured
fluorescence of a
Tm3+ :ZBLAN fiber under
excitation at 792–805 nm for
different fiber lengths L

simplicity, we assume a homogeneous distribution of the excitation density. This
results in a relative fluorescence intensity of

Irel(λ) = σe(λ)

σe(λ) + σa(λ)

(
G(λ) − 1

)(
1 + σa(λ)NgΓ L

lnG(λ)

)
, (5.112)

with

G(λ) = e
σe(λ)+σa(λ)

σe(λmax)+σa(λmax)
[lnGmax +ΓNgLσa(λmax)]−ΓNgLσa(λ). (5.113)

This simple relation only holds for axially constant population densities.
The result of the simple calculation is shown for a fiber with Γ = 0.788 and

Ng = 3.95 × 1026 m−3 at a maximum amplification of Gmax = 100 in Fig. 5.38.
It shows a shift of the maximum of the fluorescence with increasing fiber length
and a simultaneous decrease in fluorescence bandwidth. These effects arise from
the re-absorption, which increases with increasing fiber length.

The experimental results can be seen in Fig. 5.39 and correspond well to the the-
ory regarding the wavelength shift. However, in this experiment the maximum gain
was probably not identical for all fiber lengths, causing the differences in absolute
values.
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Fig. 5.40 Schematic of the experimental setup of a fiber laser

Experimental Arrangements of Fiber Lasers

The principle experimental arrangement of a double-clad fiber laser can be seen
in Fig. 5.40. For a core-pumped fiber laser, this setup only differs in the fact that
the pump light needs to have a better beam quality and that the cladding has a
lower index of refraction compared with the core. In order to obtain an evenly dis-
tributed excitation and heat load, the fiber is usually pumped from both ends. In
many laboratory configurations, often free-space resonators are still used to have a
maximum number of adjustable parameters in the arrangement and the possibility
to include various elements into the cavity. Here, dichroic mirrors (M1 and M2) are
used to combine the pump radiation with the laser mode. The pump beams are then
launched into the fiber by two lenses (L1 and L2), which simultaneously act as col-
limation lenses for the laser mode. On one side, the laser beam is retro-reflected by
an external highly-reflecting mirror (HR), forming the external cavity. Owing to
the high gain achieved in the long fiber, a large amount of outcoupling can be used.
Therefore, it is often sufficient to simply use the perpendicularly-cleaved fiber end
on the other side of the fiber as the OC mirror. This provides a Fresnel reflectivity
of

ROC =
(
n − 1

n + 1

)2

, (5.114)

which is around 3.4 % for silica fibers with a refractive index of n ≈ 1.45. One ad-
vantage of this external-cavity design is the free-space propagation of the intracavity
beam, which enables the insertion of modulators for Q-switching or of frequency-
selective elements such as etalons for wavelength selection and tuning. However, the
external-cavity configuration has one drawback, which is the increase in intracavity
losses due to the coupling losses that occur when the laser light is re-injected into
the fiber core. As this re-injection efficiency strongly depends on the mode matching
between the reflected beam from the HR mirror and the guided mode of the fiber,
the external cavity has to be well designed and aligned.

In order to avoid this adjustment problem in cw high-power lasers, an all-fiber
solution can be produced, as shown in Fig. 5.41. Pump combiners are used to cou-
ple the pump light into the cladding. These combiners consist of several smaller
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Fig. 5.41 Schematic of the experimental setup of a fiber laser in an all-fiber design without exter-
nal components

Fig. 5.42 Schematic of the
experimental setup of a
grating-tuned fiber laser

undoped multi-mode fibers which are spliced, i.e. welded, to the cladding of an un-
doped double-clad fiber that matches the doped laser fiber in diameter and index
profile. Thus, the core of this passive fiber is a freely accessible port for the con-
figuration of the cavity, whilst the smaller pump fibers are connected to high-power
laser diodes for pumping. Finally, this undoped combiner is spliced to the doped
laser fiber.

To obtain a fully self-contained, i.e. all-fiber design, fiber laser without any in-
tracavity free-space propagation, Bragg gratings are written into both ends of the
fiber core to act as HR and OC mirror. These Bragg gratings are a periodic refractive
index structure similar to dielectric mirrors. However, they are not created by a thin-
film deposit. This refractive index pattern is written into the fiber by illumination
of the fiber with a UV-laser-created interference pattern, e.g. by using an Ar+-ion
laser, or by a femtosecond laser. Such Bragg gratings have very sharp resonances
with high reflectivity and are written for a specific wavelength. However, slight tun-
ing is possible, e.g. by heating or cooling of the Bragg grating, or by stretching the
grating-containing part of the fiber.

Examples of a CW Fiber Laser Based on Tm3+

As an example, Fig. 5.42 shows the experimental arrangement of a Tm3+:ZBLAN
fiber laser, which is pumped from both sides by two fiber-coupled laser diodes at
792 nm [2]. The fiber has a core diameter of 30 µm, NA = 0.08, and a cladding di-
ameter of 300 µm, NA = 0.47. In this setup the cavity was built by a retro-reflective
mirror (or grating) and the other polished fiber end, i.e. with an OC reflectivity of
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Fig. 5.43 Measured output
power of a Tm3+ :ZBLAN
fiber laser tuned to different
wavelengths

R ∼ 4 %. The emission wavelength was coarsely set by the fiber length and the op-
timum pump absorption was adjusted by arranging for an appropriate ratio between
core and cladding area. The experimental performance can be seen in Fig. 5.43.
As expected by the long upper-state lifetime and the negligible multi-phonon re-
laxation in ZBLAN visible in Table 5.2, the threshold is very low and due to the
efficient cross-relaxation mechanism a high slope efficiency of 49 % with respect to
the launched pump power is achieved. At high pump powers a thermal roll-over
occurs, which is not connected to thermal lensing but results from the heating of the
fiber, which was uncooled in this arrangement [35].

An interesting effect is the wavelength independence of the laser efficiency over
a broad wavelength range, which was also confirmed for different modes of oper-
ation of the fiber, used as a fiber laser, an amplifier or as a free-running amplified-
spontaneous-emission (ASE) source. The arrangements operated at completely dif-
ferent wavelengths and therefore at different emission cross sections and reabsorp-
tion levels as can be seen in Fig. 5.44.

This effect occurs as a result of the amorphous nature of the glass host and
shows that an inhomogeneously broadened laser medium can react as quasi-
homogeneously broadened. In the glass host the crystal field varies between dif-
ferent positions in the fiber, resulting in a position-dependent Stark-level splitting
and energy shift for the Tm3+ ions in the fiber. However, these site-to-site shifts in
the energy levels correspond approximately to the Stark-splitting within the man-
ifolds. Therefore, a given wavelength within the large emission band can interact
with nearly all the Tm3+ ions in the fiber, connecting however different levels in
each ion. In this way, a given wavelength can extract energy from nearly all of the
ions and the medium acts quasi-homogeneously. Only at the lower and upper limit
of the emission range is this effect reduced resulting from a lower possibility of
transitions that match the wavelength.

