
Learn to
Program with
Python 3

A Step-by-Step Guide to Programming
—
Second Edition
—
Irv Kalb

Learn to Program
with Python 3

A Step-by-Step Guide
to Programming

Second Edition

Irv Kalb

Learn to Program with Python 3

ISBN-13 (pbk): 978-1-4842-3878-3 ISBN-13 (electronic): 978-1-4842-3879-0
https://doi.org/10.1007/978-1-4842-3879-0

Library of Congress Control Number: 2018954633

Copyright © 2018 by Irv Kalb

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484238783. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Irv Kalb
Mountain View, California, USA

https://doi.org/10.1007/978-1-4842-3879-0

This book is dedicated to the memory of my mother, Lorraine Kalb.

I started learning about programming when I was 16 years old,
at Columbia High School in Maplewood, New Jersey.

We were extremely fortunate to have a very early computer,
an IBM 1130, that students could use.

I remember learning the basics of the Fortran programming language
and writing a simple program that would add two numbers together
and print the result. I was thrilled when I finally got my program to
work correctly. It was a rewarding feeling to be able to get this huge,

complicated machine to do exactly what I wanted it to do.

I clearly remember explaining to my mother that I wrote this
program that got the computer to add 9 and 5 and come up with an

answer of 14. She said that she didn’t need a computer to do that.
I tried to explain to her that getting the answer of 14 was not the
important part. What was important was that I had written a

program that would add any two numbers and print the result. She
still didn’t get it, but she was happy for me and very supportive.

Hopefully, through my explanations in this book, you will get it.

v

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Table of Contents

Chapter 1: Getting Started �� 1

What Is Python? .. 2

Installing Python ... 2

IDLE and the Python Shell ... 3

Hello World .. 4

Creating, Saving, and Running a Python File... 6

IDLE on Multiple Platforms .. 8

Summary... 9

Chapter 2: Variables and Assignment Statements ��� 11

A Sample Python Program .. 12

The Building Blocks of Programming .. 14

Four Types of Data .. 15

Integers ... 15

Floats ... 15

Strings ... 16

Booleans .. 16

Examples of Data ... 17

Form with Underlying Data .. 18

Variables ... 19

Assignment Statements .. 24

vi

Variable Names ... 27

Naming Convention ... 28

Keywords ... 29

Case Sensitivity ... 31

More Complicated Assignment Statements .. 32

Print Statements ... 33

Simple Math .. 35

Order of Operations ... 38

First Python Programs .. 39

Shorthand Naming Convention ... 41

Adding Comments ... 43

Full-Line Comment .. 43

Add a Comment After a Line of Code ... 44

Multiline Comment .. 44

Whitespace ... 45

Errors .. 46

Syntax Error ... 46

Exception Error .. 48

Logic Error ... 49

Summary... 49

Chapter 3: Built-in Functions �� 51

Overview of Built-in Functions .. 51

Function Call ... 52

Arguments... 52

Results .. 53

Built-in type Function .. 53

Getting Input from the User ... 55

Conversion Functions .. 56

int Function .. 57

float Function ... 57

str Function ... 57

TABLE OF CONTENTS

vii

First Real Programs .. 58

Concatenation ... 61

Another Programming Exercise .. 62

Using Function Calls Inside Assignment Statements .. 63

Summary... 65

Chapter 4: User-Defined Functions ��� 67

A Recipe as an Analogy for Building Software .. 68

Ingredients .. 68

Directions .. 68

Definition of a Function ... 71

Building Our First Function ... 72

Calling a User-Defined Function .. 73

Receiving Data in a User-Defined Function: Parameters .. 76

Building User-Defined Functions with Parameters ... 78

Building a Simple Function That Does Addition .. 81

Building a Function to Calculate an Average ... 81

Returning a Value from a Function: The return Statement .. 82

Returning No Value: None ... 84

Returning More Than One Value .. 85

Specific and General Variable Names in Calls and Functions ... 86

Temperature Conversion Functions .. 88

Placement of Functions in a Python File ... 89

Never Write Multiple Copies of the Same Code .. 90

Constants .. 91

Scope .. 93

Global Variables and Local Variables with the Same Names .. 97

Finding Errors in Functions: Traceback ... 98

Summary... 101

TABLE OF CONTENTS

viii

Chapter 5: if, else, and elif Statements ��� 103

Flowcharting ... 104

The if Statement ... 107

Comparison Operators .. 109

Examples of if Statements .. 109

Nested if Statement .. 111

The else Statement ... 111

Using if/else Inside a Function .. 114

The elif Statement ... 115

Using Many elif Statements .. 118

A Grading Program .. 120

A Small Sample Program: Absolute Value ... 120

Programming Challenges .. 123

Negative, Positive, Zero ... 123

isSquare .. 125

isEven .. 128

isRectangle .. 130

Conditional Logic .. 132

The Logical not Operator ... 132

The Logical and Operator .. 133

The Logical or Operator ... 135

Precedence of Comparison and Logical Operators ... 136

Booleans in if Statements ... 136

Program to Calculate Shipping ... 137

Summary... 141

Chapter 6: Loops ��� 143

User’s View of the Game ... 144

Loops .. 145

The while Statement ... 147

First Loop in a Real Program ... 150

TABLE OF CONTENTS

ix

Increment and Decrement .. 151

Running a Program Multiple Times ... 152

Python’s Built-in Packages ... 154

Generating a Random Number .. 155

Simulation of Flipping a Coin .. 157

Other Examples of Using Random Numbers ... 158

Creating an Infinite Loop ... 160

A New Style of Building a Loop: while True, and break ... 160

Asking If the User Wants to Repeat: the Empty String .. 163

Pseudocode... 164

Building the Guess the Number Program .. 164

Playing a Game Multiple Times ... 171

Error Detection with try/except ... 173

The continue Statement .. 175

Full Game .. 176

Building Error-Checking Utility Functions ... 178

Coding Challenge .. 179

Summary... 181

Chapter 7: Lists��� 183

Collections of Data .. 184

Lists .. 185

Elements ... 185

Python Syntax for a List .. 186

Empty List ... 187

Position of an Element in a List: Index .. 187

Accessing an Element in a List ... 189

Using a Variable or Expression as an Index in a List ... 190

Changing a Value in a List ... 192

Using Negative Indices .. 192

Building a Simple Mad Libs Game .. 193

TABLE OF CONTENTS

x

Adding a List to Our Mad Libs Game ... 195

Determining the Number of Elements in a List: The len Function ... 196

Programming Challenge 1 .. 198

Using a List Argument with a Function ... 200

Accessing All Elements of a List: Iteration .. 203

for Statements and for Loops ... 204

Programming Challenge 2 .. 206

Generating a Range of Numbers ... 207

Programming Challenge 3 .. 208

Scientific Simulations ... 209

List Manipulation .. 214

List Manipulation Example: an Inventory Example.. 216

Pizza Toppings Example .. 217

Summary... 223

Chapter 8: Strings ��� 225

len Function Applied to Strings ... 226

Indexing Characters in a String ... 226

Accessing Characters in a String .. 227

Iterating Through Characters in a String ... 228

Creating a Substring: A Slice ... 230

Programming Challenge 1: Creating a Slice ... 232

Additional Slicing Syntax .. 235

Slicing as Applied to a List .. 236

Strings Are Not Changeable .. 236

Programming Challenge 2: Searching a String ... 237

Built-in String Operations ... 238

Examples of String Operations .. 240

Programming Challenge 3: Directory Style ... 241

Summary... 243

TABLE OF CONTENTS

xi

Chapter 9: File Input/Output ��� 245

Saving Files on a Computer .. 246

Defining a Path to a File .. 247

Reading from and Writing to a File ... 249

File Handle .. 250

The Python os Package ... 251

Building Reusable File I/O Functions .. 252

Example Using Our File I/O Functions ... 254

Importing Our Own Modules ... 255

Saving Data to a File and Reading It Back .. 257

Building an Adding Game .. 260

Programming Challenge 1 .. 260

Programming Challenge 2 .. 261

Writing/Reading One Piece of Data to and from a File .. 263

Writing/Reading Multiple Pieces of Data to and from a File ... 266

The join Function .. 266

The split Function ... 267

Final Version of the Adding Game ... 268

Writing and Reading a Line at a Time with a File .. 271

Example: Multiple Choice Test .. 275

A Compiled Version of a Module ... 281

Summary... 282

Chapter 10: Internet Data ��� 283

Request/Response Model ... 283

Getting a Stock Price .. 285

Pretending to Be a Browser .. 286

API ... 288

Requests with Values .. 288

API Key .. 289

Example Program to Get Stock Price Information Using an API .. 291

TABLE OF CONTENTS

xii

Example Program to Get Weather Information .. 294

URL Encoding .. 297

Summary... 299

Chapter 11: Data Structures ��� 301

Tuples .. 302

Lists of Lists .. 305

Representing a Grid or a Spreadsheet .. 306

Representing the World of an Adventure Game .. 307

Reading a Comma-Separated Value (.csv) File ... 311

Dictionary .. 316

Using the in Operator on a Dictionary ... 319

Programming Challenge ... 320

A Python Dictionary to Represent a Programming Dictionary .. 322

Iterating Through a Dictionary .. 323

Combining Lists and Dictionaries ... 325

JSON: JavaScript Object Notation ... 328

Example Program to Get Weather Data ... 331

XML Data ... 334

Accessing Repeating Groupings in JSON and XML ... 338

Summary... 341

Chapter 12: Where to Go from Here �� 343

Python Language Documentation ... 343

Python Standard Library ... 344

Python External Packages... 345

Python Development Environments .. 346

Places to Find Answers to Questions .. 347

Projects and Practice, Practice, Practice ... 347

Summary... 348

Index ��� 349

TABLE OF CONTENTS

xiii

About the Author

Irv Kalb is an adjunct professor at UCSC (University

of California, Santa Cruz) Extension Silicon Valley and

Cogswell Polytechnical College. He has been teaching

software development classes since 2010.

Irv has worked as a software developer, manager of

software developers, and manager of software development

projects. He has been an independent consultant for many

years with his own company, Furry Pants Productions,

where he has concentrated on educational software. Prior

to that, he worked as an employee for a number of high-tech companies. He has BS

and MS degrees in computer science.

Recently, he has been a mentor to a number of local competitive robotics teams.

His previous publications include numerous technical articles, two children’s

edutainment CD-ROMs (about Darby the Dalmatian), an online e-book on object- oriented

programming in the Lingo programming language, and the first book on Ultimate Frisbee,

Ultimate: Fundamentals of the Sport (Revolutionary Publications, 1983).

He was highly involved in the early development of the sport of Ultimate Frisbee.

xv

About the Technical Reviewer

Mark Furman, MBA is a systems engineer, author, teacher, and entrepreneur. For the

last 16 years he has worked in the information technology field with a focus on Linux-

based systems and programming in Python. He’s worked for a range of companies

including Host Gator, Interland, Suntrust Bank, AT&T, and Winn-Dixie. Currently he

has been focusing his career on the maker movement and has launched Tech Forge

(techforge.org), which focuses on helping people start a makerspace and help sustain

current spaces. He holds an MBA degree from Ohio University. You can follow him on

Twitter @mfurman.

xvii

Acknowledgments

I would like to thank the following people, without whom this book would not have been

possible:

My wonderful wife, Doreen, who is the glue that keeps our family together.

Our two sons, Jamie and Robbie, who keep us on our toes.

Our two cats, Chester and Cody (whom we think of as people).

Mariah Armstrong, who created all the graphics in this book. I am not an artist

(I don’t even play one on TV). Mariah was able to take my “chicken scratches” and turn

them into very clear and understandable pieces of art.

Chris Sasso and Ravi Chityala for their technical reviews and helpful suggestions.

Luke Kwan, Catherine Chanse, and Christina Ri at the Art Institute of California-

Silicon Valley.

Andy Hou at the UCSC-Silicon Valley Extension.

Jerome Solomon at Cogswell Polytechnical College, who first suggested that I

consider getting into Python.

Jill Balzano, Jim Markham, Mark Furman, and Todd Green at Apress for all the work

they did reviewing, editing, and expertly answering all my questions.

All the students who have been in my classes over many years at the Art Institute

California-Silicon Valley, Cogswell Polytechnical College, and the UCSC Silicon Valley

Extension. Their feedback, suggestions, smiles, frowns, light-bulb moments, frustrations,

and knowing head-nods were extremely helpful in shaping the content of this book.

Finally, Guido van Rossum, without whom Python would not exist.

1

CHAPTER 1

Getting Started
Congratulations! You have made a wise decision. No, not the decision to buy this book,

although I think that will turn out to be a wise decision also. I mean you have made a

wise decision to learn the basics of computer programming using the Python language.

In this book, I teach you the fundamentals of writing computer software. I assume

that you have never written any software before, so I start completely from scratch. The

only requirements are that you possess a basic knowledge of algebra and a good sense

of logic. As the book progresses, each chapter builds upon the information learned in

the previous chapter(s). The overall goal is to give you a solid introduction to the way

that computer code and data interact to form well-written programs. I introduce the

key elements of software, including variables, functions, if/else statements, loops,

lists, and strings. I offer many real-world examples that should help explain the uses of

each of these elements. I also give definitions to help you with the new vocabulary that I

introduce.

This book is not intended to be comprehensive. Rather, it is an introduction that

gives you a solid foundation in programming. The approach is highly interactive, asking

you to create small programs along the way as a chance to practice what has been

explained in each chapter. By the end of the book, you should be comfortable writing

small to medium-sized programs in Python.

This first chapter covers the following topics:

• Introducing Python

• Getting Python installed on your computer

• Using IDLE and the Python Shell

• Writing your first program: Hello World

• Creating, saving, and running Python files

• Working with IDLE on multiple platforms

2

 What Is Python?

Python is a general-purpose programming language. That means it was designed and

developed to write software for a wide variety of disciplines. Python has been used to

write applications to solve problems in biology, chemistry, financial analysis, numerical

analysis, robotics, and many other fields. It is also widely used as a scripting language for

use by computer administrators, who use it to capture and replay sequences of computer

commands. It is different from a language like HTML (HyperText Markup Language),

which was designed for the single purpose of allowing people to specify the layout of a

web page.

Once you learn the basic concepts of a programming language like Python, you

find that you can pick up a new computer languages very quickly. No matter what the

language (and there are many) the underlying concepts are very similar. The key things

that you learn about—variables, assignment statements, if statements, while loops,

function calls—are all concepts that are easily transferable to any other programming

language.

 Installing Python

Python was created in the 1990s by Guido van Rossum. He is affectionately known as

Python’s Benevolent Dictator for Life. The language has two current versions: 2.7 and

3.6. Version 2.7 is still widely used, but its “end of life” has recently been announced.

Therefore, this version of the book will use the newer Python 3, as it is known. With

respect to the contents of this book, there are only a few differences between the versions

of the language. Where appropriate, I point out how something presented in Python 3

was handled in Python 2.

Python is maintained as an open source project by a group called the Python

Software Foundation. Because it is open source, Python is free. There is no single

company that owns and/or sells the software. You can get everything you need to write

and run all the Python programs in this book by simply downloading Python from the

Internet. I’ll explain how you can get it and install it.

The center of the Python universe is at www.python.org.

Bring up the browser of your choice and go to that address. The site changes over

time, but the essential functionality should remain the same. On the main page, there

should be a Downloads button or rollover. Once you’re in the Downloads area, you

CHAPTER 1 GETTING STARTED

http://www.python.org

3

should be able to select Windows, Mac, or Other Platforms (which includes Linux).

After choosing your operating system, you should get an opportunity to choose between

versions 3.x.y (whatever is the current subversion of Python 3) and version 2.x.y

(whatever is the current subversion of Python 2). Choose version 3.x.y.

Clicking the button downloads an installer file. On a Mac, the downloaded file has

a name like python-3.6.4-macosx10.6pkg. On a Windows computer, the file has a

name like python-3.6.4-msi. On either platform, find the file that was downloaded and

double-click it. That should start the installation process, which should be very simple.

 IDLE and the Python Shell

There are many different software development environments (applications) that you can

use to write code in Python. It may seem odd that you use a program to write a program,

but that’s what a software development environment is. Some of these environments are

free; others can be costly. They differ in the tools they offer to help programmers be more

efficient.

The environment we will use in this book is called IDLE. You might think that IDLE

is an acronym, maybe Interactive DeveLopment Environment. When the name was

chosen, it didn’t mean anything. In fact, the name Python doesn’t refer to the snake.

Apparently, Guido van Rossum was a big fan of Monty Python’s Flying Circus, a TV

series by a well-known comedy group from Britain, and he named the language after

them. One of the founding members of Monty Python was Eric Idle. The name IDLE is a

reference to him.

IDLE is free. When you download and run the Python installer, it installs IDLE on

your computer. Once installed, you can find IDLE on a Mac by opening the applications

folder and locating the folder named Python 3.x. Once you open it, you should see the

IDLE application. To open IDLE, double-click the icon. On Windows, IDLE is installed

in the standard Program Files folder. If your version of Windows has a Start button, click

the Start button and type IDLE in the type-in field. Otherwise, you might have to do a

Control+R or Control+Q to bring up a dialog box where you can type IDLE. However you

open IDLE, you should see a window with contents that look something like this:

Python 3.6.1 (v3.6.1:69c0db5050, Mar 21 2017, 01:21:04)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.

>>>

CHAPTER 1 GETTING STARTED

4

This window is called the Python Shell. In fact, the title of the window should be

Python 3.x.y Shell.

 Hello World

There is a tradition that when programmers learn a new computer language, they try

writing what is called the Hello World program. That is, just to make sure they can get

something to work, they write a simple program that writes out “Hello World!”

Let’s do that now with Python. The Python Shell (commonly just called the Shell)

gives you a prompt that looks like three greater-than signs. This is called the chevron

prompt or simply the prompt. When you see the prompt, it means the Shell is ready for

you to type something. Throughout this book, I strongly encourage you to use the IDLE

environment by trying out code as I explain it. At the prompt, enter the following:

>>> print('Hello World!')

Then press the Return key or Enter key. When you do, you should see this:

>>> print('Hello World!')

Hello World!

>>>

Congratulations! You have just written your first computer program. You told the

computer to do something, and it did exactly what you told it to do. My work is done

here. You’re not quite ready to add Python programmer to your résumé and get a job as a

professional computer programmer, but you are off to a good start!

Note If you don’t like the font and/or size of the text used in the Shell, you can

choose IDLE ➤ Preferences (Mac) or Configure IDLE (Windows) and easily change

either or both.

One of the key advantages of the Python language is how readable it is. The program

you just wrote is simply the word print, an open parenthesis, whatever you want to be

printed (inside quotes), and a closing parenthesis. Anyone can understand the Hello

World program written in Python. But to make this point very clear, let’s see what you

have to do to write the Hello World program in some other popular languages.

CHAPTER 1 GETTING STARTED

5

You’ve probably heard of the language called C, perhaps the most widely used

programming language in the world. Here is what you have to write in C to get the same

results:

#include <stdio.h>

int main(void)

{

 printf("Hello World!\n");

 return 0;

}

Notice all the brackets, parentheses, braces, and semicolons you need to have, along

with how many lines you have to write?

There is another language called C++, which is a modification of the original C

language to give it more power. Here’s what the Hello World program looks like in C++:

#include "std_lib_facilities.h"

int main()

{

 cout << "Hello World!\n";

 return 0;

}

Not surprisingly, it also has many brackets, parentheses, braces, and semicolons.

Finally, here is the same Hello World program written in Java, yet another popular

computer language:

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

}

Again, there are many brackets, parentheses, and semicolons, and many words with

meanings that are not immediately obvious.

By comparison, notice how English-like, simple, and readable the Python version

is. This readability and simplicity are big reasons why Python is growing in popularity,

especially as a language used to teach programming to beginners.

CHAPTER 1 GETTING STARTED

6

 Creating, Saving, and Running a Python File

So far, you have only seen a single line of Python code:

>>> print('Hello World!')

You typed it into the Shell and pressed Enter or Return to make it run. Typing one

line at a time into the Shell is a great way to learn Python, and it is very handy for trying

out things quickly. But soon I’ll have you writing programs with tens, hundreds, and

maybe thousands of lines of code. The Shell is not an appropriate place for writing large

programs. Python, like every other computer language, allows you to put the code you

write into a file and save it. Programs saved this way can be opened at any time and run

without having to retype them. I’ll explain how we do this in Python.

Just like any standard word processor or spreadsheet program, to create a new file in

IDLE, you go to the File menu and select New File (denoted from here on as File ➤ New

File). You can also use the keyboard shortcuts Control+N (Windows) or Command+N

(Mac).

This opens a new, blank editing window, waiting for you to enter Python code. It

behaves just like any text editing program you have ever used. You enter your Python

code, line by line, similar to the way that you did it in the Shell. However, when you

press Return or Enter at the end of a line, the line does not run—it does not produce

immediate results as it did in the Shell. Instead, the cursor just moves down to allow

you to enter another line. You can use all the standard text-editing features that you

are used to: Cut, Copy, Paste, Find, Replace, and so on. You can move around the

lines of code using the arrow keys or by clicking the mouse. When a program gets

long enough, scrolling becomes enabled. You can select multiple lines using the

standard click-and- drag or click to create a starting point and Shift-click to mark an

ending point.

Let’s build a simple program containing three print statements. Open a new file.

Notice that when you open the file, it is named Untitled in the window title. Enter the

following:

print('I am now entering Python code into a Python file.')

print('When I press Return or Enter here, nothing happens.')

print('This is the last line.')

CHAPTER 1 GETTING STARTED

7

When you type the word print, IDLE colorizes it (both here in the editing window

and when you type it in the Shell). This is IDLE letting you know that this is a word that

it recognizes. IDLE also turns all the words enclosed in quotes to green. This also is an

acknowledgement from IDLE that it has an understanding of what you are trying to say.

Notice that when you started typing, the window title changed to *Untitled*. The

asterisks around the name are there to show that the contents of the file have been

changed, but the file has not been saved. That is, IDLE knows about the new content, but

the content has not yet been written to the hard disk. To save the file, press the standard

Control+S (Windows) or Command+S (Mac). Alternatively, you can click File ➤ Save.

Because this is the first time the file is being saved, you see the standard Save dialog box.

Feel free to navigate to a folder where you are able to find your Python files(s), or click

the New Folder button to create a new folder. In the top of the box, where it says “Save

As”, enter a name for this file. Because we are just testing things out, you can name the

file Test. However, Python filenames should always end with a .py extension. Therefore,

you should enter the name Test.py in the Save As box.

Note If you save your Python file without a .py extension, IDLE will not recognize

it as a Python file. If Python does not know that your file is a Python file, it will not

colorize your code. This may not seem important now, but it will turn out to be very

helpful when you start writing larger programs. So make it a habit right from the

start to always ensure that your Python file names end with the.py extension.

Now that we have a saved Python file, we want to run, or execute, the statements in

the file. To do that, click Run ➤ Run Module or press the F5 shortcut key. If everything

went well, the program should print the following in the Shell:

I am now entering Python code into a Python file.

When I press Return or Enter here, nothing happens.

This is the last line.

Now let’s quit IDLE by pressing Control+Q (Windows) or Command+Q (Mac) keys.

Alternatively, you can click IDLE ➤ Exit (Windows) or IDLE ➤ Quit IDLE (Mac).

When you are ready to open IDLE again, you have choices. You can open IDLE by

typing IDLE into the Start menu (Windows) or by double-clicking the IDLE icon (Mac).

If you then want to open a previously saved Python file, you can click File ➤ Open and

navigate to the file you want to open.

CHAPTER 1 GETTING STARTED

8

However, if you want to open IDLE and open a previously saved Python file, you can

navigate to the saved Python file (for example, find the Test.py file that you just saved)

and open IDLE by opening the file. On Windows, if you double-click the icon, a window

typically opens and closes very fast. This runs the Python program, but does not keep

the window open. Instead, to open the file and IDLE, right-click the file icon. From the

context menu that appears, select the second item, Edit with IDLE.

On a Mac, you can simply double-click the file icon. If double-clicking the Python

file opens a program other than IDLE, you can fix that with a one-time change. Quit

whatever program opened. Select the Python file. Press Command+I (or click File ➤

Get Info), which opens a long dialog box. In the section labeled “Open with”, select the

IDLE application (IDLE.app). Finally, click the Change All button. Once you do that,

you should be able to double-click any file whose name ends in .py, and it should

open with IDLE.

Programming typically involves iterations of edits to one or more Python files.

Each time you make changes and you want to test the new code, you must save the

file and then run it. If you don’t save the file before you try to run it, IDLE will prompt

you by asking you to save the file. You’ll quickly become familiar with the typical

development cycle of edit your code, save the file (Command+S or Control+S), and

run the program (F5).

 IDLE on Multiple Platforms

One other very nice feature of Python and IDLE is that the environment is almost

completely platform independent. That is, the IDLE environment looks almost identical

on a Windows computer, Mac, or Linux system. The only differences are those associated

with the particular operating system (such as the look of the window’s title bar, the

location of the menus, the look of the dialog boxes, and so on). These are very minor

details. Overall, the platform you run on does not matter.

Perhaps even more importantly, the code you write is platform independent. If

you create a Python file on one platform, you can move that file to another platform

and it will open and run just fine. Many programmers use multiple systems to develop

Python code. In fact, even though I typically develop most of my Python code on a Mac,

I often bring these same files into classrooms, open them, teach with them on Windows

systems.

CHAPTER 1 GETTING STARTED

9

 Summary

In this chapter, you got up and running with Python. You should now have Python

installed on your computer and have a good understanding of what the IDLE

environment is. You built the standard Hello World program in the Shell, and then used

the editor window to build, save, and run a simple multiline Python program (whose

name ends in .py) made up of print statements. Finally, you learned that Python and

the IDLE environment are platform independent.

CHAPTER 1 GETTING STARTED

11

CHAPTER 2

Variables and Assignment
Statements
This chapter covers the following topics:

• A sample Python program

• Building blocks of programming

• Four types of data

• What a variable is

• Rules for naming variables

• Giving a variable a value with an assignment statement

• A good way to name variables

• Special Python keywords

• Case sensitivity

• More complicated assignment statements

• Print statements

• Basic math operators

• Order of operations and parentheses

• A few small sample programs

• Additional naming conventions

• How to add comments in a program

• Use of “whitespace”

• Errors in programs

12

 A Sample Python Program

Let’s jump right in and see an example of what Python code looks like. You are probably

familiar with a simple toy called the Magic 8-Ball, made by Mattel, Inc. To play with the

toy, you ask it a yes-or-no question, turn the ball over, and the ball gives you one of a

number of possible answers. Here is the output of a Python program that simulates the

Magic 8-Ball:

Ask the Magic 8-Ball a question (Return or Enter to quit): Will this be a

great book?

Absolutely!

Ask the Magic 8-Ball a question (Return or Enter to quit): Will I learn to

program in Python?

Answer is foggy, ask again later.

Ask the Magic 8-Ball a question (Return or Enter to quit): Will I learn to

program in Python?

You may rely on it.

Ask the Magic 8-Ball a question (Return or Enter to quit): Will I be able

to play football in the NFL?

No way, dude!

Ask the Magic 8-Ball a question (Return or Enter to quit): Will I make a

million dollars?

Absolutely!

Ask the Magic 8-Ball a question (Return or Enter to quit): Does the Magic

8-Ball ever make mistakes?

No way, dude!

Ask the Magic 8-Ball a question (Return or Enter to quit):

Chapter 2 Variables and assignment statements

13

Now, let’s jump right in and take a look at the underlying code of this program.

I’m showing you this just to give you a feeling for what Python code looks like. I am

certainly not expecting you to understand much of this code. At this point, the details are

unimportant. Here it is:

import random # Allow the program to use random numbers

while True:

 print() # prints a blank line

 usersQuestion = input('Ask the Magic 8-Ball a question

(press enter to quit): ')

 if usersQuestion == “:

 break # we're done

 randomAnswer = random.randrange(0, 8) # pick a random number

 if randomAnswer == 0:

 print('It is certain.')

 elif randomAnswer == 1:

 print('Absolutely!')

 elif randomAnswer == 2:

 print('You may rely on it.')

 elif randomAnswer == 3:

 print('Answer is foggy, ask again later.')

 elif randomAnswer == 4:

 print('Concentrate and ask again.')

 elif randomAnswer == 5:

 print('Unsure at this point, try again.')

 elif randomAnswer == 6:

 print('No way, dude!')

 elif randomAnswer == 7:

 print('No, no, no, no, no.')

Chapter 2 Variables and assignment statements

14

Here’s a very quick explanation: at the top, there is a line that allows the program

to use random numbers. Then there is a line that says while True. This line creates

something called a loop, which is a portion of a program that runs over and over again.

In this case, it allows the user to ask a question and get an answer, and then enter

another question and get another answer, and on and on.

Moving down, there is a line that causes Ask the Magic 8-Ball a question to be

printed out and allows the user to type a question for the Magic 8-Ball to answer.

Skipping down a few lines, the program generates a random number between 0 and 7.

After generating the random number, the program then checks to see if the value of the

random number is 0. If so, it tells the user the answer: It is certain. Otherwise, if the

value of the randomly chosen number is 1, it tells the user: You may rely on it.

The rest of the lines work similarly, checking the random number and giving

different outputs.

After the program prints an answer, because the program is inside the loop, the

program goes around again and tells the user to ask another question. And the process

keeps going.

As I said, don’t worry about the details of the program—just get a sense of how the

program does what it does. But there are some things to notice. First, see how readable

this code is. With only this brief introduction, you can probably get a feeling for the basic

logical flow of how the program operates. Second, notice that the program asks the user

for input, does some computation, and generates some output. These are the three main

steps in almost all computer programs.

Let’s get into programming 101. This may be extremely basic, but I want to start right

at the beginning, create a solid foundation, and then build on that.

 The Building Blocks of Programming

The two basic building blocks of programming are code and data. Code is a set of

instructions that tell the computer what to perform and how it should perform. But I

want to start our discussion with data.

Data refers to the quantities, characters, and/or symbols on which operations are

performed with a computer. Anything you need the computer to remember is a piece

of data. Simple examples of data include the number of students in class, grade point

average, name, whether a switch is in an on or off position, and so on.

Chapter 2 Variables and assignment statements

15

There are many different types of data, but this book deals mostly with four basic

types, which I describe in the next section.

 Four Types of Data

The four basic types of data are called integer numbers, floating-point numbers, strings,

and Booleans. This section explains and provides examples of each of these types of data.

 Integers

Integer numbers (or simply, integers) are counting numbers, like 1, 2, 3, but also include

0 and negative numbers. The following are examples of data that is expressed as integers:

• Number of people in a room

• Personal or team score in a game

• Course number

• Date in a month

• Temperature (in terms of number of degrees)

 Floats

Floating-point numbers (or simply floats) are numbers that have a decimal point in

them. The following are examples of data that is expressed as floating-point numbers:

• Grade point average

• Price of something

• Percentages

• Irrational numbers, like pi

Chapter 2 Variables and assignment statements

16

 Strings

Strings (also called text) are any sequences of characters. Examples of data that is

expressed as strings include the following:

• Name

• Address

• Course name

• Title of a book, song, or movie

• Sentence

• Name of a file on a computer

 Booleans

Booleans are a type of data that can only have one of two values: True or False. Booleans

are named after the English mathematician George Boole, who created an entire field of

logic based on these two-state data items. The following are some examples of data that

can be expressed as Booleans:

• The state of a light switch: True for on, False for off

• Inside or outside: True for inside, False for outside

• Whether someone is alive or not: True for alive, False for dead

• If someone is listening: True for listening, False for not listening

It might seem that integer and floating-point data have overlaps. For example, there

is an integer 0 and there is a floating-point 0.0. There is an integer 1 and a floating-point

1.0. Although these may appear to be the same thing to us humans, integers and floats

are handled very differently inside the computer. Without getting too wrapped up in the

details, it is easier for the computer to represent and operate with integers. But when

we have a value with a decimal point, we need to use a floating-point number instead.

Whenever we represent a value, we choose the appropriate numeric data type. As you

will see, Python makes a clear distinction between these two types of data.

There are many other types of data in the computer world. For example, you are

probably familiar with music being stored in MP3 format or video being stored in MP4.

These are other representations of data. However, to make things simple and clear, I’ll

use just the four basic types of data in most of this book.

Chapter 2 Variables and assignment statements

17

 Examples of Data

Now let’s take a look at what the actual data looks like for each of the four different data

types.

• Integer numbers are whole or counting numbers. These are some

examples:

12, 50, 0, -3, -25

• Floating-point numbers are any numbers that contain a decimal

point. These are some examples:

1.5, .5, -3.21, 1.0, 0.0

• Strings represent textual data or any sequence of characters. String

data is always represented with quote characters before and after the

sequence of characters. In Python, you can use either the single (') or

the double-quote character ("). The following are examples of strings:

'Joe', 'Schmoe', "Joe", "Schmoe", 'This is some string data', "OK"

The string 'Joe' and the string "Joe" are exactly the same. The

quotes are not actually part of the string. They are there to allow

Python to understand that you are talking about a string. You can

choose to use either pair of quoting characters. Single quotes are

generally easier to use because you don’t have to hold down the

Shift key to type them.

However, if you want to include a quote character inside a string,

you can enclose the string in the other quote characters. For

example, you might write this:

"Here's a string with a single quote in it"

Or this:

'Here is a string that includes two "double quote" symbols

inside of it'

Think back to the Hello World program you wrote in Chapter 1.

The 'Hello World!' you used was an example of a string.

Chapter 2 Variables and assignment statements

18

• Boolean data can only have one of two values: True or False. The

words True and False must be spelled with this capitalization:

True

False

 Form with Underlying Data

To make the distinctions among these different data types clearer, let’s look at a fake but

typical form you might see if you bought something online. Imagine you want to buy

some widgets (generic items), and you go to the WidgetsRUs.com web site to buy them.

You might be presented with a form like the one shown in Figure 2-1.

Figure 2-1. Sample form where the fields represent different types of data

As the end user, you would type characters into each of these fields. But as the

programmer who is writing this program, you have to think about what types of data you

would use to represent the information that the user entered into these fields.

The first two fields, Name and Address, call for string data. The user enters

characters, and we would think of what they wrote as strings.

The Number of Widgets field represents a piece of integer data—for example, 10. It

wouldn’t make sense to order 12 and a half widgets, so this is certainly an integer.

Chapter 2 Variables and assignment statements

19

Total to Pay would be a floating-point number, such as 37.25. We think of money

written as dollars, a decimal point, and cents. So you would use a floating-point piece of

data to represent this.

Receipt is what an end user commonly sees as a check box. But if you were writing

the program behind this form, you would represent the answer to the receipt question

with a Boolean: True if the box is checked on, False if the box is unchecked. From

now on, no matter what device you see a form like this on, you will see check boxes

differently. Every time you see a check box, you’ll realize that the underlying program is

representing your choice with a piece of Boolean data.

 Variables

In programming, we need to remember and manipulate data all the time. This is a

fundamental part of computer programming. In order to store and manipulate data, we

use a variable.

Definition a variable is a named memory location that holds a value.

The contents of a variable can change or vary over time; this is why it’s called a

variable.

You’ve probably heard that the term RAM stands for random-access memory. It is the

active part of storage inside your computer. You can think of this memory as a simple list

or array of numbered slots, starting at 0 and going up to as much memory as you have in

your computer. The amount doesn’t matter, but Figure 2-2 is a diagram showing memory

starting a slot 0 and going up to the final slot of 4 gigabytes.

Chapter 2 Variables and assignment statements

20

Every one of these memory locations can be used as a variable. That is, you can store

a piece of data in any free memory slot.

Figure 2-2. Random-access memory diagram

Chapter 2 Variables and assignment statements

21

Note behind the scenes, the way python stores data and variable names is more

complex. For example, different types of data (integer, float, string, and boolean)

take up different amounts of memory, rather than a single “slot.” Further, in python,

the name and the data of a variable are actually stored in different places. but

thinking of each piece of data as being stored in a single slot in memory provides a

good mental model—a good way to think about what a variable is.

Let’s look at an example of what a variable is and how it might be used. Imagine you

are playing a computer game. A game typically has to keep track of your score. To do

this, a programmer writes code that creates a variable, gives the variable a name, and

puts some starting value into the variable. In a game, a score typically starts with a value

of 0, and the value of the variable changes over time. As the game is played, every time

something good happens in the game, the programmer’s code may add to the value

of the variable. If the game calls for it, when something bad happens in the game, the

programmer’s code could subtract from the value of the variable.

In Figure 2-3, I have arbitrarily chosen slot 3 in memory as the location where the

variable score should be saved. Notice that slot 3 is named score and it has a value of

0 in it. In fact, Python makes the choice of where in memory to store data. Because you

will always refer to a variable by name, you don’t care where in memory the variable is

stored. In this example, whenever you use the name score, Python will use the memory

location 3.

Chapter 2 Variables and assignment statements

22

Another way to think of a variable is as an envelope or a box into which you can put

a value. In this way of thinking, a variable is a container—a storage space—with a name.

The contents are the value. The name never changes, but the contents can change over

time.

Using the example of a score, imagine that we have an envelope or box with the

name score on it. Inside, we put the contents—a value. Let’s start off with a value of 0, as

shown in Figure 2-4.

Figure 2-3. Random access memory diagram with one variable defined

Chapter 2 Variables and assignment statements

23

If the user does something good in the game (kills a bad guy, makes a good shot, finds

a hidden item, and so on), the user gains 50 points. We take the current value (contents) of

the score, which is 0, and add 50. The value of score becomes 50, as shown in Figure 2-5.

Figure 2-4. Visualization of a variable as an envelope

Figure 2-5. Visualization of a variable with a different value

Chapter 2 Variables and assignment statements

24

Let’s say the user does something else good and is awarded another 30 points.

We take the current value of 50 and add 30 to it, giving us a total of 80, as shown in

Figure 2- 6. So we have the variable called score (which is actually a memory location),

and its value is changing over time. The program remembers the current value by having

it stored in a variable.

 Assignment Statements

I have talked about variables and how they are used to store data, but I haven’t shown

you yet how to use a variable in Python. Let’s do that right now.

So much for the theory. In Python, you create and give a value to a variable with an

assignment statement.

Definition an assignment statement is a line of code in which a variable is given

a value.

An assignment statement has this general form:

<variable> = <expression>

Figure 2-6. Visualization of a variable with yet a different value

Chapter 2 Variables and assignment statements

25

When I put things in less-than and greater-than brackets, like this <variable>, it

means that you should replace that whole thing (including the brackets) with something

that you choose. Anything written like <variable> is a placeholder.

It works like this: the <expression>, or everything on the right side of the equals sign,

is evaluated, and a value is computed. The resulting value is assigned to (put into) the

variable on the left.

This is best explained with some simple examples. Try entering these lines into the

Python Shell:

>>> age = 29

>>> name = 'Fred'

>>> alive = True

>>> gpa = 3.9

>>>

Notice that as soon as you typed an opening quotation mark (such as in typing Fred

as a value for the variable name), IDLE recognizes that you are typing a string and turns

all characters green until you type the matching closing quote.

Also notice that when you typed the word True, it turned a color (probably purple).

This is an indication that Python has recognized a special word.

When Python runs (or executes) assignment statements like these, it first looks to see

whether the variable to be assigned was previously used. If the variable has never been

seen before, Python allocates an empty slot of memory, attaches a name to it, and puts

in the given value. Therefore, when you entered the following line and pressed Return or

Enter, Python first looked to see if it had ever seen the variable name age before:

>>> age = 29

>>>

Since it had not, it allocated a memory slot somewhere (again, we don’t care where)

attached the age label to it, and then put the value 29 into that memory slot. A similar

sequence happened for the other variables.

In pure computer programming terms, the equals sign is not called “equals,” it is

called the assignment operator. In an assignment statement, everything on the right of

the equals sign is calculated, and the result is assigned to the variable on the left.

Chapter 2 Variables and assignment statements

26

Whenever you see an assignment statement, you can read or think of the equals sign

as meaning any of the following:

• “is assigned”

• “is given the value of”

• “is set to”

• “becomes”

• “gets”

For example, it might be more helpful and clearer to you to read the line

>>> age = 29

as “age is assigned 29,” or “age is given the value of 29,” or “age is set to 29” or “age

becomes 29.”

After executing that line, enter the following line and press Return or Enter:

>>> age = 31

Python does the same sequence of steps, but now it finds that there already is a

variable named age. Rather than create a new variable, Python overwrites the current

value of the variable age with the new value of 31, as shown in Figure 2-7. If you

remember the conceptual way of representing a variable as a container (for example, as

an envelope), think of this line as replacing the old value inside the envelope with a new

value. The variable name age stays the same, but the contents change.

Chapter 2 Variables and assignment statements

27

 Variable Names

By definition, every variable must have a name. It is best to make variable names as

descriptive as possible. For example, let’s say I was building a virtual aquarium. I would

use a variable to keep track of the number of fish in my aquarium. Python doesn’t care

what you use for a variable name. You could use a name as simple as x, or you could use

some odd sequence of characters, such as xddqfmmp. Or you could create a name like

numberOfFishInAquarium. That name is much clearer. Names like that make code much

more readable and understandable in the long run.

In Python (and all computer languages), there are some rules about naming a

variable, though. Here are Python’s rules about the name of a variable:

• Must start with a letter (or an underscore)

• Cannot start with a digit

• Can have up to 256 total characters

• Can include letters, digits, underscores, dollar signs, and other characters

• Cannot contain spaces

• Cannot contain math symbols (+, -, /, *, %, parentheses)

Figure 2-7. Visualization of a variable as the result of an assignment statement

Chapter 2 Variables and assignment statements

28

We’ve seen some examples of legal names, such as age, name, score, alive, and

numberOfFishInAquarium. Here are some examples of illegal names:

• 49ers (starts with a digit)

• table+chairs (contains a plus sign)

• my age (contains a space)

• (coins) (uses parentheses)

 Naming Convention

Definition a convention is an agreed-upon way of doing things.

In the real world, we have many examples of conventions. When we want to get

in an elevator, we let people get out of the elevator before we get in. We always shake

hands with our right hand. When we answer a phone, the convention is to say “Hello.”

In the United States, we drive on the right-hand side of the road. That one is not only a

convention, it’s the law.

In programming, you can create any variable name you want as long as it follows the

rules. However, when creating variable names, I strongly encourage you to use a naming

convention, by which I mean a consistent approach for creating names for variables. If

you create a name like score, where the name is just one word, the convention is to use

all lowercase letters.