This quasi-homogeneous-broadening effect is also found in Tm3+:silica, as can
be seen in Fig. 5.45. A Tm3+-doped silica fiber with a core diameter of 20 µm, NA =
0.2, and a cladding diameter of 300 µm, NA = 0.4 has been used. The optimum fiber
length was found to L = 2.3 m from the measurements also shown in Fig. 5.45.
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Fig. 5.44 Measured output
spectra and output powers of
a Tm3+ :ZBLAN fiber in
different operation types. The
total sum of the emitted
powers at both fiber ends in
the case of an operation as an
ASE source, the output power
as a fiber laser and as an
amplifier is comparable [41]

Q-Switched Fiber Lasers

In contrast to low repetition rate Q-switched operation of, e.g. a Tm3+:YAG laser
[33], in which the maximum laser efficiency is determined by the ratio between the
pump pulse duration and excited state lifetime given by Eq. (4.6), high-repetition
rate (νRep 
 1

τ
) Q-switched Tm3+ fiber lasers can be as efficient as in cw operation

[2, 34, 36, 37]. In Tm3+:ZBLAN, owing to its long upper level lifetime, a low intra-
cavity laser intensity is sufficient to saturate the laser transition. Thus single-pass
amplifiers can be easily realized, reaching the same efficiency as in continuous-wave
laser operation [38–42]. However, as a result of the very high laser signal saturation
intensity in Tm3+:silica, cavity losses, as for example the re-injection efficiency in
an external cavity, need to be minimized to get highly efficient operation [2].

Especially for pumping applications, in which Q-switched fiber lasers are
e.g. used to pump non-linear converters, and where high average output powers are
needed, the high repetition rate fiber lasers lead to stable and compact system archi-
tectures. As a result of the guiding effect in fibers, a strong influence of amplified
spontaneous emission (ASE) on the laser properties exists, and it can be shown that
ASE becomes a non-negligible effect when the amplification along the fiber exceeds
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Fig. 5.45 Measured output
power of a Tm3+ :silica fiber
laser versus wavelength and
fiber length

a factor of 100, i.e. 20 dB. However, as recent investigations on a Tm3+:silica fiber
laser have shown, ASE effects can be efficiently avoided in Q-switched fiber lasers
at high repetition rates through good design [36]. The experimental arrangement is
shown schematically in Fig. 5.46. An AOM is inserted into the external cavity for
Q-switching and a telescope increases the beam diameter on the end mirror, where
there is a diffraction grating for wavelength tuning, to avoid optical damage at high
pulse energies. Also EOM cavity blocking can be used; however, as this fiber is
not polarization maintaining, an AOM provides much lower insertion losses than an
EOM and a polarizer.

Fig. 5.46 Schematic of the experimental setup of an acousto-optically Q-switched fiber laser
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Fig. 5.47 Average output
power of a Q-switched
Tm3+ :silica fiber laser at
different repetition rates as a
function of the incident pump
power [36]. The inset shown
the dependence of the
maximum allowable pump
power and the corresponding
output power as a function of
the repetition rate

The results are shown in Fig. 5.47. A deviation of the output power from the 37 %
slope line of the CW laser is observed. This deviation is repetition rate dependent
and the direct result of ASE buildup at high pump intensities. These high pump
powers lead to an inversion reaching a value for which the intracavity modulator
could not generate enough losses in order to suppress ASE before the next pulse is
released. Therefore a further increase in output power is only connected to the half of
the original slope efficiency as the ASE is emitted from the fiber in both directions.
It could be shown that this point of deviation in output power is linearly linked to
the repetition rate, an effect that will be explained in the following discussion.

Using the Q-switch theory presented in Sect. 4.1.1 for a repetitively Q-switched
laser, the initial inversion increases with pump power and is limited by the maxi-
mum population inversion 〈�N〉∞, which would be reached at the incident pump
intensity Ip,0 in the blocked cavity without a laser signal present for t → ∞, given
by

〈�N〉∞ = 2λpτ

hc

ηabs

L
Ip,0 − 〈N〉. (5.115)

However, even in the blocked cavity 〈�N〉∞ will never be reached as the buildup of
ASE will limit the inversion to a lower value 〈�N〉ASE∞ , which corresponds to the
ASE threshold IASEp,0 of the fiber. This pump intensity at which ASE dominates the
fiber dynamics can even be reduced due to residual feedback caused by imperfect
cavity blocking, for example as a result of the OC fresnel reflection of the fiber
output end.

Owing to the upper limit in 〈�N〉i given by 〈�N〉ASE∞ , a maximum pulse energy
can be generated in a given fiber arrangement, which depends on cavity blocking
and fiber parameters. Using Eq. (4.28), which can be rewritten as

〈�N〉′
f

〈�N〉′
i

= e−rηe(r), (5.116)
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in which r is the ratio between pump and threshold power and ηe(r) the extraction
efficiency, and Eq. (4.57), the initial population inversion in repetitive Q-switched
operation can be written as

〈�N〉′
i = 〈�N〉′∞

1 − e
− 1
τνRep

1 − e−rη(r)e
− 1
τνRep

, (5.117)

which simplifies to

〈�N〉′
i = 〈�N〉′∞

(
1 − e

− 1
τνRep
)

(5.118)

for r 
 1, see Fig. 4.6. At high repetition rates νRep 
 1
τ

, this expression can be
approximated and yields

〈�N〉′
i ≈ 〈�N〉′∞

τνRep
∝ Pp,0

τνRep
(5.119)

in the case of low ground-state depletion. Owing to the upper limit in 〈�N〉i given
by 〈�N〉ASE∞ , the point of deviation from linearity corresponds to a linear relation
between the maximum allowable pump power Pmax

p,0 and the repetition rate,

Pmax
p,0 = kpνRep. (5.120)

The linear slope relation between pump and output power then causes a correspond-
ing relation between the laser output power and the repetition rate, given by a factor
ks that can be derived as

ks = ∂Pout(P
max
p,0 )

∂νRep
= kpηs, (5.121)

where, ηs is the laser slope efficiency. These theoretical predictions well agree with
the experiment as can be seen in Fig. 5.47. The corresponding proportionality factors
found were kp = 0.7 W

kHz and ks = 0.26 W
kHz for incident pump powers up to 45 W.