However, we often want to create descriptive names made by putting together two

or more words. Take, for example, the variable name numberOfFishInAquarium, which

is created by putting together five words. In the Python world, there seem to be two

common naming conventions.

The first naming convention, and the one that I prefer, is called camelcase. The rules

of the camelcase convention are very simple:

• The first word is all lowercase.

• For every additional word in the name

• Make the first letter uppercase.

• All other letters are lowercase.

Chapter 2 Variables and assignment statements

29

Here are some examples of variable names that follow the camelcase naming

convention:

 someVariableName

 anotherVariableName

 countOfBadGuys

 computerScore

 humanScore

 bonusPointsForCollectingMushrooms

The term camelcase describes the way variable names look when using this

convention. When an uppercase letter starts a new word, it looks like the hump on a

camel. Notice how names that follow the camelcase naming convention are easy to read.

There is another convention that many Python programmers use, which is to

separate words with underscores:

this_is_a_variable_name

number_of_fish_in_aquarium

But to me, that’s more difficult to both read and write. I am showing this alternative

convention here because if you look at other people’s code written in Python, you will

probably see variable names written with underscores like that.

I have used the camelcase naming convention for years and I will use camelcase

throughout this book. If you are coding on your own, obviously you can use whatever

names you want, but it really is a good idea to be consistent when naming variables. If

you do programming in a class or for a company, the teacher or the company may insist

on a particular naming convention so that all programmers can easily understand each

other’s code.

 Keywords

I’m sure that you have heard that computers only understand ones and zeros. This is

true. When you write code in Python, Python cannot run or execute your code directly.

Instead, it takes the code that you write and compiles it. That is, Python converts your

code into a language of ones and zeros that the computer can understand. Every

language has such a compiler. When the Python compiler reads your code, it looks for

special words called keywords to understand what your code is trying to say.

Chapter 2 Variables and assignment statements

30

Note python technically has an interpreter that turns your code into a machine-

independent byte code. but to make things simple, i’ll refer to this as the python

compiler.

The following is a list of the Python keywords. Don’t worry about the details right

now. I’m just showing you these now to let you know that you cannot use these words as

a variable name:

and as assert break class

continue def del elif else

except finally for from global

if import in is lambda

nonlocal not or pass raise

return try while with yield

False None True

You have already seen two of these keywords. The words True and False are the only

allowable values for a Boolean variable. True, False, and None are the only keywords

that begin with an uppercase letter. There are also some words that Python reserves, like

the word print that you saw in the Hello World program. Whenever you type a Python

keyword or reserved word, IDLE changes the color of the word. Earlier, when you typed

the following, the word print turned orange or purple:

print('Hello World!')

This is IDLE looking over your shoulder and telling you that this is one of Python’s

reserved words.

Caution the important thing to learn here is that you cannot use any of these

words as a variable name. if you attempt to do so, the python compiler will

generate an error message when it tries to compile your program.

Chapter 2 Variables and assignment statements

31

 Case Sensitivity

The computer language C was developed in the early 1970s. It was one of the first high-

level computer languages and has exerted a great deal of influence on many current

computer languages. Languages such as C++, JavaScript, ActionScript (the language of

Flash), and Java can all trace their roots to C. There are many similarities among these

languages, though each one has a different purpose.

As I mentioned, all computer languages have a compiler that changes the code that

you write in that language into lower-level instructions (based on ones and zeros) that

the computer really understands. This compilation step happens before you run your

program. When C was created, computers were very slow. The people who created C

wanted the C compiler to be as fast as possible. One way they made it fast was to enforce

a rule that said that variable names and keywords would be case sensitive—that is, case

matters. As humans, we could certainly recognize if our names were spelled with varying

degrees of uppercase or lowercase. If I saw my name written as irv, Irv, or IRV, I would

know that someone was talking about or to me.

However, because of the need for speed in the C compiler to read and understand

a programmer’s variable names, a variable named myVariable is not the same as one

named one named myvariable and is not the same as one named MyVariable. Each of

these represents a unique variable.

Python has this same trait. Variable names and keywords in Python are all case

sensitive. For example, print is not the same as Print. This will bite you many times

over. You will spend a great deal of time scratching your head about why your program

won’t compile, only to realize hours later that you used a lowercase letter where you

needed an uppercase one.

Tip this is another great reason to following a strict naming convention. if you

follow a naming convention such as camelcase, you will make fewer uppercase/

lowercase naming errors.

Chapter 2 Variables and assignment statements

32

 More Complicated Assignment Statements

Now that we have an understanding of the rules of naming variables and a naming

convention that will help us name variables, let’s look at some more details of

assignment statements.

Remember, this is the general form of an assignment statement:

<variable> = <expression>

So far, I’ve only shown assignment statements that give a variable a simple value. But

the <expression> part on the right side of the equals sign (actually called the assignment

operator) can be as simple or as complicated as you need it to be. The right-hand side

can also contain variables. Here’s an example:

>>> myAge = 31

>>> yourAge = myAge

>>>

The first line creates and sets a variable named myAge to 31. The second line creates

a variable named yourAge and sets it to the current value of the variable myAge. After

running these two lines, both variables would be set to the value 31.

An assignment statement computes the value of whatever is on the right-hand side of

the equals sign and assigns it to the variable on the left-hand side. Whenever a variable

appears in an expression (that is, on the right-hand side of an assignment statement), the

expression is evaluated (computed) by using the value of each variable. In other words,

as the programmer, you write the name of a variable, but when the statement runs, the

computer uses the current value of that variable at that time.

Here’s a simple example of doing some addition:

>>> numberOfMales = 5

>>> numberOfFemales = 6

>>> numberOfPeople = numberOfMales + numberOfFemales

>>>

First, we use two assignment statements to create two variables: numberOfMales and

numberOfFemales. In the third line, we see those two variables on the right side of the

equals sign (the assignment operator). To generate a result, Python uses the value of

those variables, 5 and 6, does the math, gets an answer of 11, and assigns that result into

the variable on the left side of the equals sign: numberOfPeople.

Chapter 2 Variables and assignment statements

33

I want to make it very clear that the equals sign in an assignment statement is very

different from the way an equals sign is used in math. In math, the equals sign implies

that the things on the left side and the right side have the same value. In Python, that’s

not the case.

To drive this point home, consider these two lines of code:

>>> myAge = 25

>>> myAge = myAge + 1

>>>

If you are a mathematician, the second line will jump out at you as an impossibility—

that is, there is no value of myAge for which that statement is true.

However, this is not an equation; it is an assignment statement. Here is what the

second line says (starting on the right-hand side):

 1. Take the current value of the variable myAge

 2. Add 1 to it

 3. Put the resulting value back in to the variable myAge

This statement effectively changes the value of the variable myAge by adding 1 to it.

Using a variable to count something is done all the time in programming, and it is very

common to see lines like this in code.

 Print Statements

Now, how do we know if things are working? We would like to have a way to reach into a

variable and see the value inside. Remember the print statement from our Hello World

program? The print statement is very general purpose. You ask it to print something and

it prints whatever you ask it to print into the Shell window. The general print statement

looks like this:

print(<whatever you want to see>)

Chapter 2 Variables and assignment statements

34

Here are some examples in the Shell:

>>> eggsInOmlette = 3

>>> print(eggsInOmlette)

3

>>> knowsHowToCook = True

>>> print(knowsHowToCook)

True

>>>

The print statement can also print multiple things on a single line. You can do this

by separating the items you want to print with commas. When the print statement runs,

each comma is replaced by a space:

>>> print(eggsInOmlette, knowsHowToCook)

3 True

>>>

You can use this to nicely format your output. For example, it allows you to print a

description of what variable you are printing:

>>> eggsInOmlette = 3

>>> print('eggsInOmlette is:', eggsInOmlette)

eggsInOmlette is: 3

>>> knowsHowToCook = True

>>> print('knowsHowToCook is:', knowsHowToCook)

knowsHowToCook is: True

>>> print('eggsInOmlette and knowsHowToCook are', eggsInOmlette, 'and',

knowsHowToCook)

eggsInOmlette and knowsHowToCook are 3 and True

>>>

Here are more examples of assignment statements and print statements, using all

four types of data:

>>> numberInADozen = 12

>>> print('There are', numberInADozen, 'items in a dozen')

There are 12 items in a dozen

>>> learningPython = True

Chapter 2 Variables and assignment statements

35

>>> print('It is', learningPython, 'that I am learning Python')

It is True that I am learning Python

>>> priceOfCandy = 1.99

>>> print('My candy costs', priceOfCandy)

My candy costs 1.99

>>> myFullName = 'Irv Kalb'

>>> print('My full name is', myFullName)

My full name is Irv Kalb

>>>

There is one additional note about the print statement. To make things a little

clearer in your output, you may want to include one or more blank lines. To create a

blank line of output, you can use an empty print statement. Just write the word print

with a set of open and close parentheses, like this:

>>> print()

Note in python 2, the print statement has a different form (syntax). in python 2,

the print statement did not require the parentheses around the item(s) that

you want to print. it looked like this: print <item1>, <item2>, ... this

is perhaps the most noticeable difference between python 2 and python 3. if

you see code elsewhere written in python 2 that is missing parentheses in print

statements, you can often modify these statements to work in python 3 by adding

an outermost set of parentheses.

 Simple Math

Now let’s move on to some simple math for use in assignment statements. Python

recognizes the following set of math operators:

• + Add

• - Subtract

• * Multiply

• / Divide

Chapter 2 Variables and assignment statements

36

• // Integer Divide

• ** Raise to the power of

• % Modulo (also known as remainder)

• () Grouping (we’ll come back to this)

Let’s try some very simple math. For demonstration purposes, I’ll just use variables

named x and y. In the Shell, try the following:

>>> x = 9

>>> y = 6

>>> print(x + y)

15

>>> print(x – y)

3

>>> print(x * y)

54

>>> print(x / y)

1.5

>>> print(x // y)

1

Note in python 2, the divide operator worked differently. if you divided an integer

by an integer, you got an integer as a result. For example if you divided 9 by 6, you

got 1. the behavior of the divide operator was changed in python 3 to always give a

floating-point answer, and the integer divide operator (with two slashes) was added.

COMPUTERS CAN REPRESENT INTEGERS PERFECTLY

as humans, we represent integers using base 10 (digits from 0 to 9). Computers represent

integers using base 2 (using only 1 and 0). but there is an exact mapping between the two

bases. For every base 10 number, there is an exactly equivalent base 2 number. however,

because of the way computers represent floating-point numbers, this is not the case for

floating-point numbers. there is no such mapping between base 10 fractions and base

Chapter 2 Variables and assignment statements

37

2 fractions. When representing floating-point fractional numbers, there is often some small

amount of rounding; that is, floating-point fractional numbers are a close approximation of the

intended number. For example, if we attempt to divide 5.0 by 9.0, we see this:

>>> print(5.0 / 9.0)

0.555555555556

the decimal values goes on forever, but when represented as a float, the value gets rounded off.

Let’s try out the last two math operators. “Raise to the power of” is very

straightforward. In the following code, we want to raise x to the power of y:

>>> x = 2

>>> y = 3

>>> print(x ** y)

8

>>>

Finally, there is modulo. The modulo operator—the percent sign—gives you the

remainder of a division. With an integer division, the result is just the integer result. The

modulo operator allows you to get the remainder. Here’s an example. Imagine that you

have a puppy that is 29 months old. Using an integer divide and the modulo operator, we

can do an easy conversion to find out the age of the puppy is in years and months.

>>> ageInMonths = 29

>>> years = ageInMonths // 12

>>> months = ageInMonths % 12

>>> print("My puppy's age is", years, "years and", months, "months.")

My puppy's age is 2 years and 5 months.

>>>

If we reverse the process, you can see how we can get back to the original number:

>>> puppysAge = (years * 12) + months

>>> print("Puppy's age in months is:", puppysAge)

Puppy's age in months is: 29

Chapter 2 Variables and assignment statements

38

 Order of Operations

Back in elementary school, in a lesson about math, my teacher went through a long

description of a topic called the order of operations. We were told that some math

operators had precedence over other ones. For example, look at this assignment

statement:

x = 5 + 4 * 9 / 6

What operations are done in what order? The teacher explained that the acronym

PEMDAS would help us to figure out the order. PEMDAS described the precedence order

as follows:

 1. Parentheses

 2. Exponents

 3. Multiplication

 4. Division

 5. Addition

 6. Subtraction

However, I thought that it was a terrible idea to have some implied, seemingly

arbitrary ordering of math operators. Let’s look at the assignment statement again:

x = 5 + 4 * 9 / 6

You must understand the PEMDAS ordering to figure it out. First, you would multiply

4 by 9, take the result and divide that by 6, and then add 5, before storing the answer in x.

Because of my conviction for clarity, I feel that writing an assignment statement like

this is an extremely poor technique. You are writing in a way that forces future readers to

have an understanding of PEMDAS in order to infer what you meant by this statement.

Instead, it would be much clearer to both you and future readers if you were

to use parentheses to group operations. Using parentheses allows you to “force”

the order of operations so that the steps happen in whatever order you want. If

you wanted to write the line in a way that reflects what would happen following

PEMDAS, it would look like this:

x = 5 + ((4 * 9) / 6)

Chapter 2 Variables and assignment statements

39

When you have nested sets of parentheses, the only rule you need to know is that sets

of parentheses are evaluated from the innermost set to the outmost set. In this example,

(4 * 9) is evaluated first, that result is then divided by 6, and then 5 is added tothat result.

If you wanted the operations performed in a different order, you could use parentheses

to create different groupings. For example:

x = (5 + 4) * (9 / 6)

These parentheses say that you should add 5 and 4, divide 9 by 6, and then multiply

the results.

Tip adding parentheses as in the preceding statements makes your intent much

clearer and does not rely on the reader to understand the pemdas rules. i strongly

encourage you to add parentheses like these to force the order of operations.

 First Python Programs

Let’s take everything we’ve learned in this chapter and write some very small but useful

Python programs. We’ll start by writing a simple program to add up the value of all the

one-dollar bills and five-dollar bills that are in a wallet. Start by opening a new Python

editor window (Control+N (Windows) or Command+N (Mac), or File ➤ New). This is

what that code could look like:

numberOfOneDollarBills = 3

numberOFiveDollarBills = 2

total = numberOfOneDollarBills + (numberOFiveDollarBills * 5)

print('Total amount is:', total)

Again, none of these lines execute immediately; they have all just been entered

into a file. In order to see any results, we have to run (execute) the program we have

just written.

First, save the file (press Control+S (Windows) or Command+S (Mac) or click File ➤

Save). The first time you save a new file like this, you must give it a name. All Python file

names should end in .py, so name this file something like MoneyInWallet.py.

Chapter 2 Variables and assignment statements

40

Now that the file is saved, you are ready to run the program by pressing the F5

shortcut key or clicking Run ➤ Run Module. If there are no errors in your program, you

will see the output of your program show up in the Shell. You should see this:

Total amount is: 13

If you had any errors, read the bottom line of the error message, identify what you

typed incorrectly, fix it, save, and run again.

Let’s build another simple program. In IDLE, open a new file (Command/

Control+N). This time we’ll write a program to calculate how much money you should

be paid for working at a job. For the first 40 hours, you should be paid at an hourly rate.

Any hours over 40 should be paid at time and a half—one and a half times the rate:

rate = 10.00

totalHours = 45

regularHours = 40

overTimeHours = totalHours - regularHours

pay = (rate * regularHours) + ((rate * 1.5) * overTimeHours)

print('For working', totalHours, 'hours, I should be paid', pay)

When you have that working, you should see the following in the Shell window:

For working 45 hours, I should be paid 475.0

Here is one more program that involves just a little bit of algebra. Again, open a new

file for this program. You are probably familiar with the Pythagorean theorem for finding

the hypotenuse of a triangle:

hypot2 = side12 + side22

We cannot use the formula that way directly in a Python assignment statement. We

cannot have a squared symbol attached to a variable, but we can simplify by taking the

square root of both sides:

hypot = square root of (side12 + side22)

Then we can use the Python ** (raise to the power) operator to square both side

lengths:

hypot = square root of ((side1 ** 2) + (side2 ** 2))

Chapter 2 Variables and assignment statements

41

Finally, we can use the ** operator again. Raising something to the one-half (0.5)

power is the equivalent of taking a square root:

hypot = ((side1 ** 2) + (side2 ** 2)) ** 0.5

This is a legal Python statement. Now we can build the full program. Let’s try side

lengths of 3 and 4 and see what our program generates for the hypotenuse:

side1 = 3

side2 = 4

hypot = ((side1 ** 2) + (side2 ** 2)) ** 0.5

print('Side 1 is', side1, ' Side 2 is', side2, ' Hypotenuse is:', hypot)

In the Shell window, you should see this:

Side 1 is 3 Side 2 is 4 Hypotenuse is: 5.0

 Shorthand Naming Convention

I want to introduce one more minor convention for naming variables. In addition to

the camelcase naming convention, I use shorthand in some of my variable names.

It turns out we often use variables to keep track of the number of items we have. In a

game, we might use variables to keep track of the number of bad guys or good guys.

In a testing program, we might use a variable to keep track of the number of right

answers, and so on.

Programmers often start the variables with a numberOf prefix. This happens so often

that I use shorthand. Rather than creating this variable name:

numberOf<Whatever>

I shorten that to where n stands for “number of”—like this:

n<Whatever>

For example, instead of writing this

numberOfJellyBeansInJar

numberOfGoodGuys

numberOfCorretAnswers

Chapter 2 Variables and assignment statements

42

I write this:

nJellyBeansInJar

nGoodGuys

nCorrectAnswers

Let’s revisit the earlier MoneyInWallet.py program and apply this additional naming

convention. Here is the original code:

numberOfOneDollarBills = 3

numberOfFiveDollarBills = 2

total = numberOfOneDollarBills + (numberOfFiveDollarBills * 5)

print('Total amount is', total)

Apply this new naming convention to make it look like this:

nOneDollarBills = 3

nFiveDollarBills = 2

total = nOneDollarBills + (nFiveDollarBills * 5)

print('Total amount is', total)

If you want, you can do this by making changes on each line. But you could do it

faster by doing a Find and Replace. Go to the Edit menu and choose Replace. Fill out the

dialog box, as shown in Figure 2-8.

Figure 2-8. Replace dialog box

Then click Replace All. Save and run the program. You should see these identical

results:

Total amount is 13

Chapter 2 Variables and assignment statements

43

Finally, let’s modify the program to allow us to count the ten-dollar bills and the

twenty-dollar bills in the wallet.

nTwentyDollarBills = 5

nTenDollarBills = 4

nFiveDollarBills = 8

nOneDollarBills = 2

total = (nTwentyDollarBills * 20) + (nTenDollarBills * 10) + \

 (nFiveDollarBills * 5) + nOneDollarBills

print('Total amount is', total)

Notice that the line got a little long in the assignment statement that does the

calculation. If you think a line is getting too long to read, you can add a backslash character

(\) at a logical breaking point to indicate that the line should continue to the next line.

 Adding Comments

When you are writing software, you wind up making a lot of decisions about how you

approach different problems. Sometimes your solutions are not exactly apparent and

could use some documentation. You may want to explain to the reader (who could be a

future version of you, or someone else) why you did something the way you wound up

doing it, or how some intricate piece of code works.

Documentation like that, written directly in your code, is called a comment.

Comments are completely ignored by Python; they are only there for humans. There are

three ways to write comments in Python: provide a full-line comment, add a comment

after a line of code, or use a multiline comment.

 Full-Line Comment

Start a line with the # character, followed by your comment:

This whole line is a comment

This is another comment line

All comment lines are ignored by Python

Even though the next line looks like code, it's just a comment

x = 1

Chapter 2 Variables and assignment statements

44

Notice that when you type the #, the symbol and all characters after it turn red. This

is IDLE recognizing that you are typing a comment.

 Add a Comment After a Line of Code

You can put a comment at the end of a line of code to explain what is going on inside

that line. The following lines are very simple and don’t really need comments, but they

should serve as a good example of how to add this type of comment:

score = 0 # Initializing the score

priceWithTax = price * 1.09 # add in 9% tax

 Multiline Comment

You can create a comment that spans any number of lines by making one line with

three quote marks (single or double quotes), writing any number of comment lines, and

ending with the same three quote characters (single or double quotes) on the last line, as

follows:

"'

A multiline comment starts with a line of three quote characters (above)

This is a long comment block

It can be any length

You do not need to use the # character here

You end it by entering the same three quotes you used to start (below)

"'

There are times, when you are experimenting with code, that you may want to

temporarily comment out a block of code. For example, you try writing something one

way, and it’s close to what you want but it’s not exactly right. You don’t want to delete

it because you may want to do a little experiment to see if you can write the code in a

better way.

Let’s say that you have five lines of code that you want to comment out. You certainly

could put the cursor at the beginning of a line and add the # symbol at the beginning of

each line. Or you could put a triple quote before and after the block of code. But there is

an easier way.

Chapter 2 Variables and assignment statements

45

To comment out a block of lines, first select all the lines that you want to comment

out. You can click at a beginning point in your code and drag across the lines you want to

comment out, or you can click at the beginning point and Shift-click at the ending point.

Then go to the Format menu and choose Comment Out Region. (For some reason, IDLE

adds two pound-sign characters (##) when doing this, but that works fine.) Later, if you

decide that you want to uncomment a block, select the region the same way, go to the

Format menu, and choose Uncomment Region.

Finally, comments are often used at the top of a complicated program to build

a revision history. That is, every time there is a significant change to a program,

programmers often add a comment with a date, name, and message about what

changed. For example:

03/27/15 DG Modified to add ability to ...

01/02/14 IK Modified to handle the ..

09/09/13 IK First version

 Whitespace

Python ignores all invisible characters. For now, all of our statements must start in

column 1 of each line, but you can add as many space characters as you want in between

items on a line. You can also add blank lines anywhere you want in Python. When files

get long, added blank lines can aid in readability. (I will talk about readability a lot!)

When you press the Return or Enter key when typing in a Python file, IDLE adds an

invisible RETURN character at the end of the line.

As with the naming conventions for variables, most programmers put spaces around

math operators as another convention. Here is an example of clearly written code with

good spacing:

myVariable = var1 + var2 #space on either side of equals and plus

(preferred)

But it could be written like this:

myVariable=var1+var2 #no spaces

Or even like this:

myVariable = \

 var1 + var2 #lots of spaces

Chapter 2 Variables and assignment statements

46

These lines all do the same thing. The extra spaces are whitespace, which is ignored

by the Python compiler. Adding a single space before and after all operators makes your

code more readable by humans.

Spaces will become important later.

 Errors

When writing and trying to run computer code, everyone makes mistakes. To help you

build a correct program, Python tries to catch errors as early as possible. There are three

different types of errors you encounter when doing Python programming: syntax errors,

exception errors, and logic errors.

 Syntax Error

The first type of error is a compile error (the generic name for it in programming), which

is known as a syntax error in Python.

Consider the following two-line program:

learningPython = True

print(learningpython)

When this program is run, we see this:

Traceback (most recent call last):

 File "<test>", line 2, in <module>

 print(learningpython)

NameError: name 'learningpython' is not defined

This is called a traceback, a term that won’t make a lot of sense at the moment. For

now, just recognize that this is a Python error message. Python is trying to help you by

telling you that something has gone wrong. To understand what Python is trying to say,

look at the last line first. In this case, it says the following:

NameError: name 'learningpython' is not defined

Chapter 2 Variables and assignment statements

47

And this is exactly the problem. The first line created a variable named

learningPython, but learningpython (with a lowercase p) has never been defined. The

wording of the last line of the traceback is very clear in explaining what went wrong. The

middle two lines of the traceback tell you the line where the error occurred:

File "<test>", line 2, in <module>

 print(learningpython)

Errors in variable names will be the cause of many early errors in your programming.

This is why I strongly recommend using the camelcase convention. If you follow the

convention consistently, you won’t have as many of these types of errors.

Here’s a second example of a compilation error:

a = 5 5

A line like this one breaks the rules of Python. Python understands the first part of it

as an assignment statement, but when it sees 5 space 5, it doesn’t know what you mean.

When you try to compile a program with a line like this, you get an error dialog saying

that there was a syntax error. IDLE also puts a red highlight box in your source code that

indicates where it thinks your error is. When you get a compile error, Python cannot run

your program, so it does not even try. You need to study the line with the error, figure out

what is wrong, and fix the error.

Here is a third type of syntax error. In the following, the first line has open

parentheses, but no closing parentheses:

y = (5 +

x = 1

In code like this, Python reads what you wrote, finds the opening parenthesis,

and looks for the matching close parenthesis. It doesn’t find one on the first line, so

it continues to the second line. When it finds what it thinks is a second equals sign,

it knows that something is wrong because you cannot have two equals signs in an

assignment statement. Therefore, you see the red error box on an incorrect line.

Note if you run into an error like this, where the line of code looks correct (x = 1

is correct), the actual error might have occurred on the line above.

Chapter 2 Variables and assignment statements

48

 Exception Error

The second type of error is a runtime error (its generic name in programming), which is

known as an exception error in Python:

x = 5 + 'abc'

You can’t really add a number and a string. If you try to run this line, Python

generates the following error:

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 x = 5 + 'abc'

TypeError: unsupported operand type(s) for +: 'int' and 'str'

When you get a traceback, the first thing to do is read the bottom line first. This one

may be a little difficult to read, but what it’s saying is that for the plus operator, Python

does not allow you to try to combine an integer and a string.

Here is another example. Assume you have not used a variable named xyz, and you

try to use this variable in a line like this

print(xyz)

or this:

y = xyz + 1

These are valid Python statements, but because xyz was not defined before running

these lines, Python gives you the following error message:

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 print(xyz)

NameError: name 'xyz' is not defined

The wording of the last line of this error message is very clear. When you see this type

of error, you have most likely misspelled or miscapitalized a variable name. Remember,

all uppercase/lowercase letters in a variable name must be the same every time the

variable is used. Variables ABC and abc are completely different variables.

Chapter 2 Variables and assignment statements

49

 Logic Error

The third type of error is a wrong answer, also known as a logic error.

Let’s say you are attempting to do simple addition. In trying to write the code, you

inadvertently write the following:

Attempt to ADD 2 and 5

total = 2 * 5

print(total)

These lines of code are valid Python statements, and the program will run without

any error messages. But it produces an incorrect answer. This type of error is often

difficult to track down.

In this small example, it is obvious what’s wrong: the asterisk (multiplication) should

have been a plus (addition). But when you start to write larger programs, it gets more

and more difficult to find such errors. To track down this type of error, you generally

add print statements to write out the values of your variables at different points in

the program. You run your program and compare the output of your print statements

against your expected results. Using that approach helps narrow down the location of

the error.

 Summary

In this chapter, you learned about data, variables, and assignment statements. We

discussed the four main types of data: integers, floats, strings, and Booleans. You got an

in-depth understanding of what a variable is and learned a convention for how a variable

should be named. And you saw how to give a variable a value with an assignment

statement. I introduced the math operators in Python and showed a few sample

programs. You saw how to add comments to code, learned about whitespace, and were

introduced to the types of errors you will see when writing code.

Chapter 2 Variables and assignment statements

51

CHAPTER 3

Built-in Functions

Just as Python has a number of built-in operators (such as + for addition, - for

subtraction, * for multiplication, and so on), it also comes with a number of what are

called built-in functions.

This chapter discusses the following topics:

• Built-in functions

• Using a function/function call

• Arguments

• Getting a result back from a function

• The type function

• Getting input from the user using input

• Conversion functions: int, float, and str

• Building our first real programs

• Concatenation, or adding strings together

• Another programming exercise

• Using function calls inside assignment statements

 Overview of Built-in Functions

I’ll give you an analogy to explain what a built-in function is. My car has a built-in radio.

The radio is not really the car itself; it was developed separately, probably by a different

company. But when I bought the car, it had a radio in it. When I want the radio to do

something, I press its buttons or turn its dials, and the radio responds appropriately.

I don’t need to know how the radio works, I just need to know how to use the radio’s

52

controls. Similarly, in a typical kitchen there are number of built-in appliances. The inner

workings of a home bread maker are a mystery to most people, but the average person

can read the manual and figure out how to use the controls to have it make a delicious

loaf of bread.

Python has a number of things like this called built-in functions. They are pieces of

code that are available for you to use in your programs. (The real power of programming

comes when we build our own functions, which we will get to in the next chapter.)

When you want to use a built-in function, you specify its name and typically give it some

information. The function does some work with that information and gives you back

some result.

 Function Call

Using a function is known as calling a function, or making a function call, or making a

call to a function. To call a function, you supply the name of the function, followed by a

set of open/close parentheses. This is the generic form:

<functionName>()

However, most built-in functions expect you to supply one or more pieces of

information in addition to the function name. This is commonly called passing data to a

function.

 Arguments

Definition An argument is a value that is passed when you call a function.

Inside the function call’s parentheses, you put any data you want, called an

argument, to send to that function. Here’s what a generic call to a function with

arguments looks like:

<functionName>(<argument1>, <argument2>, ...)

CHAPTER 3 BUILT-IN FUNCTIONS

53

 Results

When you call a built-in function, the function does its work and typically hands back a

result. When the function is finished, the result replaces the call and its arguments; that

is, the line continues to execute using the returned value in place of the call. Very often

when you make a call to a function, you assign the returned value to a variable using an

assignment statement, as follows:

<variable> = <functionName>(<argument1>, <argument2>, ...)

 Built-in type Function

Let’s start with a simple example to demonstrate this in context. Python has a built- in

function that can tell us the data type of any variable or value. Not surprisingly, it is

called type. Again, the sequence is that you call a function and pass in a value or values

(arguments), the function does some work using the value(s) you provided, and then it

gives back an answer. Let’s find out the data type of the number 10:

>>> typeOfTen = type(10)

>>> print(typeOf10)

<class 'int'>

In the first line, we call the type function passing in 10. The function does its work,

and when the function is done, it gives back a result. We take that returned result and

assign it to a variable, typeOfTen. Finally, we print out typeOfTen. As expected, we see

that typeOfTen is an integer. (The word class here means type.)

Alternatively, when making a call to a function, you can pass in a variable instead of

a number (or string or Boolean). When you do, Python uses the value of the variable at

that time. Here we use a variable named age and make a similar call:

>>> age = 18

>>> typeOfAge = type(age)

>>> print(typeOfAge)

<class 'int'>

CHAPTER 3 BUILT-IN FUNCTIONS

54

The first line executes and sets the variable age to 18. When the second line runs,

Python sees the variable name, looks up the variable’s value, and passes the value of the

variable. Therefore, when that line executes, your code will run exactly as though it said

this:

>>> typeOfAge = type(18)

Further, when making a call to a function, we do not necessarily need to use an

assignment statement. We could just use a print statement to see the returned value:

>>> age = 18

>>> print(type(age))

<class 'int'>

We don’t know how the type function does what it does, and frankly, we don’t care.

It’s kind of like how most of us think about a microwave oven, or TV, or phone. Most of

us don’t know how these things work internally, but we are happy using them as long as

they continue to do what we need them to do.

Now, let’s try using the type function with a different data type:

>>> print(type(123.45))

<class 'float'>

To show that the type function works with any data type, we’ll try it with a string and

then a Boolean:

>>> print(type('This could be any string'))

<class 'str'>

>>> print(type(True))

<class 'bool'>

Now, let’s try to confuse you. Let’s create a new variable, myVar, and give it a value:

myVar = '1234'

What do you think the type of myVar is? Let’s ask Python to tell us, again using the

type function:

>>> print(type(myVar))

<class 'str'>

CHAPTER 3 BUILT-IN FUNCTIONS

55

Even though the characters are all digits, this is a string because there is an opening

and closing quotation mark. Now let’s execute this line:

>>> myVar = 1234

That line changes the contents of the myVar variable to an integer. Therefore, the

same variable is now considered an integer variable:

>>> print(type(myVar))

<class 'int'>

The important thing to notice here is that 1234 and '1234' are very different things.

1234 is an integer number, and '1234' is a string of characters. These are totally different

values. We’ll see how to switch between these types very soon.

This ability for variables to switch data types at any time is not typical. In most other

computer languages, you must declare the data type of each variable before it is used.

Then throughout the program, variables can only be given values of that type. Python is

called a dynamically typed language because the type of a variable can change over time.

 Getting Input from the User

This is the typical flow of a simple computer program:

 1. Input data.

 2. Work with data. Do some computation(s).

 3. Output some answer(s).

In Python, we can get input from the user using a built-in function called input.

Here’s how it is used, most typically in an assignment statement:

<variable> = input(<prompt string>)

On the right side of the equals sign is the call to the input built-in function. When

you make the call, you must pass in a prompt string, which is any string that you want the

user to see. The prompt is a question you want the user to answer. The input function

returns all the characters that the user types, as a string. Here is an example of how input

might be used in a program:

favoriteColor = input('What is your favorite color? ')

print('Your favorite color is', favoriteColor)

CHAPTER 3 BUILT-IN FUNCTIONS

56

When the assignment statement runs, the following steps happen in order:

 1. The prompt string is printed to the Shell.

 2. The program stops and waits for the user to type a response.

 3. The user enters some sequence of characters into the Shell as an

answer.

 4. When the user presses the Enter key (Windows) or the Return key

(Mac), input returns the characters that the user typed.

 5. Typically, input is used on the right-hand side of an assignment

statement. The user’s response is stored into the variable on the

left-hand side of the equals sign.

In the preceding example, as a favorite color, let’s say that the user entered purple.

The variable favoriteColor is given the value of the string 'purple'. favoriteColor is

a string variable, because anything the user types is a string of characters.

That works great for this example asking for a favorite color. But what if you want the

user to enter a number? Consider what happens when you run the following:

nDollars = input('How many dollars do you have? ')

print(type(nDollars))

You would probably want nDollars to be an integer because you may want to use

that variable in some numerical calculation. However, when run, this code would

report that nDollars is a string variable. This happens because input always returns the

characters that the user types, even if those characters are digits. If the user typed the

characters 12, then nDollars is given the value of the string '12', not the number 12. As

you now know, these two values are very different.

Assuming we want to do some math with the variable nDollars, we need a way

to take the string that the user typed and turn it into a number. Let’s see how Python

provides exactly what we need.

 Conversion Functions

Python has three built-in conversion functions that can change a value from one data

type to another: the int function, the float function, and the str function.

CHAPTER 3 BUILT-IN FUNCTIONS

57

 int Function

To convert from a string (or a float) to an integer, there is the int function. You call the

function, pass in a string or a float value, and it returns an integer version of what was

passed in; for example:

nDollars = input('How many dollars do you have in your wallet? ')

nDollars = int(nDollars)

A call to input returns whatever the user types in as a string. The call to int converts

the variable nDollars from the string the user typed into an integer. The call to the int

function is shown here in an assignment statement, where we take the resulting integer

value and put it back into the same variable, nDollars. This is a very typical use case.

Knowing that nDollars has been converted to an integer, we can now do some math

with it.

 float Function

To convert from a string (or integer) to a float, there is the float function. For example:

thePrice = input('Enter the price: ')

thePrice = float(thePrice)

The user is asked to enter a price. Whatever characters the user types are assigned

into the thePrice variable. The second line converts the thePrice variable from a string

to a float and assigns the resulting float value back into the same variable. Similar to

using the int function, now we can do some math with thePrice variable, knowing here

that it is a floating-point variable.

 str Function

To convert from an integer or float to a string, there is the str built-in function. For

example:

myAge = 37

myAge = str(myAge)

aPrice = 150.75

aPrice = str(aPrice)

CHAPTER 3 BUILT-IN FUNCTIONS

58

These lines convert from an integer or float to a string. We will use the str function

later when we want to build long, nicely formatted strings for output.

Python has many built-in functions, but you will find the five we have discussed to

be particularly useful. Each requires that you send in a single argument, and then each

returns a result:

type(<valueOrVariable>)

returns data type of the argument passed in

input(<promptStringOrStringVariable>)

asks the user a question, and returns the user's response as a string

int(<valueOrVariable>)

returns an integer version of the argument passed in

float(<valueOrVariable>)

returns a float version of the argument passed in

str(<valueOrVariable>)

returns a string version of the argument passed in

There is another built-in function that we have already seen. Although I referred

to the print statement earlier, print is actually another built-in function. The print

function works a little differently in that you can pass in as many arguments as you want

(separated by commas) and it does not return any value:

print(<valueOrVariable>, <valueOrVariable>, ...)

returns nothing

 First Real Programs

We now have discussed all the tools needed to write our first simple programs that

incorporate the basic steps of input, processing, and output. As an exercise, the following

is a specification of a program for you to build:

 1. Prompt the user to enter a number.

 2. Prompt the user to enter a second number.

 3. Using a third variable, add the user’s two numbers together.

CHAPTER 3 BUILT-IN FUNCTIONS

59

 4. Print a nicely formatted line that shows the input and the output.

For example:

The sum of 2 and 8 is 10

Once you understand what is being asked, close the book, open a new Python file in

IDLE, and try to write and run the program.

Here is the solution:

Simple addition program

value1 = input('Please enter a number: ')

value1 = int(value1)

value2 = input('Please enter another number: ')

value2 = int(value2)

total = value1 + value2

print('The sum of', value1, 'and', value2, 'is', total)

Input to the program is handled by two calls to input, each asking the user to input

a number. Because the user’s response to input is always a string, we need to use the

int function to convert both responses to integers. The calculation of the total is a very

simple assignment statement. Finally, we output the answer with a nicely formatted

print statement.

Notice that in both of the calls to input, the prompt string has been set up to have

an extra space at the end. This is purely aesthetic. It is done this way to allow for a blank

space between the question that is asked and the user’s input.

To make this point about calling a function and the resulting value even clearer,

consider this variation of the code:

value1 = input('Please enter a number: ')

value2 = input('Please enter another number: ')

total = int(value1) + int(value2)

print('The sum of', value1, 'and', value2, 'is', total)

Notice the line that calculates the total. I’ll go over the sequence of operations. First,

int is called to change value1 to an integer. Then int is called again to change value2 to

an integer. Each of these calls returns a result. Next, the two returned integer values are

added together. Finally, the resulting sum is assigned to the total variable.

CHAPTER 3 BUILT-IN FUNCTIONS

60

Here is a second challenge, very similar to the first. Write and run a program that

simulates a cash register:

 1. Prompt the user to enter the cost of an item.

 2. Prompt the user to enter the cash paid for the item (for example,

10 for a ten-dollar bill).

 3. Using a third variable, calculate how much change the user should

get back.

 4. Print a nicely formatted line that shows the input and the output.

For example:

Your item costs 6.75 and you gave me 10.0 dollars.

Your change is 3.25

Again, once you understand what is being asked, close the book, open a new Python

file in IDLE, and try to write and run the program.

Here is the solution:

Simple cash register

cost = input('Please enter the cost of the item: ')

cost = float(cost)

cash = input('Please enter the cash given: ')

cash = float(cash)

change = cash - cost

print('Your item costs', cost, 'and you gave me', cash, 'dollars.

Your change is', change)

This program is almost identical to the first simple addition program. There are only

two differences. First, because we are dealing with money expressed in dollars and cents,

the cost of the item and the cash amount should be expressed as floating-point numbers.

Therefore, cost and cash need to be converted to numbers using the float built-in

function. Second, to calculate the change, we need to subtract the cost of the item from

the cash. There are ways to format floating-point numbers to display a given number of

decimal places, but we won’t get into that right now.

CHAPTER 3 BUILT-IN FUNCTIONS

61

 Concatenation

We know that there are a number of operations you can do with numbers (+, -, *, /, //,**, %).

But if you try to add strings, that doesn’t really make sense. Or does it?

Well, you can’t really add strings in the way you add numbers. It doesn’t really make

sense to add a string like 'Joe' and a string like 'Schmoe'.

 'Joe'

+ 'Schmoe'

 ???????

But what if we applied a slightly different meaning to the plus sign when dealing

with strings? That is, when dealing with strings, we could redefine the plus operator to

mean “Take the first string and add the second string onto the end of the first one.” That’s

exactly what happens in Python.

Definition Concatenate means take a string and add another string.

In Python, along with most other languages, when dealing with strings, the + is called

the concatenation operator. Here is an example:

firstString = 'Hot'

secondString = 'Coffee'

concatenatedString = firstString + secondString

print('The result of concatenation is: ', concatenatedString)

When run, the preceding code produces this:

The result of concatenation is: HotCoffee

CHAPTER 3 BUILT-IN FUNCTIONS

62

 Another Programming Exercise

Here is another exercise for you; this one involves concatenation:

 1. Ask the user to enter their first name.

 2. Ask the user to enter their last name.

 3. Using concatenation, create a string of the user’s full name, with a

space between the first and last names. Store the full name into a

third variable.

 4. Print out a nice greeting using the full name (using Joe as the first

name and Schmoe as the last name), like this:

Hello Joe Schmoe I hope you are doing well.

Greeting creator

firstName = input('Please enter your first name: ')

lastName = input('Please enter your last name: ')

fullName = firstName + ' ' + lastName

print('Hello', fullName, 'I hope you are doing well. ')

This program turns out to be simple. The only tricky part is in the concatenation

of the first and last name, because there needs to be a space between the names. With

simple addition, it would be obvious that you could add three numbers together by

doing something like 5 + 2 + 3 to get 10. The concatenation operator works in a similar

way. Just as you can concatenate two strings together, you can concatenate three

strings (or for that matter, any number of strings) by using the concatenation operator

multiple times. To put a space in between the first and last names, we take the first name,

concatenate a single space character (' '), and then concatenate the last name.

Earlier, we built a simple cash register program. It used this line at the end to print

the answers:

print('Your item costs', cost, 'and you gave me', cash, 'dollars. Your

change is', change)

It generated an output like this:

Your item costs 6.75 and you gave me 10.0 dollars. Your change is 3.25

CHAPTER 3 BUILT-IN FUNCTIONS

63

But what if we wanted to write output using the dollar sign, like this:

Your item costs $6.75 and you gave me $10.0. Your change is $3.25

We could try adding the dollar sign to our text, like this:

print('Your item costs $', cost, 'and you gave me $', cash, ' Your change

is $', change)

But the output would have an annoying extra space after every dollar sign:

Your item costs $ 6.75 and you gave me $ 10.0. Your change is $ 3.25

To fix this, we can use concatenation and the str built-in function:

print('Your item costs $' + str(cost) + ' and you gave me $' + str(cash) +

'. Your change is $' + str(change))

Notice that in the preceding line, we are calling the str built-in function three times.

Rather than saving the “stringified” version of cost, cash, and change, we are just calling

the str function “in-line.” Each call results in a string version of the numeric variable. We

use each resulting string to build up a long string answer before printing.