This shows that under high-repetition-rate operation, high average powers can be
achieved with Q-switched fiber lasers.

To maximize the generated pulse energy a careful laser design is needed to in-
crease the ASE threshold of the blocked cavity, allowing high pump powers above
laser threshold, i.e. high values of r , which then result in very short pulses accord-
ing to Eq. (4.30) and Fig. 4.6. This was also verified experimentally, where short
pulses of 41 ns could be achieved from a 2.3 m long Tm3+-doped silica fiber at
r = 15 [36]. As a comparison, Q-switch theory results in a pulse width of 30 ns for
this fiber, taking into account a cavity round-trip time of τRT ≈ 22 ns, which can
be seen as the cavity photon lifetime resulting from the strong outcoupling. This
shows that in order to obtain short pulses and to push the ASE threshold as high as
possible, a very low OC reflectivity has to be used in Q-switched fiber lasers.

Power Limits in Fiber Lasers

The fact that the laser mode is concentrated in the small core in a fiber laser causes
three different constraints in output power, depending on the spectral and temporal
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properties of the laser radiation. The first limit is connected to the finite optical-
damage threshold of silica glass, which is on the order of 3 GW/cm2. This is the
intensity, at which a damage is created on the surface of the glass, usually together
with the formation of a plasma and the vaporization of parts of the glass surface.
For the example of a 30 µm-diameter core, NA = 0.04 fiber at a wavelength around
1 µm, a mode field radius of w0 = 13 µm is calculated from Eq. (5.106) and results
in a damage threshold of

Pmax = πw2
0

2
Î = 8 kW. (5.122)

At this power, damage to the fiber end faces can occur, making it necessary to re-
cleave or to repolish the fiber ends. It is important to note that this limit gives an
instantaneous power, i.e. it is independent of the temporal mode of operation of the
fiber laser and has the same value for a cw fiber laser, where it denotes the laser
power, and for a pulsed Q-switched fiber laser, where it denotes the maximum pulse
peak power at which damage is likely to occur.

The two other processes limiting the output power of a fiber laser are Brillouin
and Raman scattering, two intensity-dependent non-linear processes.

Brillouin scattering In Brillouin scattering, a photon of the laser field propagat-
ing in the fiber is scattered by an acoustic phonon. Consequently, the most efficient
scattering occurs with longitudinal acoustic phonons. Is a phonon created during that
process, the laser photon gets red-shifted by an amount of νB , which is a function
of the fiber material and the scattering angle between the photon and the phonon.
This is called the Stokes process. In the reverse case, i.e. when a phonon is anni-
hilated in the scattering process, the photon gets blue-shifted, which is called the
anti-Stokes process. The maximum frequency shift is obtained in reverse scattering,
in which the scattered photon propagates in the opposite direction than the incoming
unscattered photon. This maximum frequency shift is given by [43]

νB = 2nvs
λ0

, (5.123)

where, vs denotes the velocity of sound of the longitudinal phonons, n the refrac-
tive index of the host medium and λ0 the wavelength of the incoming, unscat-
tered radiation, the so-called Brillouin pump radiation. For ZBLAN this results
in νB ≈ 18.82 GHz [45].

The interference between the back-scattered light and the incident pump radia-
tion creates an intensity pattern. When the spatial period of this pattern corresponds
to the phonon wavelength and propagates itself with the velocity of sound in the
medium, the lattice deformation created by the phonon will be amplified by elec-
trostriction. This feedback increases the Brillouin-scattering rate and is called stim-
ulated Brillouin scattering (SBS). Thus, a threshold exists and for powers above
a strong conversion from the incoming radiation into the scattered radiation occurs.
However, Brillouin scattering can only occur if the optical pulse width is longer
than the average photon lifetime of the medium, which is τph = 3.3 ns for the case
of ZBLAN.
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Table 5.4 SBS thresholds in
ZBLAN at 1.87 µm. The real
thresholds are calculated for a
0.23 nm-wide signal line.

Fiber 1 Fiber 2 Fiber 3

L 0.3 m 1.5 m 2.4 m

w0 3.70 µm 7.2 µm 12.8 µm

PSBS,0 602 W 456 W 900 W

PSBS 107 kW 81.2 kW 160 kW

In order to derive an expression for the Brillouin threshold, the Brillouin ampli-
fication of a small-line-width pump radiation �ν � �νB is used, given by

gB = 2πn7p2
12

�νBcλ2ρvs
, (5.124)

where,�νB = 1
πτph

is the Brillouin line width caused by the natural phonon lifetime
(natural line width), ρ the density of the fiber medium and p12 its elasto-optic coef-
ficient. The frequency-dependent small-signal gain of the SBS shows a Lorentzian
line shape and can be described by

gSBS(ν) = gB

�ν2
B

4

(ν − c
λ0

+ νB)2 + �ν2
B

4

, (5.125)

and the SBS threshold power for a low line width pump radiation results in [43]

PSBS,0 � 21
Aeff

gBLeff
, (5.126)

where, the effective fiber length

Leff = 1

α

(
1 − e−αL

)
(5.127)

is nearly equal to the geometrical fiber length L owing to the low intrinsic losses

α in the glass medium. The effective mode area is given by Aeff = πw2
0

2 and can be
approximated in multi-mode fibers by the core area A = πa2.

However, if the line width of the laser radiation is much larger than the Brillouin
line width of the glass, e.g. �νB = 96 MHz in ZBLAN, the Brillouin line width
�νB in Eq. (5.124) has to be replaced by the laser line width �ν [44], resulting in a
real Brillouin threshold of

PSBS � 21
Aeff

gBLeff

�ν

�νB
. (5.128)

An example for SBS thresholds is given in Table 5.4. It can be seen, that in
contrast to the low thresholds obtained for a small laser line width, a fiber laser
or amplifier operating at a line width on the order of 0.1–1 nm shows Brillouin
thresholds that are much higher than the optical damage threshold of a standard
fiber for short fiber lengths. However, for long fibers the Brillouin threshold can be
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much lower than the optical damage threshold and has to taken into account in high
power laser systems.

Raman scattering In analogy to Brillouin scattering a photon can also scatter on
optical phonons, which is called Raman scattering. The Raman effect, however,
is different from the Brillouin effect in several points. First, the frequency shifts
are much larger owing to the higher phonon energies of optical phonons, causing a
frequency shift νR in the range of some THz, where the red-shifted radiation is also
called the Stokes radiation. And second, the decay times of the optical phonons
are much shorter than those of the acoustic phonons, causing Raman scatting also
to occur at laser pulse widths smaller than 1 ns.

In stimulated Raman scattering (SRS) a scattering in the same propagation
direction as well as in the reverse direction is possible. However, here the lowest
threshold is obtained for scattering into the same direction of propagation, resulting
in

PSRS � 16
Aeff

gRLeff
. (5.129)

The threshold for reverse scattering is about 25 % higher [43], and thus does not
need to be taken into account here. By passing this threshold, a large amount of
the incident radiation becomes red-shifted with a high efficiency. In principle, this
process can repeat itself for the created Stokes radiation, causing successive Stokes
orders exciting the fiber.

The Raman amplification is given by

gR = 4πχ ′ ′
R

λstn2ε0c
, (5.130)

wherein χ ′ ′
R denotes the non-linear susceptibility of the glass medium, and λst

the wavelength of the Stokes-shifted light. In glasses, depending on the chemical
composition of the glass, several maxima can occur in the density of states of the
phonons, e.g. for ZBLAN one obtains 17.7 THz (590 cm−1), 14.4 THz (480 cm−1),
11.7 THz (390 cm−1), 9.9 THz (330 cm−1), 8.1 THz (270 cm−1) and 6.0 THz
(200 cm−1) [46]. The strongest Raman amplification occurs on the 590 cm−1 line.
In ZBLAN, for example, the Raman gain is about 21 THz wide. Thus, the Raman
pump signal, i.e. the laser radiation, can be seen as quasi-monochromatic compared
to this large Raman line width, and the threshold does not need to be scaled as we
did for the Brillouin scattering.

As an example, Table 5.5 shows the corresponding SRS thresholds for the three
fibers of Table 5.4.They are much closer to the optical-damage limit and usually
determine the upper laser power limit for long fibers, especially in pulsed operation.

The only possibility to avoid these non-linear effects is the reduction of the laser
intensity in the fiber by increasing the mode-field diameter. However, in order not
to loose the modal properties of the fiber, the fiber parameter in Eq. (5.103) has to
stay constant. As the numerical aperture of a step-index fiber usually has a lower
limit of NA ≥ 0.04 as a result of the fiber-manufacturing process, the core diameter
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Table 5.5 SRS thresholds
for three ZBLAN fibers at
1.87 µm.

Fiber 1 Fiber 2 Fiber 3

L 0.3 m 1.5 m 2.4 m

w0 3.70 µm 7.2 µm 12.8 µm

PSRS 26.4 kW 20.0 kW 39.5 kW

is limited to ∼30 µm. Even if lower numerical apertures would be possible, high
bending losses would result and the fiber laser would loose its beneficial property
of being coiled to obtain a small laser volume. These upper limits in core size are
related to the principle of the step-index fiber. Using photonic-crystal fibers the
effective core diameter can be greatly increased. The guiding in these fibers is not
caused by a step in the refractive index, but by a wave-optical effect: The core is
surrounded by an air-filled hole pattern, which results in a band-structure for the
light frequencies, comparable with the energy band-structure of electrons in a crys-
talline solid. Thus, for certain wavelength bands, a band-gap exists, and these wave-
lengths are not allowed to propagate in the structure around the core. This confines
the light to the core area. Another simple argument to explain this guiding effect
is that by introducing the air holes, the average refractive index of the cladding is
lower than the core. However, this simple argument does not allow to explain the
frequency-spectrum of the guiding band gaps. These photonic-crystal fibers allow
single-mode operation with core diameters of over 100 µm. However, a large core
diameter with single-mode guiding corresponds to a small NA fiber. Thus, very high
bending losses occur and these fibers have to be aligned straight in order to avoid
these losses.

Using these photonic-crystal fibers, single-mode CW output powers of several
kW have been realized with Yb3+-doped silica fibers.

Applications

Most high power fiber lasers are Yb3+-doped silica fibers emitting in the 1.03–
1.08 µm range and are used in welding and cutting applications. In 2006, the state-
of-the-art was 2 kW in a single-transverse mode realized by IPG Photonics, Bur-
bach, Germany, while multi-mode fiber lasers generate >10 kW out of a 100–
300 µm-core multimode fiber. These systems reach efficiencies of up to 25 %. How-
ever, the fiber laser units usually consist of several modules emitting some 100 W,
which are then all coupled into a single 100–300 µm-core undoped transport fiber.
Due to the low beam quality of the multimode output fiber, these sources can only be
used with short distances between the fiber output optics and the workpiece. In 2012,
single-transverse-mode fiber lasers of 10 kW output power have been produced—a
value close to the damage threshold calculated above. Other important applications
are in medicine and arise from the easy delivery of the laser radiation with the fiber,
that can be introduced into endoscopes for low-invasive surgery. In these applica-
tions, however, a radiation around 2 µm is better suited due to its strong absorption
in water.
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Fig. 5.48 Schematic of a
thin-disk-laser setup, showing
the laser disk, which is
soldered to the heat sink on
its HR side using indium
solder, and the external OC
mirror [47]

Fig. 5.49 Mechanical design
of the disk heat sink with
water-jet cooling [47]

5.3.3 The Thin-Disk Laser

The basic idea behind the thin-disk laser is an axial, one-dimensional heat flow
within the laser medium towards the heat sink. Therefore, at any axial point along
the laser medium, a homogeneous radial temperature distribution is predicted to
occur and consequently, no thermal lensing results. The schematic of such a laser is
depicted in Fig. 5.48. The laser-active medium is a disk with a diameter of several
mm to some cm, with a thickness of some 100 µm. The disk is AR coated for a
high transmission at its front face, and HR coated at its back face, with which it
is soldered to the copper heat sink using indium or gold solder. The laser cavity is
formed by the HR coating on the disk and an external OC mirror. This mirror allows
control of the cavity mode size to match the pumped area in the disk.

The heat-sink assembly of the disk is shown in Fig. 5.49. The laser-active disk
is soldered with indium on to a larger copper disk, which itself is mounted on to
a hollow copper block. Inside this block, a water jet is emitted that hits the back
surface of the copper disk for efficient cooling. Water-jet cooling is chosen as it is
much more efficient than a simple laminar flow along the copper surface.

The pumping scheme of a disk laser differs from usual longitudinal pumping, as
the disk itself shows a small single-pass absorption as a result of the low thickness
of the disk. In order to enhance the pump absorption, the pump beam makes multi-
ple passes through the disk. This multi-pass pumping scheme is shown in Fig. 5.50.
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Fig. 5.50 Schematic of the pump system of a disk laser, using a parabolic mirror and retro-reflect-
ing prisms to achieve a total 24-pass (m = 12) propagation of the pump radiation [47]

The pump light, usually emitted by a highly-multi-mode fiber or a glass-rod ho-
mogenizer, is collimated by a first lens and directed on to a parabolic mirror, which
images the fiber output on to the disk. The non-absorbed pump power then is re-
flected from the disk, hits the parabolic mirror on the opposite radial point and
is collimated again. Around the disk-heat-sink assembly, two 180◦ retro-reflecting
prisms are used to flip the residual pump beam propagation path and to direct it on
to another spot on the parabolic mirror to perform a second pass through the disk.
After being re-collimated by the parabolic mirror, the residual pump light after the
second pass hits the other 180◦ retro-reflecting prism, which is tilted with respect
to the first prism. This optical configuration causes the pump beam to make multi-
ple passes through the disk. The optical path lengths in this pump arrangement are
chosen so that the disk is imaged on to itself after each pump pass (relay imaging).