 Using Function Calls Inside Assignment Statements

In the previous chapter, we built a simple program to calculate the number of dollars a

person has in his or her wallet. Let’s revisit that code, but now using built-in functions.

In the following program, we will ask the user to tell us how many of each denomination

of bills they have, and the program will calculate the total. In the following code, we are

using three different built-in functions:

Calculate the amount of money interactively

Use input to get info from the user

nOnes = input('How many ones do you have? ')

nFives = input('How many fives do you have? ')

nTens = input('How many tens do you have? ')

nTwenties = input('How many twenties do you have? ')

CHAPTER 3 BUILT-IN FUNCTIONS

64

Use int to convert the inputted strings to integer values before multiplying

total = int(nOnes) + (int(nFives) * 5) + (int(nTens) * 10) +

(int(nTwenties) * 20)

Use str to convert to a string, then concatenate on a decimal point and

zeros

totalAsString = str(total) + '.00'

Concatentate strings and print

print('You have $' + totalAsString)

Let’s take a closer look at this line:

total = int(nOnes) + (int(nFives) * 5) + (int(nTens) * 10) +

(int(nTwenties) * 20)

There, we have four calls to the int built-in function. Let’s walk through how this

statement works. As an example, let’s assume that the user answered the questions

saying that she had 2 ones, 3 fives, 4 tens, and 5 twenties. Therefore, when the preceding

line runs, Python substitutes the current values for the variables nOnes, nFives, nTens,

and nTwenties. So, when running, Python effectively sees this:

total = int('2') + (int('3') * 5) + (int('4') * 10) + (int('5') * 20)

Each of the calls to the int function runs and converts each string argument into an

integer before each value is multiplied. In our earlier code, we typically took the result

of calling the int function and assigned it to a variable. Instead, we can use a function

call directly inside of a longer expression. When this line runs, you can think of an

intermediate step where each call to the int function has been replaced by the returned

integer version of each string:

total = 2 + (3 * 5) + (4 * 10) + (4 * 20)

Then—because of the proper use of parentheses—the numbers are multiplied:

total = 2 + 15 + 40 + 80

Next, the numbers are added:

total = 157

Finally, the resulting value is assigned into the variable total.

CHAPTER 3 BUILT-IN FUNCTIONS

65

Python has many additional highly useful built-in functions, which are introduced

at the appropriate times throughout this book. Most of them work in a similar way to the

type, input, int, float, and str built-in functions discussed in this chapter.

 Summary

This chapter was all about some of Python’s built-in functions, which are pieces of code

that Python provides for you. You learned how to call a function and pass arguments.

When a function is done, it typically returns a value that you often store in a variable. I

introduced the input function that allows you to get input from the user. Then we saw

the conversion functions of int, float, and str, which are used to change data from one

type to another. We found that print is also a Python built-in function. Using these built-

in functions, we worked through building our first useful programs. You learned how to

add strings using concatenation. Finally, you got some experience in writing your own

small programs.

CHAPTER 3 BUILT-IN FUNCTIONS

67

CHAPTER 4

User-Defined Functions

Software is a detailed set of instructions that tell the computer what to do. There are

numerous examples where we, as humans, follow a set of such instructions. As a simple

example, many pieces of furniture from IKEA come with a set of high-level instructions

in the form of pictures. When creating these instructions, the people at IKEA assume a

certain level of basic knowledge of how to use tools, such as a wrench, a screwdriver, a

hammer, and so on.

But using tools could be broken down into simpler steps. Using a hammer could

be broken down into grip the hammer by the handle, hold the nail perpendicular to

the surface, tap the nail with the head of the hammer to get it started, then hit the nail

harder, and so forth. Once you understand the steps involved in using a hammer, you

can apply your hammer skills any time a set of instructions calls for you to use one,

without having to worry about the details. Creating detailed low-level descriptions of

steps (like how to use a hammer) is very similar to the way that software is built. In this

chapter, you learn how to create these types of software groupings.

This chapter covers the following topics:

• A recipe as an analogy for building software

• Definition of a function

• Building our first function

• Calling a user-defined function

• Receiving data in a user-defined function: parameters

• Building user-defined functions with parameters

• Building a simple function that does addition

• Building a function to calculate an average

• Returning a value from a function: the return statement

• Returning no value: None

68

• Returning more than one value

• Specific and general variable names in calls and functions

• Temperature conversion functions

• Placement of functions in a Python file

• Never writing multiple copies of the same code

• Constants

• Scope of variables: global and local

• Global and local variables with the same names

• Finding errors inside functions: traceback

 A Recipe as an Analogy for Building Software

Cooking and baking also have detailed lists of instructions. Let’s take a look at a recipe

to see how we can use it as an analogy for building software. Here is a recipe for baking a

(very delicious) chocolate cake:

 Ingredients

1 box of cake mix (chocolate)

1 box of Jell-O Instant Pudding (chocolate)

1/4 pound chocolate chips

4 eggs

3/4 cup of water

1/3 cup of oil

 Directions

Preheat oven to 350 degrees.

Crack eggs into a bowl.

Blend eggs (high, 4 minutes).

CHAPTER 4 USER-DEFINED FUNCTIONS

69

Add the water.

Add the oil.

Blend (medium, 1 minute).

Add the cake mix.

Add the Jell-O mix.

Blend (medium, 10 minutes).

Add the chocolate chips.

Blend (low, 1 minute).

Grease the Bundt pan.

Pour mixture into a pan.

Bake at 350 degrees for 45 minutes.

Remove from oven.

All recipes contain two basic parts: ingredients and directions. The analogy to

software works like this. The ingredients (such as eggs, water, oil) are always nouns.

Think of these as data. Then there are the directions, which are always actions. The

directions always start with a verb (in this recipe: preheat, crack, blend, add, and so on).

Think of these as the code that acts on the data.

Just as using a hammer is made up of a number of smaller steps, the steps in

our recipe can be broken down further and further. This process is called stepwise

refinement. For example, “Crack eggs into bowl” can be broken down as follows.

For each egg:

Remove egg from carton.

Hit egg gently on surface.

Move egg over a bowl.

Crack open egg.

Dump all egg goop into bowl.

Discard eggshell.

CHAPTER 4 USER-DEFINED FUNCTIONS

70

Once you have developed the detailed, lower-level steps you need to take for “Crack

eggs into bowl,” and you have tested those steps to know that they work correctly,

you can think of the higher-level concept of “Crack eggs into bowl” without having to

worry about the lower-level details. If our cake recipe had the need for two different

steps where you had to crack eggs into a bowl, you would perform the exact same set of

instructions at both points.

Now that we have the detailed procedure for cracking eggs into a bowl, if we found

another recipe that called for cracking eggs into a bowl, we do not need to describe those

steps again. Someday, if someone invents a laser egg splitter that makes it easier and

more efficient to get the contents of an egg out of the shell, then we would modify the

steps involved in “Crack eggs into bowl” to use the laser egg splitter, and these new steps

would be applied in any recipe that called for cracking eggs.

Notice in the chocolate cake recipe that there are many times when we need to blend

ingredients in a mixer. In fact, there are four different places. Also notice that every time

we blend, we are also specifying different details for each blend.

Preheat oven to 350 degrees.

Crack eggs into bowl.

Blend (high, 4 minutes).

Add the water.

Add the oil.

Blend (medium, 1 minute).

Add the cake mix.

Add the Jell-O mix

Blend (medium, 10 minutes).

Add the chocolate chips.

Blend (low, 1 minute).

Grease the Bundt pan.

Pour the mixture into the pan.

Bake at 350 for 45 minutes.

Remove from oven.

CHAPTER 4 USER-DEFINED FUNCTIONS

71

Let’s take a closer look at the word blend in the directions. We could break down—or

define—blend into something like the following.

Blend with a given electric mixer setting and number of minutes:

Turn on the electric mixer to the given setting.

Set a timer for the specified number of minutes.

Until time is up:

Stir slowly with spatula.

Break up any lumps.

Scrape sides of the bowl.

When you are following a recipe and it tells you to blend something, you perform

the steps inside this definition of blend. This is the basic idea behind how we write code.

Software is typically built in groups of lines like this. Such a grouping has traditionally

been called a routine (also known as a subroutine or even a subprogram). Every routine

like this is given a unique name. Once you test the instructions and know that they

work the right way, you can use or invoke the routine by stating the name of the routine.

When your program runs, any time the program gets to a line that includes the name

of a routine, the statements inside that routine run and do what they do to complete

that task.

Within our blend example, the word stir could be broken down into a more detailed

list of operations, such as “Grab spatula, place under mixture, rotate mixture upward

toward the beaters,” and so forth. Software works analogously in that a routine can

invoke another routine to do another predefined job. In a recipe or in software, you

can go down any number of levels until some basic operations are understood without

further explanation.

 Definition of a Function

In Python, a routine, like any of the ones described in the preceding section, is known as

a user-defined function, or more simply, a function.

Definition A function is a series of related steps (statements) that make up a

larger task, which is often called from multiple places in a program.

CHAPTER 4 USER-DEFINED FUNCTIONS

72

Here is the generic form of a function in Python:

def <functionName>(<optionalParameters>): # notice the parentheses and the

ending colon

 <indented statement(s)> # the 'body' of the function

The word def is short for definition. You are defining a function. def is one of the

special reserved Python keywords. When you type a keyword such as def, IDLE changes

its color to show you that it recognizes it. Next, you supply a name for the function. You

can choose any name—although it is recommended that you continue to follow the

camelcase naming convention. It’s worth it to take time to create a name that makes it

very clear what the function does. A set of parentheses follows the name. Let’s ignore the

<optionalParameters> for now; we’ll come back to it shortly. The line ends with a colon (:),

which is very important.

All the statements that make up the function, called the body of the function, are

indented from the def statement. Python relies on indenting to show a grouping of lines.

The convention is to indent four spaces. (You can change this in the IDLE preferences,

but it defaults to 4, and four spaces is a broadly accepted convention.) If you have ever

seen code written in the C, Java, or JavaScript languages, you might know that these

languages define similar blocks of code with open and close braces { }. However, C,

Java, and JavaScript programmers almost universally use indenting in addition to the

braces. Python’s use of indenting only (with no braces) is unique and helps make Python

code much more readable than most other languages.

 Building Our First Function

Let’s build our first function. Open a new file in IDLE and type the following. IDLE helps

with the indenting. When you type a def statement to start the definition of a function,

IDLE automatically indents the next line (and all successive lines) by the default number

of spaces. To tell IDLE that you no longer want to indent code, you must press the Delete

key (Mac) or the Backspace key (Windows). Moving the cursor back four spaces by

pressing Backspace or Delete is known as a dedent or outdent:

def getGroceries():

 print('milk')

 print('flour')

CHAPTER 4 USER-DEFINED FUNCTIONS

73

 print('sugar')

 print('butter')

 print() #blank line

This is the definition of a function. It is the detailed implementation of something

that you want the computer to be able to do. It’s like the steps of “Crack eggs into bowl”

in our earlier recipe. The name of the function is getGroceries. It contains a series

of detailed instructions that make up a larger task. Each of these instruction lines is

indented. The code of the function is made up of five simple print statements. Enter the

code, save the file, and run the program to see it in action.

When you run it, woo-hoo! Absolutely nothing happens! Why? Because we didn’t ask

our program to do anything. You probably know how to throw a ball, sing a song, open

a can, and make a peanut butter sandwich. But if you are reading this book and no one

asks you to do any of these things, you will most likely not perform any of those actions.

If you want a function to run, you have to tell the computer to run it. Chapter 3

discussed a number of Python’s built-in functions (type, input, int, float, and str).

Python knows what code to run for each of these, but none of these built-in functions

will do anything until and unless a call to one of these functions executes in the currently

running program.

 Calling a User-Defined Function

Just as we did with built-in functions, when you want to use a user-defined function, you

call a user-defined function by specifying the name of the function, followed by a set of

parentheses, and include any data (arguments) that you want the function to act on, as

follows:

<functionName>(<argument1>, <argument2>, ...)

Because our getGroceries function does not operate on any data, to call the

getGroceries function, we only need to specify its name, followed by an empty set of

parentheses:

getGroceries() # calling the function, must have parentheses, even if

there are no arguments

CHAPTER 4 USER-DEFINED FUNCTIONS

74

In our Python file, we’ll add a call to the function after the function definition. The

area below any functions is typically referred to as the main code. Save and run the

program:

def getGroceries():

 print('milk')

 print('flour')

 print('sugar')

 print('butter')

 print() #blank line

Main code starts here

getGroceries()

When you save and run this code, you should see the following output in the Shell:

milk

flour

sugar

butter

Let’s add a second call to the same function in the main code:

def getGroceries():

 print('milk')

 print('flour')

 print('sugar')

 print('butter')

 print() #blank line

Main code starts here:

getGroceries()

getGroceries()

After this change, you should see the following in the Shell:

milk

flour

sugar

butter

CHAPTER 4 USER-DEFINED FUNCTIONS

75

milk

flour

sugar

butter

Until now, you have only seen code that runs strictly from the top down. With the

ability to create and use functions, we can affect the “order of execution” of a program;

that is, we can jump around within the program.

Let’s modify the code just slightly to show how a function can call another function.

Here is another variation of the program that does just that:

This function just prints a line of asterisks followed by a blank line

def separateRuns():

 print('******************')

 print() #blank line

def getGroceries():

 print('milk')

 print('flour')

 print('sugar')

 print('butter')

 separateRuns() # call another function

Main code starts here:

getGroceries()

getGroceries()

When we run this version, you should see the following in the Shell:

milk

flour

sugar

butter

milk

flour

sugar

butter

CHAPTER 4 USER-DEFINED FUNCTIONS

76

Here is what happens when you run this code. Python sees the first def statement for

separateRuns and recognizes that it is the definition of a function. Python remembers

where this function is and skips over the body of the function (the indented lines). Next,

it sees the def statement for the getGroceries function. Again, it remembers where this

is and skips over the body of this function. Eventually, it finds the first real line of the

executable code—the first call to getGroceries().

When this line runs, because it has a call to a function, Python remembers where

it was, and execution jumps to the def statement for the getGroceries function.

Each print statement inside the function runs and each writes out its appropriate

value. At the last statement, Python finds a call to another function: separateRuns.

Python remembers where it came from and transfers control into that function. The

separateRuns function first prints a line of asterisks (to show the end of a run) and then

a blank line (to separate the output from other runs). Because there is no more work

for this function to do, control is transferred back to where it was called from (inside

getGroceries). And because this is the last line of getGroceries, control is transferred

back to where that function was called from (in the main code). On the next line, Python

finds another call to getGroceries. Control is transferred into the function once again,

and the entire sequence is repeated. After the second call to getGroceries completes,

Python finds no more lines of code to run, and the program terminates.

 Receiving Data in a User-Defined Function:
Parameters

Our getGroceries function is a good example of what a user-defined function looks like,

but it’s not very useful. Every time you call getGroceries, it does the exact same thing:

this is an example of what is known as hard-coding. It would be more interesting and

useful to have a function that would do something different depending on the data that

is passed in.

Remember from our earlier discussion of built-in functions that when you call a

function, you can pass data. Each piece of data that you pass is called an argument.

When we pass arguments with a function call, the function can be written to do different

work and/or generate different results, depending on the value(s) of data. Now we can

look at the other side of the call: how to receive the data that is passed in to a function.

CHAPTER 4 USER-DEFINED FUNCTIONS

77

Definition A parameter is a variable (defined in the def statement of a function)

that is given a value when a function starts. (It is also known as a parameter

variable.)

Think back to our chocolate cake recipe example. When discussing that recipe, we

said that blend is like a function. The definition of blend is a series of steps that made

up a larger task; it was used in many places in our recipe. Further, remember that in our

chocolate cake recipe, whenever we were directed to blend, two pieces of information

were always specified: the mixer’s power setting and the number of minutes the mixer

needed to operate. If you think of blend as a Python function, then the two pieces of data

that are passed with every call are received and used inside the function. The Python

version of a blend function might look like this:

def blend(powerSetting, nMinutes):

 <indented block of code>

In this definition of blend, powerSetting and nMinutes are parameters. They are

variables whose values are assigned when another piece of code calls the function and

the function starts to run. Here are examples of different calls to the blend function.

blend('high', 10)

...

blend('medium', 1)

...

blend('low', 1)

...

desiredSetting = 'high'

numberOfMinutes = 8

blend(desiredSetting, numberOfMinutes)

In each of these calls to the blend function, we are passing in different values for the

power setting and the number of minutes. When each call happens, the value of the first

argument is put into the first parameter of the function: powerSetting. Then the value of

the second argument is put into the second parameter of the function: nMinutes. When

the first call happens, control is transferred to blend, powerSetting is set to the string

'high', and nMinutes is set to the value 10. In the last call we pass in the values of the

variables desiredSetting and numberOfMinutes (see Figure 4-1).

CHAPTER 4 USER-DEFINED FUNCTIONS

78

You can think of it like there is an assignment statement assigning a value from each

argument to the associated parameter variable.

 Building User-Defined Functions with Parameters

Let’s try this out for real in Python. We’ll modify the getGroceries function to use one

parameter. That is, instead of always printing milk as the first item in our grocery list,

we want to allow the caller to call getGroceries and pass in one item to get—but we

always want to print the remaining three hard-coded items. Whatever the caller passes

in should be printed as the first item. To do this, in the definition of getGroceries, we

include one parameter, which we name item1 (just an example name—parameter

variables can have any legal variable name):

def getGroceries(item1): # uses one parameter variable

 print(item1) # prints the contents of the item1 variable

 print('flour')

 print('sugar')

 print('butter')

 separateRuns()

Figure 4-1. The values of arguments are assigned to the parameters in a function

CHAPTER 4 USER-DEFINED FUNCTIONS

79

And here are some sample calls to getGroceries using different argument values:

getGroceries('eggs')

getGroceries('beer')

getGroceries('apples')

When each of these calls runs, the first print statement of getGroceries prints the

value that was passed in with each call. The output looks like this:

eggs

flour

sugar

butter

beer

flour

sugar

butter

apples

flour

sugar

butter

Notice that the first item of each grouping is different and matches what was passed

in. Now, let’s modify getGroceries again, this time so that it accepts four parameters.

We’ll also change each hard-coded print statement to print an appropriate parameter:

def getGroceries(item1, item2, item3, item4):

 print(item1)

 print(item2)

 print(item3)

 print(item4)

 separateRuns()

CHAPTER 4 USER-DEFINED FUNCTIONS

80

Given this definition, we now have to call our function with four arguments:

Now call the function with four arguments

getGroceries('eggs', 'soap', 'lettuce', 'cat food')

getGroceries('beer', 'milk', 'soda', 'peas')

The order of the arguments and the parameters is important. That is, the value of the

first argument is given to the first parameter, the value of the second argument is given to

the second parameter, and so on for however many arguments and parameters there are.

Further, the number of arguments in a call must match the number of parameters in the

called function. If these don’t match in number, Python will generate an error message.

The output of the preceding calls looks like this:

eggs

soap

lettuce

cat food

beer

milk

soda

peas

We are calling the same function, but because we are passing different arguments,

the function does something different; in this case, it prints different results. We can also

call a function using variables for any of the arguments:

mustGet = 'paper plates'

mustAlsoGet = 'chocolate candy bars'

getGroceries(mustGet, mustAlsoGet, 'lettuce', 'cat food')

These lines generate the following output:

paper plates

chocolate candy bars

lettuce

cat food

CHAPTER 4 USER-DEFINED FUNCTIONS

81

In the last call, the mustGet and mustAlsoGet variables are evaluated, and the values

of 'paper plates' and 'chocolate candy bars' are passed as arguments along with

'lettuce' and 'cat food'.

 Building a Simple Function That Does Addition

Let’s build a slightly more useful example. In the following, we’ll build a function whose

purpose is to accept a numeric parameter, add two to it, and print the result:

def addTwo(startingValue):

 endingValue = startingValue + 2

 print('The sum of', startingValue, 'and 2 is:', endingValue)

Call the function twice with different arguments

addTwo(5)

addTwo(10)

Each parameter variable takes on the value of the matching argument that was

passed in. In this example, from the first call, startingValue is assigned 5. In the second

call, startingValue is given the value 10. This is the output of the two calls to addTwo:

The sum of 5 and 2 is: 7

The sum of 10 and 2 is: 12

 Building a Function to Calculate an Average

Let’s build something that is a little more useful and realistic. Here is a function that

calculates the average of four numbers. Again, we could use any legal variable name for

parameter variables—here we are just showing names like param1, param2, and so forth,

for simplicity:

def calculateAverage(param1, param2, param3, param4):

 # Add up numbers, divide by the number of numbers

 total = param1 + param2 + param3 + param4

 average = total / 4.0

 print('Average value is:', average)

calculateAverage(2, 3, 4, 5)

calculateAverage(-3, 5.2, 15, 1000.8)

calculateAverage(1.4, -2.5, 14.3, 200.5)

CHAPTER 4 USER-DEFINED FUNCTIONS

82

This generates the following output:

Average value is: 3.5

Average value is: 254.5

Average value is: 53.425

This example demonstrates one of Python’s inherent features. In the three calls to

calculateAverage, we passed in different mixes of integer and float values. The function

calculated and printed the proper result in all cases. Look again at the second call. The

first argument is an integer, –3, and the second argument is a float with a value of 5.2.