The theoretical number of passes only depends on the tilt angle between the two
prisms. After the first m passes, where m denotes the number of passes through one
disk thickness L, the beam hits one of the prisms symmetrically on the reflection
axis, causing the beam to be retro-reflected. Therefore, this multi-pass pump optic
achieves in total 2m pump passes through the disk. The corresponding tilt angle
between the two prisms is thus

γ = 360◦

2m
, (5.131)

i.e. 15◦ for the 2m = 24 pass setup shown in Fig. 5.50.
The effective number of pump passes through the disk, however, depends

strongly on the pump absorption of the disk and the values of the reflectivity of
the mirror, prism and disk coatings and the transmission of the AR coating on the
disk. Assuming a single-pass disk transmission of

TD = e−αpL, (5.132)

with αp being the pump absorption coefficient and L the disk thickness, we obtain
a residual power after an even number of m passes, i.e. after a number of m

2 back-
and forth passes (reflections) through the disk, of

Pres,m = (R2
PRPR

)m
2 −1(

T 2
HTRHRTD

)m
RPPinc, (5.133)
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Fig. 5.51 Pump absorption
efficiency of a disk laser with
a total 24-pass (m = 12)
propagation of the pump
radiation for various
single-pass disk transmissions
and HT coatings

where, Pinc is the incident pump power entering the disk-laser module, RP the re-
flectivity of the parabolic mirror, THT the transmission of the anti-reflection coating
on the disk, RHR the reflectivity of the HR coating on the disk for the pump light
and RPR the total reflectivity of a prism for one 180◦ turn. Thus, after the full 2m
passes the residual pump power is given by

Pres,2m = (R2
PRPR

)m−1(
T 2

HTRHRTD
)2m

RPPinc. (5.134)

In analogy, the amount of pump power absorbed during the m
2 th reflection on the

disk is given for an even m by

Pabs,m = (1 − TD)(1 + TDRHR)
(
R2
PRPR

)m
2 −1(

T 2
HTRHRT

2
D

)m
2 −1

RPPinc. (5.135)

Summing up all the contributions from the different passes, we obtain the total ab-
sorbed pump power as

P tot
abs,2m =

m∑
k=1

Pabs,2k, (5.136)

resulting in

P tot
abs,2m = RP (1 − TD)(1 + TDRHR)

1 − (RHRR
2
PRPRT

2
DT

2
HT)

m

1 − RHRR
2
PRPRT

2
DT

2
HT

Pinc. (5.137)

In order to see the effect of the different reflectivities and transmission values on the
total pump absorption, we assume a constant reflectivity value for all the different
reflective surfaces of RHR = RP = RPR = R. This results in a pump absorption
efficiency of

ηtot
abs,2m = R(1 − TD)(1 + TDR)

1 − (R4T 2
DT

2
HT)

m

1 − R4T 2
DT

2
HT

, (5.138)

which is shown for different values of TD and THT for the case m = 12 in Fig. 5.51.
It can be seen that for an efficient pump absorption, very good, highly-reflective,
mirror coatings are necessary, and a very good anti-reflection coating on the disk
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Fig. 5.52 Schematic of a
multi-disk setup with a single
cavity, in which the total
single-pass gain is increased

has to be used. These coatings are especially critical as they have to provide this
performance at all the different incident angles occurring for the pump beams, taking
into account that the pump light is usually unpolarized after the homogenization in
the fiber or glass rod.

Another important point arises from the low gain resulting from the low thickness
of the disk. Therefore, a high OC reflectivity has to be used and the intracavity losses
have to be minimized to very low values in order to obtain a high laser efficiency. To
increase the single-pass gain, several discs can be arranged within one laser cavity
as shown in Fig. 5.52. This cavity consists of an OC and a HR mirror at the ends,
and a zig-zag path between the different discs using passive folding mirrors. Using
this multi-disk design, Yb3+:YAG thin-disk lasers with output powers of >10 kW
have been realized for welding and cutting applications in industry.

Power Limitation in Disk Lasers

A main limitation of the performance of disk lasers is the maximum extractable
power per disk. This is a function of the disk size and is limited by amplified-
spontaneous emission (ASE) mainly occurring in the transverse direction in the
disk, where the gain-length product is much larger than in the axial resonator-mode
direction. This aspect is especially important for closed paths within the disk, for
which at each intersection with the disk boundary a total-internal reflection occurs,
the round-trip losses on the path can become very low, resulting in a self oscilla-
tion of the disk on the internally trapped modes, called parasitic modes. At high
OC transmissions, which are used in high-power lasers, these modes may therefore
reach their threshold at a pump power much lower than the threshold of the cavity
modes. Especially for power scaling, in which in principle an increase of the disk
diameter at constant pump intensity should yield very high output powers, the onset
of parasitic lasing can set an upper limit on the disk size and output performance of
the laser. In a circular disk laser, three different parasitic modes can occur, depend-
ing on their main propagation schemes: ring modes, transverse modes and radial
modes.

The ring modes are oscillations that are only reflected on the cylindrical outer
surface of the disk. Assuming that an efficient reflection will only occur at incident
angles θr on that surface, which are larger than the critical angle of total-internal
reflection

θc = arcsin
1

n
(5.139)
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Fig. 5.53 Sketch of a
parasitic ASE ring mode
reflected on the cylindrical
outer surface of the disk

Fig. 5.54 Transverse mode
propagation through the disk
center

in the laser medium, we directly obtain from Fig. 5.53 that these modes cannot pass
an inner disk region with a radius Rmin given by

Rmin = D

2
sin θc = D

2n
, (5.140)

where, D is the diameter of the disk and n its refractive index. This relation, is
therefore, the key to the suppression of the ring modes in a disk laser. The radius
of the pumped area just needs to be smaller than the minimum ring-mode distance
from the disk center, given by Rmin, and possible ring modes do not exhibit a gain
during their propagation. In the case of a quasi-three-level laser medium like Yb3+-
doped crystals, the strong reabsorption on the laser line in the unpumped part creates
an additional loss, helping to suppress the ring modes further. Also, a hybrid disk
can be used, in which the outer part is doped with a strongly absorbing ion.

The transverse modes are reflected on the front and back surface of the disk and
on the cylindrical part. The maximum gain per mode round trip is obtained for the
transverse mode, which propagates through the disk center, shown in Fig. 5.54. Ac-
counting for the angle-dependent reflectivities of the three disk surfaces, this mode
should start oscillating when the gain along the propagation path compensates for
the reflection losses, i.e. when

RkHR(θa)R
k
HT(θa)RC(θa)e

gD
sin θa = 1, (5.141)

where, RHR(θa), RHT(θa) and RC(θa) are the angle-dependent reflectivities of the
HR, HT and cylindrical side of the disk, and k is the number of reflections, given by

k = D

2L tan θa
. (5.142)
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Taking into account that the gain-diameter product gD in Eq. (5.141) accounts for
the average gain of the mode propagating from one side to the other, and assuming
that only an inner diameter d of the disk is pumped to suppress the ring modes, this
average gain-diameter product can be expressed by

gD = gmd − α(D − d), (5.143)

where, gm = σe(λm)N2 −σa(λm)N1 is the gain coefficient at the mode’s wavelength
λm inside the pumped volume, assuming homogeneous populations densities within
the disk, and α = σa(λm)N1 the absorption coefficient of this wavelength in the
unpumped part of the disk.

As any kind of optical coating cannot change the total-internal reflection property
of an optical medium with respect to its surrounding refractive index, the transverse
modes will only be efficiently reflected at the HT side for θa > θc. Thus a simulta-
neous total-internal reflection on the cylindrical surface can only occur at angles of

θc < θa < 90◦ − θc. (5.144)

For YAG, this results in 33.3◦ < θa < 56.7◦. If we now assume that all the reflections
are perfect, it follows directly from Eq. (5.143) and Eq. (5.141), that in a four-level-
laser medium (α = 0) the parasitic modes will immediately oscillate as gmd ≥ 0,
and no laser action will occur through the cavity modes. For a quasi-three-level
laser medium (α > 0), we can rewrite the parasitic mode threshold gD ≥ 0 using
N1 + N2 = Ntot as

N2

Ntot
≥ σa(λm)

σe(λm) + σa(λm)
+
(
D

d
− 1

)
σa(λm). (5.145)

As a result of the McCumber relation in Eq. (2.32) the absorption cross section
decreases exponentially with respect to the emission cross section at the long wave-
length edge of the emission spectrum. Therefore, Eq. (5.145) can be always fulfilled
for a given N2 by a long-enough wavelength of the parasitic mode.

In the case of a non-perfect reflection, the condition for the onset of parasitic
lasing, Eq. (5.141), results in a minimum reflection coefficient

Rk(θa) = RkHR(θa)R
k
HT(θa)RC(θa), (5.146)

which is given by

lnRk(θa) ≥ Ntot

sin θa
D

(
σa(λm) − d

D

N2

Ntot

(
σe(λm) + σa(λm)

))
. (5.147)

In the case of a perfect reflection on the HR and HT sides and RC(θa) < 1, we
obtain a maximum gain for θa = θc. Then, the minimum reflection of the cylindrical
surface is obtained as

lnRC(θc) ≥ NtotnD

(
σa(λm) − d

D

N2

Ntot

(
σe(λm) + σa(λm)

))
. (5.148)

It can be shown that the minimum reflection RC(θa) in this case can be very small,
resulting in the need for a strong control of this value in order to suppress the trans-
verse modes. In the other important case when a non-perfect reflection RHR(θa) < 1
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Fig. 5.55 Suppression of
transverse and radial modes
by a non-cylindrical disk
surface

is assumed at the HR side, whilst all other sides are perfectly reflecting, we ob-
tain a maximum gain for θa = 90◦ − θc. This modes shows the lowest number of
reflections on the HR side. The minimum reflectivity then results in

lnRHR
(
90◦ − θc

)≥ 2nLNtot

(
σa(λm) − d

D

N2

Ntot

(
σe(λm) + σa(λm)

))
. (5.149)

In CW Yb3+:YAG disk lasers this value can be as high as RHR(θa) ∼ 0.99 without
causing transverse modes to oscillate, whilst in Q-switched systems with a higher
inversion density, the reflectivity of the HR mirror in the angular range discussed
here needs to be low enough, e.g. RHR(θa) < 0.8 to suppress the transverse modes.
A low HR reflectivity, however, results in a larger amount of fluorescence leaking
through the HR mirror. This fluorescence gets absorbed by the heat sink and thus
increases the cooling power necessary in order to maintain the disk temperature. As
can also be seen in Eq. (5.149), a short crystal length L is beneficial to increase the
oscillation threshold of the transverse modes. However, this has to be compensated
for by a larger number of pump passes.

The radial modes do not show any total-internal reflection and oscillate through
the disk center on the Fresnel reflection provided by the cylindrical disk surface, i.e.
at θa = 90◦. They usually do not occur in cw lasers as a result of the low inversion
density in cwW operation and the corresponding low gain. However, radial modes
can occur in Q-switched disk lasers which show a much higher inversion density.
The threshold for the radial modes can thus be expressed by

lnRC
(
90◦)≥ NtotD

(
σa(λm) − d

D

N2

Ntot

(
σe(λm) + σa(λm)

))
. (5.150)

To suppress the transverse and radial modes, the outer disk surface can be shaped
in a conical form shown in Fig. 5.55. Starting with an incident angle on to the bottom
surface of θa the mode will be reflected from the outer surface and its incidence
angle on the top surface will be

ε =| θa − 2γ | . (5.151)

The mode is thus non-total-internal reflecting for

90◦ − θc

2
< γ < θc, (5.152)

which can only be fulfilled for n < 2, e.g. for YAG, where 28.4◦ < γ < 33.3◦.
A mode reflecting totally on the upper surface needs a cone angle γ of

90◦ − 2θc < γ < θc (5.153)



References 165

to be non-total-internal reflecting on the bottom surface, resulting in an incident
angle of

β =| 90◦ − γ − θa | . (5.154)

For n < 2, this relation is also fulfilled when Eq. (5.152) is fulfilled. Thus, for YAG,
a cone angle in the range 28.4◦ < γ < 33.3◦ has to be chosen for transverse and
radial mode suppression.
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A
Absorption, 2, 6
Absorption cross section, 15, 18
Absorption-averaged beam radius, 119
Acceptance solid angle, 141
Acoustic phonons, 154, 156
Acousto-optic figure of merit, 82
Acousto-optic modulator, 71, 81, 94, 151

external diffraction angle, 83
internal deflection angle, 83

Active mode locking, 94
Active Q-switching, 75
Amplified spontaneous emission (ASE), 149,