However, as the writer of the function, you don’t have to worry about this possibility or

do anything special to allow the calculations to work with different types of data. Each

parameter in the function (param1, param2, param3, and param4) takes on the value and

the type of whatever argument is passed in. This is highly unusual in programming

languages and shows off the flexibility of Python’s dynamic data typing.

 Returning a Value from a Function: The return
Statement

Python recognizes the end of a function by the indenting—or more accurately, by the

lack of indenting. As soon as a line is found that has the same indenting as the def

statement that started the definition of the function, Python knows that it has reached

the end of the definition of a function. After the last indented statement runs, control

passes back to a point just past where the function was called.

In the small functions shown so far, each function ends by executing a print

statement to print out some result. But in most cases, user-defined functions are typically

built to do some calculation(s) to generate an answer and give that answer back to the

caller. Remember, this is the way all the built-in functions you have seen operate.

This concept might be best explained through an analogy. Say I am a manager and

I have an employee who is a specialist in analyzing the cost of widgets. I am a proud

manager because I hired this employee and trained her in the best ways of doing this

analysis. The employee can now do the cost analysis all on her own. I have grown to trust

that the employee is doing excellent work and always gives correct answers. Because of

this, as a manager, I can now think of problems at a higher level and no longer have to

worry about the details of analyzing the cost of widgets myself. I know that any time I need

to get the best price for a widget, I can ask my employee and I will get a correct cost answer.

CHAPTER 4 USER-DEFINED FUNCTIONS

83

This is the way a typical function works. First, you have to write the function’s code

(train your employee). But once you trust that the function works the right way (the

employee is giving you proper results), you come to trust the function (employee). You

no longer have to worry about how the lower-level job gets done. You can work at a

higher level and assume that the function will respond correctly.

In Python, when a function wants to give a result to a caller, it uses a return

statement and specifies the value to hand back. The generic form looks like this:

return <returnValue>

The caller can use the resulting value for whatever it needs. Often, the caller will take

the resulting value and store it in a variable. For example, here is a modified version of

the previous addTwo function that returns a single number value:

def addTwo(startingValue):

 endingValue = startingValue + 2

 return endingValue # returns a result to the caller

sum1 = addTwo(5)

sum2 = addTwo(10)

print('The results of adding 2 to 5 and 2 to 10 are:', sum1, 'and', sum2)

In this example, we first call the addTwo function with an argument of 5. Inside the

function, that value is assigned to the startingValue parameter variable. The function

runs and calculates an endingValue of 7. Using a return statement, the function hands

back a result to the caller. In the assignment statement in the main code, the value of the

call addTwo(5) becomes 7, the rest of the assignment statement runs, and the variable

sum1 is set to 7. The second call then runs the same way, and the variable sum2 is set to

12. This is the output of the code:

The results of adding 2 to 5 and 2 to 10 are: 7 and 12

Let’s modify the earlier calculateAverage function so that rather than printing a

result, it returns its result to the caller. Here’s how we can do that:

def calculateAverage(param1, param2, param3, param4):

 # Add up numbers, divide by the number of numbers

 total = param1 + param2 + param3 + param4

 average = total / 4.0

 return average # hand the answer back to the caller

CHAPTER 4 USER-DEFINED FUNCTIONS

84

average1 = calculateAverage(2, 3, 4, 5)

average2 = calculateAverage(-3, 5.2, 15,1000.8)

average3 = calculateAverage(1.4, -2.5, 14.3, 200.5)

print('The three averages are:', average1, average2, average3)

We call the calculateAverage function three times and pass in four values as

arguments with each call. For each call, the function runs and returns a value. The result

of each call to calculateAverage is stored into a separate variable. This is the resulting

output:

The three averages are: 3.5 254.5 53.425

 Returning No Value: None

When we first started discussing functions, we saw how a function could simply end

without using a return statement at all. When a function does not have an explicit

return statement, Python builds an implied return statement that returns no value. In

fact, you can write a return statement that does not give back a value:

return # no return value specified

But when a return statement is executed without any returned value, Python

actually returns a special value of None. None is a Python keyword that means no value.

The following function multiplies a number times itself (squares the number):

def square(number):

 answer = number * number

 return # Note: this is an error, does not return an answer

userNumber = input('Enter a number: ')

userNumber = float(userNumber) # convert to a float

numberSquared = square(userNumber) # call the function and save the

result

print('The square of your number is', numberSquared)

When we run this code and enter any number, this is the output:

The square of your number is None

CHAPTER 4 USER-DEFINED FUNCTIONS

85

That’s certainly not what you want or expect. But if you understand that None is the

value returned by a function when there is a simple return statement, then you can

easily track down this type of error and correct it. Here is the corrected version:

def square(number):

 answer = number * number

 return answer # This returns the correct answer

 Returning More Than One Value

Python has a further extension of the return statement. In most other programming

languages, the return statement can only return either no values or a single value. In

Python, just as you can pass as many values as you want into a function, you can also

return any number of values:

return <value1>, <value2>, <value3>, ...

For example, you could create a function that returns three values, like this:

def myFunction(parameter1, parameter2):

 #

 # Body of the function, calculates

 # values for answer1, answer2, and answer3

 return answer1, answer2, answer3 # hand back three answers to the caller

Then you would call myFunction with code like this:

variable1, variable2, variable3 = myFunction(argument1, argument2)

That is, you call myFunction, passing in two arguments. The function does whatever

it needs to do and returns three values. The call was actually part of an assignment

statement. When the function is finished and executes its return statement, the

three returned values are stored into the three variables on the left-hand side of the

assignment operator (equals sign). The order of the variables in the assignment

statement matches the order of the answer variables in the function’s return statement.

There is one more clarification about return statements. Whenever a function

executes any type of return statement (returning no value, one value, or multiple

values), execution of code exits the function immediately and returns control just past

CHAPTER 4 USER-DEFINED FUNCTIONS

86

the point from where it was called. If you have any code below that return statement,

it will not be executed. This is often confusing for new programmers. Here is a simple

example:

def sayHello(name):

 print('Hello')

 return

 print(name)

When called, this function prints the word Hello, and then returns immediately. The

second print statement would not execute.

 Specific and General Variable Names in Calls
and Functions

New programmers often struggle with creating different names for variables outside of

and inside of functions. Here is a general way to think about such variable names. Part

of the definition of a function is that functions are often called from different parts of a

program. The data being passed in from different calls might have significantly different

meanings. Often, though, the code of the function does not know and does not need to

know the underlying meaning of the data it is working with.

For example, earlier we saw a function to calculate an average. The function is

passed a sequence of numbers, but the function does not need to understand what the

numbers represent. Its job is just to do the calculation of the average. Only the code

calling the function needs know the meaning of the values it is passing in. The following

program has the same calculateAverage function. In the main code, we are calling the

function to calculate two different averages of statistics from a football game: the yardage

gained on the first four running plays and the first four passing plays:

def calculateAverage(param1, param2, param3, param4):

 # Add up the numbers and divide by the number of numbers

 total = param1 + param2 + param3 + param4

 average = total / 4.0

 return average # hand back the answer to the caller

yardsOnRun1 = 4

yardsOnRun2 = 6.5

CHAPTER 4 USER-DEFINED FUNCTIONS

87

yardsOnRun3 = 2.5

yardsOnRun4 = -2

averageYardsPerRun = calculateAverage(yardsOnRun1, yardsOnRun2,

yardsOnRun3, yardsOnRun4)

print('Average yards per run is:', averageYardsPerRun)

yardsOnPass1 = 0

yardsOnPass2 = 25.5

yardsOnPass3 = 0

yardsOnPass4 = 12

averageYardsPerPass = calculateAverage(yardsOnPass1, yardsOnPass2,

yardsOnPass3, yardsOnPass4)

print('Average yards per pass is:', averageYardsPerPass)

In the main code, we have four variables that are set to the yardage gained on each

of the first four runs. These variables are named to express the data they represent

(yardsOnRun1, yardsOnRun2, and so on). Then there is a call to the calculateAverage

function, passing in the value of these variables. In the main code, the variable names

(which are used as arguments in the function call) are extremely specific. However,

inside the calculateAverage function call, the values that are received as parameters

are given generic parameter variable names (param1, param2, param3, and param4).

The function does the appropriate calculation and stores its answer in a variable with a

generic name of average. When the function returns the result, the main code stores the

result into the specifically named variable averageYardsPerRun.

The process is repeated, but this time, we are using variable names that imply the

yardage gained on each pass play (yardsOnPass1, yardsOnPass2, and so forth). Again,

these very specifically named variables are passed in with the call to the function. The

function receives the values and puts them into the more generic parameters variables.

When the function returns the result, the main code stores this result into the variable

with the meaningful name averageYardsPerPass. This is a good pattern to follow.

Tip When creating names of parameter variables, try to use generic names

that still imply meaning. But when using variables in calls to functions, try to use

variable names that are as specific as possible. This way, you typically avoid using

the same variable names in calls and in function definitions.

CHAPTER 4 USER-DEFINED FUNCTIONS

88

 Temperature Conversion Functions

To put all these pieces together, let’s walk through the process of creating two very useful

functions. In the United States, temperature is measured using the Fahrenheit scale. Most of

the rest of the world uses the Centigrade (or Celsius) scale. The scales are very different, but

two simple formulas can be used to easily convert between them. These are the formulas:

Fahrenheit to Centigrade:

C = (F – 32) × (5/9)

Centigrade to Fahrenheit:

F = (1.8 × C) + 32

Here are two Python functions that will do these conversions. For both functions, we

pass in a value in one scale, and each returns the value in the other scale:

def F2C(nDegreesF):

 nDegreesC = (nDegreesF - 32) * (5.0 / 9.0)

 return nDegreesC

def C2F(nDegreesC):

 nDegreesF = (1.8 * nDegreesC) + 32

 return nDegreesF

Given these function definitions, we can now build some main code to use these

functions interactively. We can ask the user for a temperature in each scale and then

convert and print it in the other scale:

Code to ask the user to input values for conversion:

usersTempF = input('Enter a value of degrees Fahrenheit: ')

usersTempF = float(usersTempF)

convertedTempC = F2C(usersTempF)

print(usersTempF, 'degrees Fahrenheit is:', convertedTempC, 'degrees

Centigrade.')

usersTempC = sinput('Enter a value of degrees Celsius: ')

usersTempC = float(usersTempC)

convertedTempF = C2F(usersTempC)

print(usersTempC, 'degrees Centigrade is:', convertedTempF, 'degrees

Fahrenheit.')

CHAPTER 4 USER-DEFINED FUNCTIONS

89

Here is what we see if we input the Fahrenheit value of 212 (the boiling point of

water) and the Centigrade value of 0 (the freezing point of water):

Enter a value of degrees Fahrenheit: 212

212.0 degrees Fahrenheit is: 100.0 degrees Centigrade.

Enter a value of degrees Celsius: 0

0.0 degrees Centigrade is: 32.0 degrees Fahrenheit.

These functions yield results that are inverses of each other. The following is an

interesting test of the functions using an arbitrary value:

>>> print(F2C(C2F(123.45)))

123.45

In this code, the innermost function call to C2F runs first, which converts the

Centigrade value of 123.45 to its Fahrenheit equivalent. Then that value (whatever it is)

is passed into the F2C function, which converts it back to Fahrenheit. The result is the

number we started with.

 Placement of Functions in a Python File

Notice that in all the examples of functions and function calls, the code that defines the

functions is always at the top of the Python file. The main code of the program, which

typically incorporates calls to those functions, is written below the function definitions.

This is how a typical story is written. When a character is introduced, some details about

his personality are given—maybe there is some description of how the character looks,

or maybe a backstory is given—before the character is given any dialog.

If your main code tries to call a function before it is defined, Python gives an error.

Remember that when you run a program, Python reads through all of your code before

execution starts. Python remembers where functions are defined in your code, but it

does not run those functions. Instead, it keeps scanning until it finds the first statement

that is not inside any function; this is where execution actually starts. When executing

code, if Python were to try a call to a function that it had not seen yet, Python wouldn’t

know where the function is, and would give an error message saying that the function is

undefined.

CHAPTER 4 USER-DEFINED FUNCTIONS

90

 Never Write Multiple Copies of the Same Code

A key concept in writing software is that you never want to have multiple copies of

the same code. Earlier in this book, we developed the Python code for calculating the

hypotenuse (longest side) of a right triangle. Here is an example of what that might look

like, where we want to ask the user for two different sets of sides of right triangles:

firstTriangleSide1 = input('Enter side 1: ')

firstTriangleSide2 = input('Enter side 2: ')

firstTriangleSide1 = float(firstTriangleSide1)

firstTriangleSide2 = float(firstTriangleSide2)

firstTriangleHypot = ((firstTriangleSide1 ** 2) +

(firstTriangleSide2 ** 2)) ** 0.5

print('The hypotenuse of the first triangle is:', firstTriangleHypot)

secondTriangleSide1 = input('Enter the first side: ')

secondTriangleSide2 = input('Enter second side: ')

secondTriangleSide1 = float(secondTriangleSide1)

secondTriangleSide2 = float(secondTriangleSide2)

secondTriangleHypot = ((secondTriangleSide1 ** 2) +

(secondTriangleSide2 ** 2)) ** 0.5

print('The hypotenuse of the second triangle is:', secondTriangleHypot)

Whenever you find that you have written essentially the same code in multiple

places, it should be an immediate trigger for changing such code into a function.

The following is a variation of the previous code, but using a function and passing

parameters instead:

Assumes that values passed in could be values representing strings

def calculateHypotenuse(side1, side2):

 side1= float(side1)

 side2 = float(side2)

 hypot = ((side1 ** 2) + (side2 ** 2)) ** 0.5

 return hypot

firstTriangleSide1 = input('Enter side 1: ')

firstTriangleSide2 = input('Enter side 2: ')

CHAPTER 4 USER-DEFINED FUNCTIONS

91

hypot1 = calculateHypotenuse(firstTriangleSide1, firstTriangleSide2)

call function to do calc

secondTriangeSide1 = input('Enter the first side: ')

secondTriangeSide2 = input('Enter second side: ')

hypot2 = calculateHypotenuse(secondTriangeSide1, secondTriangeSide2)

call function to do calc

print('The hypotenuse of the first triangle is: ', hypot1)

print('The hypotenuse of the second triangle is: ', hypot2)

The thinking behind building and using functions this way is twofold.

First, creating a function to do lower-level work allows you to give a name to a

sequence of instructions. In this example, using a name like calculateHypotenuse makes

it extremely clear what the purpose of the function is. And as I described earlier, when you

have written a function like this once, you can think of calling the function by using its

name, and you don’t have to worry about the details of the internals of the function.

Second, and more importantly, code inside a function is centralized. That is, if you ever

need to change the code of a function, you only need to change it in one place. If code like

the preceding was not in a function, and you had multiple copies of it, think about what

you would have to do to make a change. Imagine that you find a bug in your hypotenuse

formula. You would have to look through all your code and make the same change in every

place where this calculation is done. That may not seem like a big task in small programs

like the ones that we have built so far, but when you start to write large programs, having

only one copy of code is critical to building and maintaining reliable software.

Note This principle of never writing multiple copies of the same code is known

as the DRY principle: Don’t Repeat Yourself.

 Constants

In a program, there is often the need for a number or string that doesn’t change. For

example, imagine that you’re working on a program that calculates the price of a bill

at a restaurant. Let’s say the cost of a hamburger is three dollars. While the program

is running, that value never changes. So, to calculate the cost of all the hamburgers in

CHAPTER 4 USER-DEFINED FUNCTIONS

92

an order, you could write a line of code where you calculate the cost of hamburgers by

multiplying the number of hamburgers by 3.00. Let’s also say that you sell milkshakes at

your restaurant and the cost of a milkshake is also three dollars.

As the restaurant owner, you decide that you need to raise the price of your

hamburger from three dollars to three dollars and twenty-five cents. To update your

program, you could use IDLE and select Edit ➤ Replace to replace all occurrences of

3.00 with 3.25. But if you do that, you have not only raised the price of hamburgers, but

also milkshakes and anything else on your menu that had a price of three dollars. That

is clearly the wrong approach. Instead, you would have to find every occurrence of

3.00 in your program and decide on a line-by-line basis whether the 3.00 represents a

hamburger or a something else, and only change the appropriate one(s). Though that

may be very simple in a small restaurant program, this type of change can take a great

deal of time and be very error prone in a large program.

In Python, we can create a variable for a number like this so that it can be referred to

by name throughout the program.

Definition A constant is a variable whose value does not change throughout a

program.

A constant is created using a simple assignment statement, typically placed at the

top of the program—even before any function definitions. Here is an example:

costPerHamburger = 3.00

There is nothing special about creating a constant. It really is just another variable.

How do we ensure that it that no other piece of code changes this value? Unfortunately,

there is no way to prevent a constant from being changed. But there is a widely accepted

Python naming convention for constants. When defining a variable to be used as a

constant, create a name where all the letters are in uppercase, and separate words

are strung together with underscores. Naming a variable this way serves as a signal to

yourself and other programmers that this variable is a constant and its value should

never be reassigned. Here are some examples that might be used in a program like our

restaurant program:

COST_PER_HAMBURGER = 3.00

COST_PER_HOT_DOG = 2.00

COST_PER_MILK_SHAKE = 3.00

CHAPTER 4 USER-DEFINED FUNCTIONS

93

Then we would use COST_PER_HAMBURGER, COST_PER_HOT_DOG, COST_PER_MILK_

SHAKE, and so on in the calculations instead of the numeric prices. That way, if the cost

of an item changes, only one line of code needs to be changed: the original assignment

statement for that constant. No other changes are needed and your code becomes more

readable. This is another example of using the DRY principle.

 Scope

We’ve talked about how variables have a type (integer, float, Boolean, string). But

variables also have a lifetime. Let’s start with another definition.

Definition Scope is the amount of code over which a variable is active.

In Python, there are three levels of scope for variables. In this book, though, we’ll

only talk about two levels of scope: global and local.

Global variables are created at the top level of a program, in the main code. They

have what is called global scope. Global variables maintain their values and are available

throughout a program. Here is the code we recently looked at about calling functions:

firstTriangleSide1 = input('Enter side 1: ')

firstTriangleSide2 = input('Enter side 2: ')

hypot1 = calculateHypotenuse(firstTriangleSide1, firstTriangleSide2)

call function to do calc

secondTriangeSide1 = input('Enter the first side: ')

secondTriangeSide2 = input('Enter second side: ')

hypot2 = calculateHypotenuse(secondTriangeSide1, secondTriangeSide2)

call function to do calc

print('The hypotenuse of the first triangle is:', hypot1)

print('The hypotenuse of the second triangle is:', hypot2)

The variables firstTriangleSide1, firstTriangleSide2, hypot1,

secondTriangleSide1, secondTriangleSide2, and hypot2 are all global variables.

Notice that the code is written in a way that assumes that they maintain their values even

where there are calls to functions in between lines where they are used.

CHAPTER 4 USER-DEFINED FUNCTIONS

94

Global variables (created in the main program code) can legally be used inside

functions. However, it is strongly recommended to never do this. Using global variables

inside functions leads to a poor coding practice called spaghetti code, where these

variables can be used and modified all over a program. This style of programming

makes the code very hard to understand and extremely difficult to maintain and modify,

because any call to any function might change one or more global variables.

Instead of using global variables inside functions, whenever a function needs a value

that is held in a global variable, that value should be passed as an argument into the

function when the function is called. If the function wants to effectively change the value

of a global variable, the function should return a value, and the caller can set a new value

for the global variable as the result of the call.

The previous section talked about constants. I suggested that constants be created

at the top level of a program. When created this way, constants also have global scope.

Because constants are global, they are available and can be used inside any function in

the program. Global constants are good things. Constants help clarify meaning rather

than having “magic numbers” interspersed throughout code.

Consider the following example of a program to calculate the cost of purchasing

some number of small and large widgets. In this program, small widgets cost five dollars

each, large widgets cost eight dollars each, and there is a tax rate of nine percent:

TAX_RATE = .09 # 9 percent tax

COST_PER_SMALL_WIDGET = 5.00

COST_PER_LARGE_WIDGET = 8.00

def calculateCost(nSmallWidgets, nLargeWidgets):

 subTotal = (nSmallWidgets * COST_PER_SMALL_WIDGET) +

(nLargeWidgets * COST_PER_LARGE_WIDGET)

 taxAmount = subTotal * TAX_RATE

 totalCost = subTotal + taxAmount

 return totalCost

total1 = calculateCost(4, 8) # 4 small and 8 large widgets

print('Total for the first order is', total1)

total2 = calculateCost(12, 15)

print('Total for the second order is', total2)

CHAPTER 4 USER-DEFINED FUNCTIONS

95

Notice the TAX_RATE, COST_PER_SMALL_WIDGETS, and COST_PER_LARGE_WIDGET

variables at the top of the program, outside of any function. The naming convention

implies that these are intended to be constants. Because they have global scope, they can

be used (correctly and clearly) inside the calculateCost function.

Local variables are created inside a function. The scope of a local variable ranges from

the point where it is first used in a function to the end of that function. When the function

ends, any local variables used inside the function literally disappear. Here is the same code

again, but used to demonstrate the local variables inside the calculateCost function:

TAX_RATE = .09 # 9 percent tax

COST_PER_SMALL_WIDGET = 5.00

COST_PER_LARGE_WIDGET = 8.00

def calculateCost(nSmallWidgets, nLargeWidgets):

 subTotal = (nSmallWidgets * COST_PER_SMALL_WIDGET) +

(nLargeWidgets * COST_PER_LARGE_WIDGET)

 taxAmount = subTotal * TAX_RATE

 totalCost = subTotal + taxAmount

 return totalCost

total1 = calculateCost(4, 8) # 4 small and 8 large widgets

print('Total for first order is', total1)

total2 = calculateCost(12, 15)

print('Total for second order is', total2)

Inside the function, we are creating and using subTotal, taxAmount, and totalCost

local variables. They are local variables because they are only used inside of a function.

In addition, all parameter variables, the ones listed in the def statement, are also local

variables. Parameters (or parameter variables) are given their values when a function is

called, and they go away when the function is finished.

You cannot access local variables outside of a function because those variables are out

of scope and no longer exist. In the following, there is an additional line in the main code

that tries to print the amount of tax that was calculated inside the function. Any attempt to

access a local variable in the main code of a program will result in an error message:

TAX_RATE = .09 # 9 percent tax

COST_PER_SMALL_WIDGET = 5.00

COST_PER_LARGE_WIDGET = 8.00

CHAPTER 4 USER-DEFINED FUNCTIONS

96

def calculateCost(nSmallWidgets, nLargeWidgets):

 subTotal = (nSmallWidgets * COST_PER_SMALL_WIDGET) +

(nLargeWidgets * COST_PER_LARGE_WIDGET)

 taxAmount = subTotal * TAX_RATE

 totalCost = subTotal + taxAmount

 return totalCost

total1 = calculateCost(4, 8) # 4 small and 8 large widgets

print(taxAmount) # Trying to access local variable from the

above function

print('Total for first order is', total1)

total2 = calculateCost(12, 15)

print('Total for second order is', total2)

This generates the following error:

Traceback (most recent call last):

File "/Learn to Program with Python/Chapter 4 - User-Defined Functions/

CostsWithTaxError.py",

line 12, in <module>

 print(taxAmount)

NameError: name 'taxAmount' is not defined

You can think of it this way: when you call a function from the main code, or from

another function, the caller’s code has its set of variables that it remembers, and the

called function has a set of variables that it uses. With the exception of global constants,

these sets of variables should be considered completely independent.

Note The third type of scope is called class scope, which deals with how

variables are used inside objects in object-oriented programming. Unfortunately,

that is beyond the scope of this book.

CHAPTER 4 USER-DEFINED FUNCTIONS

97

 Global Variables and Local Variables with the Same
Names

Take a look at the following code:

def myFunction():

 someVariable = 5

someVariable = 10

myFunction()

print(someVariable)

In this code, we assign 10 to a variable named someVariable. Then we call a

function. But inside the function, there is another assignment statement setting

someVariable to 5. If we run this code, perhaps surprisingly, we see an output of 10.

What’s going on here?

In the main code, the first executable line creates a global variable named

someVariable. Then there is a function call. As I said earlier, any variable created inside a

function is a local variable whose scope is only within the function. Python allows you to

create a local variable that has the same name as a global variable. Within this function,

the someVariable local variable is given a value of 5. But when that function is finished,

the someVariable local variable goes away. When the function returns, the final print

statement executes. The someVariable in that final print statement is the global version,

and the program outputs its value: 10.

Although using the same variable name for a global and a local variable is supported

by Python, it is best to never get into this situation in the first place. Using the same

name for global and local variables only leads to confusion later on. Did I mean to set the

local variable or the global variable? To make your intentions clear, always use different

names.

Reusing the same variable name inside different functions is perfectly fine. Because

local variables are created when they are first seen inside a function, and are destroyed

when the function finishes, there is no name conflict with local variables of the same

name used in different functions.

CHAPTER 4 USER-DEFINED FUNCTIONS

98

Python’s rule for handling global/local name conflicts like this are quite simple. It

always assumes that you are using local variables within a function. If you truly want to

use a global variable within a function—and I strongly urge you not to—you can do so by

first giving a global statement to tell Python that you want to use a global variable. Here

is an example of this highly discouraged approach:

def myFunction():

 global someVariable # tell Python that you are using a global variable

 someVariable = someVariable + 1

someVariable = 20

myFunction()

print(someVariable)

Running this code results in printing the value 21. But if you want to affect a global

variable using a function, it would be better to write that type of code this way:

def myFunction(aVariable):

 aVariable = aVariable + 1 # change a local (parameter) variable

 return aVariable # and return it

someVariable = 20

someVariable = myFunction(someVariable) # pass in global, and re-assign

the answer

print(someVariable)

 Finding Errors in Functions: Traceback

In Chapter 2, I demonstrated that when an error occurs at runtime, Python outputs an

error message called a traceback. If a runtime error happens inside of a function, it is

often difficult to find and fix because a function may be called from many places in a

program. Further, different argument values are typically passed in with different calls.

Let’s work through a simple example that generates a runtime error in a function.

Here is the code of the getGroceries program from earlier in this chapter, except this

version contains an extra line that causes a runtime error.

CHAPTER 4 USER-DEFINED FUNCTIONS

99

def separateRuns():

 print('*****************')

 print(someUndefinedVariable) # will cause a run time error

 print() #blank line

def getGroceries():

 print('milk')

 print('flour')

 print('sugar')

 print('butter')

 separateRuns() # call another function

Main code starts here:

getGroceries()

The main code calls the getGroceries function. That function prints a few things

and then calls the separateRuns function. Inside that function is a line that tries to print

the value of someUndefinedVariable. Because this variable was never defined, it triggers

a runtime error. When a runtime error occurs in a function, Python presents information

about how the program got to the line of code that caused the error. Let’s look at what

Python tells us for this example.

>>>

milk

flour

sugar

butter

Traceback (most recent call last):

 File "/Learn to Program with Python/Chapter 4 - User-Defined Functions/

Kalb Code Chapter4/Traceback.py", line 15, in <module>

 getGroceries()

 File "/Learn to Program with Python/Chapter 4 - User-Defined Functions/

Kalb Code Chapter4/Traceback.py", line 12, in getGroceries

 separateRuns() # call another function

CHAPTER 4 USER-DEFINED FUNCTIONS

100

 File "/Learn to Program with Python/Chapter 4 - User-Defined Functions/

Kalb Code Chapter4/Traceback.py", line 4, in separateRuns

 print(someUndefinedVariable) # will cause a run time error

NameError: global name 'someUndefinedVariable' is not defined

>>>

As you saw earlier, the actual error is printed on the last line of this output. So

the first thing to do is to read that line to see what the error was. In this traceback, we

additionally see a trail of “electronic breadcrumbs” that tells us how we got to the line

that caused the error. The term traceback refers to the sequence of calls that were made

to get into the function where the error occurred. (In other programming languages, this

is often referred to as a stack trace.)

We read the traceback information from the top down. In this example, the top line

says that we were at line 15 in <module>. This means that our source line number 15

of the main code made a call. The next line in the traceback tells us that line 15 of the

code made a call to the getGroceries function. The next traceback line says that in

line 12 of our code, which is inside the getGroceries function, we made a call to the

separateRuns function. The last traceback line says that in line 4 of our code, which is

inside the separateRuns function, there was an error in the print statement.

In most development environments, a line number precedes each line of code.

With a setup like that, finding the lines mentioned in a traceback is easy. Unfortunately,

IDLE does not work this way. Instead, IDLE shows the line number of the current line

(wherever the cursor is) in the bottom-right corner of the editor window. Therefore, to

truly understand a traceback in IDLE, you may have to do a lot of clicking in lines and

looking down to the bottom-right corner to find line numbers associated with lines of

your code (see Figure 4-2).

CHAPTER 4 USER-DEFINED FUNCTIONS

101

The example shown in Figure 4-2 is extremely simple and is only used to illustrate

the information that is available in a traceback. When programs get large, code often

involves many different calls to functions, and the path of execution can go through

many layers of function calls. The information provided in a traceback becomes

invaluable in tracking down the sequence of code that led to a runtime error.

 Summary

In this chapter, you learned about what happens on the other side of a function call:

how to create a user-defined function. You saw how following a recipe presents a

good analogy for building software. We defined and built our first function. Then we

learned how to receive the data that is passed into a function. We built a number of

example functions so we could understand how data is passed with a function call using

arguments, and how that data is received in the function using parameters. Then we

discussed how a function can give back an answer or answers using a return statement.

Figure 4-2. The current line number is shown in the bottom right of the editor
window

CHAPTER 4 USER-DEFINED FUNCTIONS

102

The chapter went on to discuss an approach for using specific variable names

outside of a function, and general variable names inside of one. You saw some examples

of temperature conversion functions. We talked about how you should always place

your functions at the top of a Python file, and how you should write functions so that you

never write multiple copies of the same code. I showed you how using constants makes

your code easier to read and easier to modify. I presented a discussion on scope: local

variables that are available only inside a function and global variables that are available

everywhere. The chapter ended with an explanation on how to read the information

found in a traceback to find out how a program reached the point of a runtime error.

CHAPTER 4 USER-DEFINED FUNCTIONS

103

CHAPTER 5

if, else, and elif Statements

All the code we have looked at so far has essentially been linear. That is, execution of the

code starts from the top and goes straight through to the bottom. The only change to this

linear nature of execution is when we make a function call. Doing that transfers control

to the function, but all the code inside a function also goes straight through from top to

bottom. But one of the most powerful things about code is the ability to make a decision

and to take a path based on that decision.

This chapter discusses the following topics:

• Flowcharting

• The if statement

• Comparison operators

• Examples of if statements

• Nested if statements

• The else statement

• Using if/else inside a function

• The elif statement

• Using many elif statements

• Example grading program

• Sample program: absolute value

• Programming challenges

• Conditional logic

104

• The logical not operator

• The logical and operator

• The logical or operator

• Booleans in if statements

• A program to calculate shipping

In the real world, we ask questions and take actions based on the answers to those

questions. Here are some examples formatted using an if/then style:

• If I am hungry, then I will eat.

• If today is Monday, then I will go to work.

• If I am tired, then I will go to sleep.

• If I want to meet my friend at 8:00 and it takes 30 minutes to get there,

then I should leave by 7:30.

• If I have to go far and I own a working car, then I will use my car.

• If I have a choice between pizza and liverwurst, then I will choose

pizza.

 Flowcharting

To demonstrate questions and answers like these, and the actions that are taken as a

result, we’ll use a technique called flowcharting. A flowchart is a representation of all the

possible paths through a process. A typical flowchart has a starting point, one or more

ending points, and two main types of components: actions (usually shown as rectangles)

and decisions (typically shown as diamonds). Figures 5-1 and 5-2 are two examples of

processes that have been diagrammed using flowcharts.

Chapter 5 if, else, and elif statements

105

Figure 5-1. Flowchart for store checkout

Chapter 5 if, else, and elif statements

106

Figure 5-2. Flowchart for typical weekday morning routine

Chapter 5 if, else, and elif statements

107

The flowchart shown in Figure 5-1 shows the process of checking out at a store. The

main question that is asked is: Cash? If you are paying in cash, then you follow the path

on the left. Otherwise, it’s assumed that you are paying with a credit card and you take

the path on the right. If your credit card scan fails, then you go back and choose to pay in

cash or try another credit card.

The flowchart shown in Figure 5-2 shows a typical weekday morning routine. In

this flowchart, you first decide whethe there is time to exercise or not. If so, then you

follow one branch or another, depending on whether it is raining or not. Later, there is a

decision box to determine whether there is time to eat breakfast.

The details of these flowcharts are not really important—they are simple examples.

What is important is to see the use of decision diamonds. Each of the questions in these

diamonds is a yes/no question. The process follows a different path based on the answer

to each question. We will use flowcharts like these to demonstrate statements that

control the flow of execution within Python programs.

 The if Statement

A decision box in a flowchart is implemented by an if statement in Python. Using an if

statement, a programmer can essentially ask a yes/no question, and if the answer is yes,

then some code will run. Figure 5-3 shows the flowchart of an if statement.

Figure 5-3. Flowchart of if statement

Chapter 5 if, else, and elif statements

108

And here is the syntax of the if statement in Python:

if <Boolean expression>: # notice the colon at the end of the line

 <indented block of code> # any number of indented lines

Inside this specification, you see <Boolean expression>. Think of a Boolean

expression as a question that can only have two possible answers: yes or no, true or false,

one or zero, and so on. Specifically, a Boolean expression is one that yields a Boolean

value of only True or False. For example:

if authorsFirstName == 'Irv':

 teachingPython = True

 print('Pay attention to his wisdom')

 respectPoints = respectPoints + 10

Let’s assume we have a variable named authorsFirstName that (not surprisingly)

contains the first name of the author of this book. In this example, we are comparing

that variable to the string 'Irv'. That is my first name, so this comparison evaluates to a

Python value of True. And because the result is True, all the indented lines of code will

run. Here is another example:

if nReadersUnderstandingPython == 0:

 fireIrv()

 getNewAuthor()

In this example, we are comparing a variable named nReadersUnderstanding

Python to 0. If it turns out that 0 readers understand Python, then the indented code

will run, and we call the fireIrv function followed by a call to the getNewAuthor

function.

Notice that all the code to be executed when the Boolean expression is True is

indented. This is identical to what happens when we use a def statement to create a

function. When you type an if statement (that ends in a colon), IDLE automatically

indents any subsequent lines that you type. When you are finished entering lines that

should execute when the Boolean expression evaluates to True, you press the Backspace

key (Windows) or the Delete key (Mac) to move the cursor back to the indent level of the

matching if statement.

Chapter 5 if, else, and elif statements

109

 Comparison Operators

It is important to note that when comparing for equality, Python requires two equals

signs (==), which is often called the comparison operator. When reading code out loud,

this operator is pronounced as “equals equals”—as in, “if myVariable equals equals 5 ...”.

Remember that the single equals sign (=) is called the assignment operator. If you try to

use a single equals sign inside an if statement, Python will generate an error. Here is an

example:

myVariable = 1

if myVariable = 1: # This is an error, needs to be equals equals

 print('The value of myVariable is one.')

If you try to run this code, you will get an error message that says, “There is an error

in your program: invalid syntax.” In the source window, IDLE will highlight the single

equals sign in the if statement, showing that this is where the error occurred.

In addition to the equals equals operator, there are a number of additional operators

you can use in if statements for comparisons. Table 5-1 lists and explains these

operators.

Table 5-1. Operators to Use in if Statements

Operator Meaning Example

== equals if a == b:

!= not equals if a != b:

< less than if a < b:

> Greater than if a > b:

<= less than or equal to if a <= b:

>= Great than or equal to if a >= b:

 Examples of if Statements

Let’s look at some examples of these operators used in short snippets of code with

if statements.

Chapter 5 if, else, and elif statements

110

In the first example, we might be writing code for a game of blackjack. Here we

compare the total value of the cards in the dealer’s hand against the total value of the

cards in the player’s hand to see if the player won:

if dealersTotal < playersTotal:

 print('You win')

In the following example, we are checking a to see whether a person’s age is greater

than or equal to 18. If so, we set two other variables to True to signify and remember that

the person is allowed to vote and is considered an adult:

if age >= 18:

 allowedToVote = True

 consideredAnAdult = True

In the next snippet, we are checking to see whether the user has enough money to

buy a gallon of gas. If so, we call a function to purchase one gallon of gas and reduce the

amount of money the user has by the cost of one gallon of gas:

if cashInWallet > costOfGasPerGallon:

 purchaseGallonOfGas(1)

 cashInWallet = cashInWallet - costOfGasPerGallon

Anyone who has tried to log in to an account on a web site should understand

this next snippet. When you provide a password, a program checks to see whether the

password you entered matches the password you gave when you set up the account. If

not, you are presented with an error message, as follows:

if userPassword != savedPassword:

 giveErrorMessageAboutPassword()

In the following snippet, we ask the user a question using a call to input. When

the user answers the question, the response is put into the answer variable. In the if

statement, we check if the user entered the word yes:

answer = input('Are you ready (yes or no)? ')

if answer == 'yes':

 print('OK, here we go.')

Chapter 5 if, else, and elif statements

111

 Nested if Statement

When a Boolean expression in an if statement evaluates to True, then the indented

block of code runs. But the indented block of code can contain another if statement.

And if the Boolean expression in an indented if statement also evaluates to True, then

the indented code block associated with that if statement will run. For example:

Purchases at a gas station

totalGasPurchase = priceOfGas * nGallons

amountLeftOver = startingAmountOfMoney – totalGasPurchase

See if we have enough money to buy a Powerball lottery ticket

if amountLeftOver > 2:

 feeling = evaluateEmotions()

 if feeling == 'lucky':

 buyPowerballTicket()

 amountLeftOver = amountLeftOver - 2

In this example, we calculate how much we are spending on gas at a gas station.

After paying for the gas, the first if statement checks to see if we have more than two

dollars left over. If so, then the indented block of code runs. In that block, we call a

function to determine our overall emotional state. We then use a nested if statement

that asks another question: whether we feel lucky. If so, then the indented block of code

associated with that if statement runs. We call a function to buy a Powerball ticket and

adjust the amount of money that we have left. You can nest if statements as many times

as you need to. However, too much nesting makes code difficult to read.

 The else Statement

When you ask a question that has only two answers (yes or no, true or false, 1 or 0, and

so on), you often want to do one thing if you get one answer and do something different

if you get the other answer. As we saw in the earlier flowcharts, taking separate branches

like this is very common. In an if statement, we often want to execute different blocks of

code based on whether the answer to a Boolean expression is True or False. Figure 5-4

shows a flowchart of this.

Chapter 5 if, else, and elif statements

112

As you saw earlier, in a simple if statement, if the Boolean expression evaluates

to True, the code block on the left side will run. The new piece is that if the Boolean

expression evaluates to False, the code block on the right side will run. The additional

piece is implemented by the use of an else statement. Here is the syntax of an if/else:

if <Boolean expression>:

 <some indented code>

else: # Notice the colon here too

 <other indented code>

The else statement and the block of code associated with it are commonly known

as an else clause. The else clause is optional. Similar to the if statement, the else

statement must have a trailing colon. The colon always tells IDLE that the programmer

is providing an indented line or block of lines. In this case, the indented code runs only if

the original Boolean expression in the if statement evaluated to False.

Here is a simple example. Let’s say we are building a math game and are asking a

question: What integer comes after 4? The obvious correct answer is 5. The following

shows how we can use an if/else to evaluate the user’s response:

#assume the correct answer to question is 5

if answerToQuestion == 5:

 print('You got it')

Figure 5-4. Flowchart of if/else

Chapter 5 if, else, and elif statements

113

 print('You are a genius')

else:

 print('Nope')

 print('Time to go back to kindergarden')

In this code, if the answer is correct, the block of code associated with the if

statement will run. If the answer is incorrect, the block associated with the else

statement will run.

Now let’s build an interactive version:

usersAnswer = input('What is 6 + 3? ') # Get the user's answer

usersAnswer = int(usersAnswer) # convert to an integer

if usersAnswer == 9:

 print('Yessiree Bob')

 print('You are a genius')

else:

 print('Sorry, that is not correct')

 print('The correct answer was 9')

We added code at the top to ask the user a question with a call to input. Then we

used the int function to take the answer the user typed in (which comes in as a string)

and convert it into an integer.

Next is a simple example that will print the cost of purchasing some number of

widgets:

COST_PER_WIDGET = 7.49 # Constant price of one widget

nWidgets = input('How many widgets do you want to buy? ')

nWidgets = int(nWidgets) # convert to an integer

if nWidgets == 1:

 print('One widget will cost you $', COST_PER_WIDGET)

else:

 cost = nWidgets * COST_PER_WIDGET

 print(nWidgets, 'widgets will cost you $', cost)

In this snippet, we take different paths, depending on whether the user wants

to purchase one widget or multiple widgets. For multiple widgets, we do a simple

multiplication and output a message with proper wording.

Chapter 5 if, else, and elif statements

114

Here is an example that will execute different code, depending on a person’s age:

if age < 21:

 okToOrderBeer = False

 print('Sorry, you are too young!')

else:

 okToOrderBeer = True

 beerOrder = input('What kind of beer do you like to drink? ')

In this example, we check a variable named age to see if the user is allowed to order a

beer. If the value of age is under 21, we print a message saying that the person is too young.

We remember this fact by setting the Boolean variable okToOrderBeer to False. Otherwise,

we set the Boolean variable to True and ask the user what kind of beer they want.

Next, we have another example of deciding what type of company to apply to:

if gpa >= 3.5:

 applyToWorkAtTopLevelCompany()

else:

 if gpa > 3.0:

 applyToWorkAtMediumLevelCompany()

 else:

 applyToWorkAtLowLevelCompany()

In this snippet, we decide what type of company to apply to, depending on the value

of our grade point average. Notice that if our GPA is less than 3.5, then the code executes

the else clause. The else clause contains a nested if/else.

 Using if/else Inside a Function

if statements and if/else statements can be used inside functions. Let’s work through

an example. In this example, we’ll write the beginnings of a “Spaminator” program. That

is, we want to start writing a program that will build the header line for a message to be

sent to any number of people. In order to make the message appear personalized, if we

believe the person is male, we want to address the message to Mr. <name>. If we believe

the person is female, we will address the letter to Ms. <name>. To implement this, we’ll

build a function that accepts a name and a gender—'m' for male, 'f' for female—and

returns the header of the greeting as a string:

Chapter 5 if, else, and elif statements

115

def createHeader(fullName, gender):

 if gender == 'm':

 title = 'Mr.'

 else:

 title = 'Ms.'

 header = 'Dear ' + title + ' ' + fullName + ',' # use concatenation

 return header

A few test calls to the function

print(createHeader('Joe Smith', 'm'))

print(createHeader('Susan Jones', 'f'))

print(createHeader('Henry Jones', 'm'))

The following is the resulting output:

Dear Mr. Joe Smith,

Dear Ms. Susan Jones,

Dear Mr. Henry Jones,

In this program, the calls that pass in a gender of 'm' return a header that contains

Mr., and every call that passes in a gender of 'f' returns a string that contains Ms..