150
Anti-Stokes process, 154
Arc length, 113
ASE threshold, 152
Azimuthal mode number, 143

B
Beam quality, 65
Beam quality factor, 66

effective wavelength, 66
Bessel differential equations, 143
Boltzmann distribution, 24
Bose-Einstein distribution, 11
Bragg angle, 83
Bragg gratings, 148
Bragg scattering, 83
Brewster setup, 64
Brillouin amplification, 155
Brillouin line width, 155
Brillouin pump radiation, 154
Brillouin scattering, 154
Brillouin threshold, 155
Brillouin-scattering rate, 154
Build-up time, 79

Bulk pulse compression, 100

C
Casimir force, 13
Cavity dumping, 85
Cavity resonance, 70
Chemical potential wavelength, 31
Chirp, 93
Chirped-pulse amplification, 102
CO2 laser, 105
Coherence, 46
Coherent photon number, 74
Complex beam radius, 57
Configurational coordinate model, 132
Conjugate variables, 66
Continuous wave (cw), 35
Coulomb interaction, 28
Coupling parameter, 127
Cr2+ :ZnSe laser, 64, 135
Cr3+ :LiCaAlF6 laser, 135
Cr3+ :LiSrAlF6 laser, 135
Cross relaxation, 127
Cross section

spectroscopic, 31
Cross sections, 14
Cross-relaxation process, 121
Crystal field, 30
Crystal growth, 108
Crystal-field splitting, 131
Czochralski method, 108, 133

D
Damage threshold, 154
Damped harmonic oscillator, 42
Diffraction grating, 101
Diffraction loss, 67, 69
Diffraction orders, 82
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Diffusion, 128
Dipole approximation, 8
Dipole radiation, 5
Dipole-dipole interaction, 127
Discharge

critically damped, 114
inductance-free, 116
overdamped, 114
underdamped, 114

Discharge time constant, 112
Discharge tube, 106
Dispersive medium, 98
Divergence angle, 58
Donor-acceptor coupling parameter, 128
Donor-acceptor distance, 128
Donor-donor coupling parameter, 128
Doppler broadening, 19, 107
Double-clad fiber, 141, 142
Dye lasers, 105

E
Effective mode area, 155
Effective pump beam area, 119
Effective pump beam radius, 119
Einstein coefficient of stimulated emission, 9
Einstein coefficients, 3, 6
Einstein relations, 1
Electric dipole transitions, 106
Electro-optic modulator, 81, 84, 94, 151
Electrostriction, 154
Emission cross section, 15
End-face bulging, 137
Energy extraction efficiency, 81
Energy transfer processes, 33
Energy-transfer processes, 126
Equation of motion, 45
Equivalent beam radius

Hermite-Gaussian beam, 64
Laguerre-Gaussian beam, 61

Etalon, 72
Explosion energy, 113
External cavity, 147

F
Fabry-Perot resonator, 67
Faraday rotator, 71
Fast migration, 128
Feedback condition, 33
Fermi’s golden rule, 7, 30
Fiber combiner, 148
Fiber lasers, 140
Fiber parameter, 143
Fiber-coupled laser diodes, 118
Finesse, 70

Flashlamp, 112
impeadence matching, 117

Flashlamp lifetime, 113
Flashlamp parameter, 113
Flashlamp pumping, 110
Flashlamp resistance, 113
Flashlamp-pumped laser, 112
Fluorescence decay time, 31
Fluorescence intensity, 3
Four-level scheme, 26
Fourier spectrum, 96
Fourier transform, 93
Fourier transformation, 19, 98
Franck-Condon principle, 133
Franck-Condon shift, 132
Frantz-Nodvik model, 86
Free-electron laser, 105
Free-running, 149
Fresnel number, 67
Fresnel reflection loss, 107
Fresnel reflectivity, 147
Füchtbauer-Ladenburg equation, 32
Füchtbauer-Ladenburg relation, 17
Full width at half maximum (FWHM), 19
Fundamental Q-switch equation, 80
Fundamental resonator matrix, 52

G
Gaussian beam, 56
Gaussian beams and ray matrices, 60
Gaussian distribution in fiber, 144
Gaussian function, 20
Gaussian parameter, 92, 98
Geometrical optics, 49
Glass matrix, 108
Gouy phase shift, 58
Grating compressor, 101
Grating pulse compression, 101
Ground-state depletion, 78, 153
Group velocity, 99
Group-velocity dispersion, 99

H
Half-wave voltage, 84
Hamilton function, 12
Hard aperture, 68
Harmonic oscillator, 12
He-Ne laser, 96, 105
Heat-transfer equation, 136
Heisenberg’s uncertainty principle, 18
Heisenberg’s uncertainty relation, 13
Hermite polynomials, 63
Hermite-Gaussian beam, 64
Hermite-Gaussian modes, 61
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mode numbers, 63
Hohlraum resonator, 9
Hole burning, 69
Hopping model, 128
Huygens’ principle, 56

I
Inhomogeneous broadening, 108
Initial logarithmic gain, 78
Inner tube diameter, 113
Inner-shell electrons, 108
Interaction Hamiltonian, 126
Intracavity frequency modulator, 94
Inversion, 37

J
Jahn-Teller effect, 131

K
K-space, 10
Kerr lens, 97
Kerr medium, 97
Kerr-lens mode-locking, 97
Kirchhoff’s law, 4

L
Laguerre polynomials, 61
Laguerre-Gaussian beam, 61
Laguerre-Gaussian modes, 61

angular mode number, 61
radial mode number, 61

Lambert-Beer law, 15
Larmor’s formula, 5
LASER

acronym, 23
Laser cavity, 33
Laser diode pumping, 110
Laser intensity, 35
Laser threshold, 38
Lifetime, 31

fluorescence, 31
intrinsic, 32
non radiative, 32
radiative, 32
spontaneous, 32

Ligand charge, 131
Line broadening, 14

homogeneous, 18, 19
inhomogeneous, 19
simultaneous processes, 20

Linearized rate equations, 41
Logarithmic threshold gain, 78
Longitudinal mode selection, 71
Longitudinal modes, 69

Longitudinal phonons, 154
Longitudinally pumped laser, 118
Lorentzian function, 19, 21
Lorentzian line shape, 155
LP modes, 143

M
M2 beam invariant, 65
Macroscopic de-excitation rate, 128
Manifolds, 28
Matrix elements, 6, 30
Matrix optics, 49
Maximum allowable pump power, 153
Maximum gain wavelength, 145
Maxwell distribution, 19, 20
Maxwell Equations, 12
McCumber relation, 31, 163
Metastable levels, 106
Microscopic transfer parameters, 129
Migration, 127
Mode density, 9
Mode field radius, 144
Mode locking, 92
Mode overlap factor, 145
Mode solid angle, 44
Mode spacing, 70
Mode structure of space, 9
Mode-lock pulse train, 96
Multi-phonon relaxation, 20, 32
Multi-phonon transition rate, 32

spontaneous, 32

N
Natural line width, 18, 155
Nd3+ -laser, 109
Non-linear susceptibility, 156
Normalized frequency, 143
Numerical aperture, 118, 141

O
Operator

annihilation, 12
creation, 12
momentum, 12
occupation number, 12
position, 12

Optical phonons, 156
Optical resonator, 33
Optimum focus position, 120
Outer-shell electrons, 108
Output coupler, 33
Output coupler transmission, 39

P
Parabolic index profile, 137
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Parabolic mirror, 159
Parasitic modes, 161
Paraxial approximation, 50
Paraxial beam, 50
Paraxial wave equation, 57
Partial radius overlap, 53
Partition function, 30
Passive mode locking, 96
Passive Q-switching, 86
Peak discharge current, 117
Perturbation theory, 7
Phase diffusion, 46
Phase fluctuations, 46
Phase front curvature radius, 57
Phase velocity, 99
Phonon, 154
Phonon energy

dominating, 32
Phonon occupation number, 32
Photoelastic effect, 137
Photon density, 36
Photon lifetime, 37, 69
Photonic-crystal fibers, 157
Planck’s law, 1, 2, 11
Pockels cell, 84
Pockels effect, 84
Polarization vector, 56
Population density, 35
Population inversion, 23, 33

effective, 23
Potential model, 44
Power limits, 153
Pressure broadening, 18
Prism compression, 102
Prism compressor, 102
Prism dispersion compensator, 102
Propagation constant, 98, 143
Pulse compression, 98
Pulse stretcher, 102
Pump absorption efficiency, 36, 39, 160
Pump efficiency, 77
Pump intensity, 35
Pump parameter r , 78
Pump saturation intensity, 38
Pump spot, 118
Pump-spot diameter, 119

Q
Q-factor, 73
Q-switch, 75
Q-switch peak power, 81
Q-switch pulse build-up, 77
Q-switch scaling laws, 89
Q-switched fiber lasers, 150

Quantum efficiency, 33, 39
Quantum yield, 123, 134
Quarter-wave voltage, 84
Quasi-continuous operation, 91
Quasi-four-level scheme, 27
Quasi-homogeneous-broadening effect, 149
Quasi-three-level laser, 27, 121
Quasi-three-level scheme, 27

R
Radial modes, 164
Radiation trapping, 32
Raman amplification, 156
Raman gain, 156
Raman line width, 156
Raman scattering, 156
Raman threshold, 156
Raman-Nath scattering, 82
Rare-earth ions, 108
Rate equations, 35
Rayleigh range, 57
Rayleigh-Jeans law, 2, 4, 11
Reabsorption, 144
Reciprocal space, 10
Reciprocity, 30, 31
Regenerative amplifier, 103
Relaxation oscillations, 41
Relay imaging, 159
Repetition period, 89
Repetition rate, 89, 153
Repetitive Q-switching, 89
Repetitively Q-switched fiber laser, 152
Residual pump power, 160
Resonator eigenvalues, 52
Resonator eigenvectors, 52
Resonator line width, 70
Resonator mode calculation, 60
Resonator modes, 49
Resonator modulation, 75
Resonator parameters, 52, 54
Retro-reflecting prisms, 159
Ring modes, 161
Rod temperature, 136
Round trip, 60
Round-trip loss, 96
Round-trip resonator matrix, 60
Round-trip time, 85, 96
Ruby laser (Cr3+ :Al2O3), 130

S
Saturable absorber, 86, 96
Saturation fluence, 86
Saturation intensity, 86, 123
SBS threshold, 155
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Scalar wave equation, 56, 143
Schawlow-Townes line width, 72
Second threshold, 89
Selection rules, 106
SESAM, 97, 98
Side pumping, 120
Single-crystalline seed, 108
Single-pass disk transmission, 159
Slope efficiency, 39, 153
Soft aperture, 68
Solid-state lasers, 108
Spatial hole burning, 70
Spectral hole burning, 70
Spectral mode density of space, 11
Spherical phase front, 57
Spiking, 43
Spin-orbit (LS) coupling, 28
Spin-orbit splitting, 131
Spliced fibers, 148
Spontaneous emission, 2, 5, 9
Stability diagram, 53
Stable resonator, 52
Standing waves, 10
Stark effect, 19, 28
Stark levels, 28
Stark splitting, 28
Stationary operation, 35, 38
Statistical moments, 65
Step-index fiber, 141
Stimulated Brillouin scattering (SBS), 154
Stimulated emission, 2, 6
Stimulated Raman scattering (SRS), 156
Stokes process, 154
Stress-induced birefringence, 139
Super-migration, 128, 129
Suppression of transverse and radial modes,

164

T
TEM-modes, 56
TEM00 fundamental mode, 65
Thermal lens, 137
Thermal lensing, 136
Thermal roll-over, 149
Thermal stress, 138
Thermal-shock parameter, 139
Thin-disk laser, 158
Thin-disk soldering, 158
Three-level scheme, 25
Threshold gain, 110
Threshold pump intensity, 38
Threshold pump power, 119

Ti3+ :sapphire laser, 130
Times-above-threshold operation, 78
Tm3+ :silica laser, 149
Tm3+ :ZBLAN, 123
Tm3+ laser, 121
Total-internal reflection, 163
Total-internal-reflection, 141
Transform limited, 94
Transition probabilities, 30
Transition rate, 35
Transition-metal ions, 108
Transmission line, 117
Transverse electromagnetic modes, 56
Transverse Laplacian operator, 57
Transverse mode selection, 66
Transverse modes, 61
Transverse parasitic modes, 162
Transverse pumping, 120
Tuneable lasers, 108
Two-level scheme, 24
Two-mirror resonator, 51

U
Ultra-short pulses, 92
Unstable resonator, 52
Upconversion, 123, 127

V
V parameter, 143
Vacuum fluctuations, 11, 13, 74
Vacuum noise photon density, 44
Vacuum noise spectral intensity, 44
Vibronic states, 132
Voigt profile, 21
Volumetric heat load, 136

W
Wave-guiding effect, 99

X
Xenon-filled flashlamp, 113

Y
YALO (YAlO3), 123
YLF (YLiF4), 123
Yttrium-aluminum-garnet (YAG), 109

Z
Zero-point energy, 13
Zero-point fluctuations

phonon field, 32
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