 The elif Statement

Sometimes a question has more than two answers, and you want to do different things

based on each possible answer. As a simple example, in our Spaminator program,

imagine we have a name for which we are unsure whether the gender is male or female.

Maybe we want to send a message to someone named Chris Smith, but we don’t know

if Chris Smith is male or female. If we don’t know the gender, we would want to address

our message to “Mr. or Ms. Chris Smith.” In our call to the function with a name like this,

we could pass in the name and a question mark '?' to indicate that we do not know the

gender of this person.

Given the current code, if we passed in a question mark as the gender, the program

would check for male, fail that test, assume female, and print, “Dear Ms. Chris Smith.”

The problem is that the function needs to check for one of three possible values: male,

female, or unknown, each with its desired outcome.

Chapter 5 if, else, and elif statements

116

Figure 5-5. Flowchart of if/elif/else

It turns out that you often need to check for three, four, five, or any number of

different cases. To handle this, Python gives us another addition to the if statement,

called the elif statement. elif is a made-up word that came from taking the words else

if and smashing them together—so it really means else if. To see how this works, take a

look at the flowchart shown in Figure 5-5.

Chapter 5 if, else, and elif statements

117

The basic idea is that you can ask multiple Boolean questions, and when there is a

match (that is, a Boolean expression evaluates to True), then the block of code associated

with that case is executed. Here is what the syntax looks like in Python:

if <Boolean expression>:

 <some code>

elif <Boolean expression>:

 <some code>

elif <Boolean expression>:

 <some code>

as many elif's as you need ...

else:

 <some default code>

Once one of the Boolean expressions evaluates to True, then the indented code

below it runs. When that block is finished, control is passed to the first statement beyond

the if/elif/else.

Let’s take a look at what the createHeader function would look like using an

if/elif/else:

def createHeader(fullName, gender):

 if gender == 'm':

 title = 'Mr.'

 elif gender == 'f':

 title = 'Ms.'

 else: #not sure, could be male or female

 title = 'Mr. or Ms.'

 header = 'Dear ' + title + ' ' + fullName + ',' # use concatenation

 return header

print(createHeader('Joe Smith', 'm'))

print(createHeader('Susan Jones', 'f'))

print(createHeader('Henry Jones', 'm'))

print(createHeader('Chris Smith', '?')) # Not sure if this is male or female

Chapter 5 if, else, and elif statements

118

Notice that the values passed in for the gender in the first three calls were 'm' or

'f'. But in the last call, we did not know the gender. In this call, we passed in a question

mark. (Actually, anything other than 'm' or 'f' would work fine.) This is the resulting

output:

Dear Mr. Joe Smith,

Dear Ms. Susan Jones,

Dear Mr. Henry Jones,

Dear Mr. or Ms. Chris Smith,

 Using Many elif Statements

Imagine what the code would look like if there were six genders to check instead of just

two. In that case, we could have an if statement check for male, an elif to check for

female, and four more elif statements to check for the other genders. If the gender was

still unrecognized (that is, it did not match any of the genders we were checking for),

then we would have an else clause to catch that as the default case.

Here is a good example that uses an if/elif/else construct with a number of

different checks. In this function, we pass in a temperature, and the function returns a

string that describes the appropriate clothing to wear for that temperature:

def whatToWear(temperature):

 if temperature > 90:

 clothes = 'swim suit'

 elif temperature > 70:

 clothes = 'shorts'

 elif temperature > 50:

 clothes = 'long pants'

 else:

 clothes = 'thermal underwear and long pants'

 return 'Put on ' + clothes

print(whatToWear(100))

print(whatToWear(40))

print(whatToWear(71))

Chapter 5 if, else, and elif statements

119

When we run this code, we get the following output:

Put on swim suit

Put on thermal underwear and long pants

Put on shorts

The code runs through each test in the if and elif statements, looking for the first

one that evaluates to True. When one test results in a True, the indented code block

beneath that test will run. Then execution will jump down to the first statement after

the if/elif/else statements. If none of the tests results in an answer of True, then the

code block associated with the else will execute. This way, the else block serves as a

“catchall.” In this case, when we passed in a value of 40, all the if and elif tests resulted

in a False, so the code of the else block ran.

Here is a great example of where you might use an if/elif/elif/ ... /else

construct. Imagine you are writing a game program. The program could respond to a

number of different keys on the keyboard. For example, you might print out a menu

of single-letter commands and ask the user to type a letter (and then press Return/

Enter) to continue. The program is designed to do a different action for each letter in the

menu. To code something like this, you would use a series of if/elif/... elif/else

comparisons to see which key was pressed, and you would call a different function to

do some action based on which key was pressed. In commercial games, the left, right,

up, and down arrows are often used to move a character on the screen in the matching

direction. The coding to implement this is done using a series of if/elif/ ... elif/

else statements.

Note if you are familiar with other computer languages, like C or Java, you

might recognize this as a switch/case statement. the people who developed

python saw no need to have two different approaches to do the same thing.

therefore, there is no separate switch/case construct in python.

Chapter 5 if, else, and elif statements

120

 A Grading Program

Here is a real-world example of using if/elif/else statements. Teachers often grade

tests, projects, and homework assignments using a number scale of 0 to 100. At the end

of the term, the final grading number needs to be converted to a letter grade. Here is a

sample function that could be used to do this conversion:

#Convert a number score to a letter grade:

def letterGrade(score):

 if score >= 90:

 letter = 'A'

 elif score >= 80:

 letter = 'B'

 elif score >= 70:

 letter = 'C'

 elif score >= 60:

 letter = 'D'

 else:

 letter = 'F' #fall through or default case

 return letter

grade1 = letterGrade(75)

print(grade1)

grade2 = letterGrade(82)

print(grade2)

print(letterGrade(95)) #call and print in one statement

For simplicity, this function only generates full-letter grades—it does not go into

plusses and minuses. Adding grades like A–, B+, B–, though, would be a trivial extension

that would involve adding more elif lines to check for more values of the variable score.

 A Small Sample Program: Absolute Value

Now I will provide a number of small programming challenges with solutions that

involve the use of if/else or if/elif/else constructs. I’ll work through the first one

with you, and then give you a number of other problems, each building in complexity.

Chapter 5 if, else, and elif statements

121

Before attempting to build or fix something, it is always a good idea to think through

the approach before actually starting to do any work. This is especially true in computer

programming, and there is a special word associated with it: algorithm.

Definition an algorithm is a series of steps to solve a problem.

In programming, you should think through your approach and describe it in English

before writing any code. In each of the following programming challenges, it should be

common practice to think through the problem and develop an appropriate algorithm

before turning the algorithm into Python code.

The first program is one that includes a function to calculate the absolute value of a

given number. Although absolute value may not be an everyday term, it is simply defined

as the distance away from zero. That is, the absolute value of 3 is 3. But the absolute

value of –3 is also 3. The absolute value function should not print anything; it should just

return the absolute value of the starting number.

We’ll first come up with an appropriate algorithm. Here is one that will work:

• If the value is positive, then the result is just the starting value.

• If the number is negative, then the result is the starting number

multiplied by –1.

That’s it. This is a very simple algorithm. Now, let’s turn that into code. The approach

to writing these small programs is generally to build a function to do the core work, and

then build a number of calls to the function, passing in test data to test all paths through

the function. Here is the code to implement absolute value:

Absolute Value Program

Function to generate the absolute value of a number

def absoluteValue(valueIn):

 if valueIn >= 0 :

 valueOut = valueIn

 else: #must be negative, multiply by minus one to get a positive value

 valueOut = -1 * valueIn

 return valueOut

Chapter 5 if, else, and elif statements

122

#Test cases

result = absoluteValue(10.5)

print('The absolute value of 10.5 is', result)

result = absoluteValue(-8)

print('The absolute value of -8 is', result)

The following is the output from running this program:

The absolute value of 10.5 is 10.5

The absolute value of -8 is 8

This absoluteValue function demonstrates a powerful Python feature. In the first

call, we passed in a floating-point number. In the second call, we passed in an integer.

The function only has a single parameter variable, valueIn, which is set to the value of

whatever argument is passed in. This is a good demonstration of how a variable can have

any type, depending on the type of data that is assigned to it.

To extend the main code, we can add an interactive component. That is, we could

ask the user to enter a number, use that number in a call to our function, and print the

result. Here is a modified version that adds this capability at the end of the main code:

Absolute Value Program

Function to generate the absolute value of a number

def absoluteValue(valueIn):

 if valueIn >= 0 :

 valueOut = valueIn

 else:

 valueOut = -1 * valueIn

 return valueOut

#Test cases

result = absoluteValue(10.5)

print('The absolute value of 10.5 is', result)

result = absoluteValue(-8)

print('The absolute value of -8 is', result)

Get user input and convert to a floating point number

userNumber = input('Enter a number: ')

userNumber = float(userNumber)

Chapter 5 if, else, and elif statements

123

Call the function with the user's number and print the answer

result = absoluteValue(userNumber)

print('The absolute value of', userNumber, 'is', result)

The following is the output from running this program:

The absolute value of 10.5 is 10.5

The absolute value of -8 is 8

Enter a number: -123.456

The absolute value of -123.456 is 123.456

Note python actually has a full suite of specialized math functions—including

one for absolute value—available for python programmers to use. But building

your own functions like this is good practice and furthers your understanding. We’ll

talk about packages like this later.

 Programming Challenges

Now it’s your turn. I will present a number of detailed challenges for you to implement.

Once you understand the specification, think the problem through and develop an

algorithm to solve it. Then write the code yourself, using the same style as the absolute

value program: build a function and a small number of test cases to demonstrate that

your function works correctly. The solution to each problem is provided on the page(s)

following each problem.

 Negative, Positive, Zero

Create a program that contains a function called negativePositiveZero. It is passed one

numeric (integer or float) parameter. The function should return one of the following

string values:

• 'negative' if the number is negative

• 'positive' if the number is positive

• 'zero' if the number is zero

Chapter 5 if, else, and elif statements

124

The function should not print anything. Write some main program code to call the

function with test values and then print the returned results. For each test, the program

should output this:

xxx is negative

or this:

xxx is positive

or this:

xxx is zero

For extra practice, allow the user to enter a value. Use that value in your function call

and then print the results.

The algorithm for the negativePositiveZero function is straightforward. Compare

to see if the number is less than zero; if not, then compare to see if it is greater than zero;

if not, then by default it must be zero. Here is the implementation:

Determine if a number is negative, positive, or zero

Function to determine negative, positive, or zero

Returns an appropriate string

def negativePositiveZero(value):

 if value < 0.0:

 answer = 'negative'

 elif value > 0.0:

 answer = 'positive'

 else: # not negative, not positive, must be zero

 answer = 'zero'

 return answer

#Test cases

result = negativePositiveZero(-25.7)

print('-25.7 is', result)

result = negativePositiveZero(0.0)

print('0.0 is', result)

Chapter 5 if, else, and elif statements

125

result = negativePositiveZero(123.45)

print('123.45 is', result

Get user input and call the function.

userValue = input('Enter a number: ')

userValue = float(userValue)

userResult = negativePositiveZero(userValue)

print(userValue, 'is', userResult)

To code the algorithm, use if/elif/else, where the if and the elif compare

for negative and positive, leaving a default of zero. After each test, set a variable

appropriately, and at the end of the function return the value of the variable.

 isSquare

Create a program that contains a function called isSquare. The function is passed two

parameters that represent the length and the width of a shape. For simplicity, assume

that we are talking about a rectangle, where the top and bottom sides are the same width,

the left and right sides are the same length, and all angles are 90-degree angles. isSquare

should return one of the following:

• True, if the sides represent a square

• False, if the sides do not represent a square

The function should not print anything.

Write some main program code to call the function with test values for the length

and width of the sides and print the following based on the returned result:

xxx and yyy represent a square

or

xxx and yyy do not represent a square

For extra practice, allow the user to enter values. Use them in your function call and

then print based on the results.

Be sure to use different variable names for the user’s input and the parameters used

in your function.

Chapter 5 if, else, and elif statements

126

The algorithm for this function is trivial. Two numbers (length and width) represent

a square if they are equal. If not, then the numbers do not represent a square:

Determine if two numbers represent a square

Function to determine if length and width represent a square

def isSquare(length, width):

 if length == width:

 itsASquare = True

 else:

 itsASquare = False

 return itsASquare

#Test cases

result = isSquare(5, 5)

if result:

 print('5 and 5 represent a square')

else:

 print('5 and 5 do not represent a square')

if isSquare(7.5, 8.5):

 print('7.5 and 8.5 represent a square')

else:

 print('7.5 and 8.5 do not represent a square')

Get user input, convert to floats and call the function.

userLength = input('Enter a length: ')

userLength = float(userLength)

userWidth = input('Enter a width: ')

userWidth = float(userWidth)

if isSquare(userLength, userWidth):

 print(userLength, 'and', userWidth, 'represent a square')

else:

 print(userLength, 'and', userWidth, 'do not represent a square')

The body of the function is a simple if/else statement; then it returns the result.

Chapter 5 if, else, and elif statements

127

In the main code, notice that in our first call, we set a result variable to the value

that is returned from the call. In the second call, we’ve built the code slightly differently.

Because the returned value is a Boolean, we wrote the function call directly in the if

statement. Both approaches are fine. If we need to remember the result of the call for

use in some future statement, we need to assign the answer to a variable. In this small

program, we are not using the answer anywhere else, so putting the call inside the if

statement is perfectly fine.

However, notice that the code that reports the results of each call to the function

has a lot of repetition. Whenever you see this kind of repetition, you can generally build

another function to get rid of it. Here is a slight rewrite of the previous code to remove

redundancy:

Determine if two numbers represent a square

Function to determine if length and width represent a square

def isSquare(length, width):

 if length == width:

 itsASquare = True

 else:

 itsASquare = False

 return itsASquare

Intermediate function that checks for a square and prints the result

def printSquare(aLength, aWidth):

 theResult = isSquare(aLength, aWidth)

 if theResult:

 print(aLength, 'and', aWidth, 'represent a square')

 else:

 print(aLength, 'and', aWidth, 'do not represent a square')

#Test cases

printSquare(5, 5)

printSquare(7.5, 8.5)

Chapter 5 if, else, and elif statements

128

Get user inputconvert to floats and call the function.

userLength = input('Enter a length: ')

userLength = float(userLength)

userWidth = input('Enter a width: ')

userWidth = float(userWidth)

printSquare(userLength, userWidth)

In this listing, notice that the isSquare function has not changed at all. But we’ve

introduced a new intermediate function called printSquare. That function calls the

isSquare function and does the appropriate printing based on the result. This is a good

example of how a function can call another function. Rather than duplicate code as

we did in the earlier version, the reporting logic has been moved into the intermediate

function. Using this intermediate function allows the main code to become much

smaller.

 isEven

Write a program that contains a function called isEven. The function is passed one

numeric (integer) parameter. isEven should return as follows:

• True, if the number is even (... , –6, –4, –2, 0, 2, 4, 6, 8, ...)

• False, if the number is odd (... , –5, –3, –1, 1, 3, 5, 7, 9, ...)

Notice that negative integers can be considered even or odd, just like positive

integers. Further, 0 is considered even. The function should not print anything. Instead,

build an intermediate function, as you did for the solution to the isSquare problem.

For each value, the program should output this

xxx is even

or this:

xxx is odd

Write your main code with two calls to your function, testing first with an even

number and then an odd number. Then allow the user to enter a value and use that value

in a call to your intermediate function so that it prints the results.

Be sure to use different variable names for the user’s input and the parameters used

in your function(s).

Chapter 5 if, else, and elif statements

129

The algorithm here is a little tricky. When we look at an integer, it is probably obvious

to us whether the number is even or odd, but we need a way to allow the computer

to figure this out for a given number. If you have trouble trying to come up with an

algorithm, think about how you would explain to a 5-year-old child how you know if a

number is even or odd. You have to break down the problem into very simple steps.

The algorithm here works like this: a number is even if it is evenly divisible by 2.

The question then becomes how “evenly divisible by 2” can be implemented in

Python. Remember the modulo operator—the percent sign (%)? The modulo operator

gives us the remainder of a division. If we take a number and use modulo 2 on it, we can

get the remainder after dividing by 2. If the remainder is 0, then the original number was

evenly divisible by 2—therefore it was even. Otherwise, the remainder must have been

1 and the original number was odd:

Determine if a given integer is even or odd:

Function to determine if a number is even or odd

def isEven(valueIn):

 remainder = valueIn % 2

 if remainder == 0:

 return True

 else:

 return False

def printEvenOrOdd(someValue):

 if isEven(someValue):

 print(someValue, 'is even')

 else:

 print(someValue, 'is odd')

#Test cases

printEvenOrOdd(10)

printEvenOrOdd(11)

Get user input and convert to an integer

userNumber = input('Enter an integer: ')

userNumber = int(userNumber)

Pass in the user's number

printEvenOrOdd(userNumber)

Chapter 5 if, else, and elif statements

130

The modulo operator allows us to construct code that is quite small. We’re using an

intermediate function to call the isEven function and print the results.

 isRectangle

Write a program that contains a function called isRectangle. The function is passed

four parameters representing the length of each of the four sides of a shape in the order

of left, top, right, and bottom. You should assume that all angles are 90-degree angles.

isRectangle should return this:

• True, if the sides represent a rectangle

• False, if the sides do not represent a rectangle

The function should not print anything.

For each set of four numbers, the program should output this

<side1>, <side2>, <side3>, and <side4> represents a rectangle

or this:

<side1>, <side2>, <side3>, and <side4> do not represent a rectangle

Write some main program code to call the function with test values for the four sides.

Use test values like 5, 6, 5, 6, which do represent a rectangle, and some other values like

5, 6, 7, 8, which do not represent a rectangle. Then allow the user to enter four values.

Use those values in a call to your intermediate function that prints the results.

Be sure to use different variable names for the user’s input and the parameters used

in your function(s).

The algorithm for this function goes like this: if the left side is equal to the right side,

and if the top is equal to the bottom, then it is a rectangle; otherwise, the numbers do not

represent a rectangle:

Determine if the four side lengths represent a Rectangle or not:

Function to determine if four sides represent a Rectangle

Is a rectangle if left is the same as the right

and top is the same as the bottom

def isRectangle(left, top, right, bottom):

 if left == right:

Chapter 5 if, else, and elif statements

131

 if top == bottom:

 return True

 return False

def printRectangle(someLeft, someTop, someRight, someBottom):

 if isRectangle(someLeft, someTop, someRight, someBottom):

 print(someLeft, someTop, someRight, someBottom, 'represents a

rectangle')

 else:

 print(someLeft, someTop, someRight, someBottom, 'does not

represent a rectangle')

#Test cases

printRectangle(5, 6, 5, 6)

printRectangle(5, 6, 7, 8)

Get user input and call the function.

userLeft = input('Enter the left: ')

userLeft = int(userLeft)

userTop = input('Enter the top: ')

userTop = int(userTop)

userRight = input('Enter the right: ')

userRight = int(userRight)

userBottom = input('Enter the bottom: ')

userBottom = int(userBottom)

printRectangle(userLeft, userTop, userRight, userBottom)

The implementation is done with a nested if statement. First, check whether the left

is equal to the right. If it passes that test, another if statement checks whether the top is

equal to the bottom. If it passes that test, True is returned. Placing a return statement in

the middle of a function is fine, and if/when it executes, no lines in the function after the

return statement will run. The function is finished at that point, and control passes back

to the caller.

If we get all the way to the last return statement, we’ll return a value of False to say

that the numbers do not represent a rectangle.

Chapter 5 if, else, and elif statements

132

 Conditional Logic

So far, all the comparisons we have shown in if statements have used a single operator

(==, !=, >, <, <=, >=). But sometimes it is convenient to have Boolean expressions

where we can perform multiple comparisons within a single if statement. To create

expressions that can contain multiple comparisons, there are three logical operator

keywords: not, and, and or.

 The Logical not Operator

We’ll start with the simplest one: the not operator. Remember that a Boolean can only

have a value of True or False. The not operator takes a Boolean value and reverses it. If a

Boolean value is False, applying the not operator changes the value to True. If the value

is True, not changes the value to False. The not operator is often used in if statements

to make things clear.

The not operator is entered directly in front of any Boolean variable or expression.

If it is used with a simple variable, no parentheses are needed. If you want to apply a

not operator to a more complicated expression, you should put parentheses around the

expression to create a grouping and place the not operator in front of the parentheses.

The following are examples:

if not open:

 # closed

if not broken:

 # working

Here is a typical use in an if statement

if not(width == length):

 # not a square

can use it in an assignment statement:

alive = not dead

using not to reverse the output of a function:

isOdd = not isEven(value)

Chapter 5 if, else, and elif statements

133

Table 5-2 is what is called the truth table for the not operator. It shows what happens

when you apply the not operator to an input Boolean value. The truth table for not is

extremely simple.

Table 5-2. Truth Table for the not Operator

Input Result

not True False

not False True

 The Logical and Operator

The and operator works between two Boolean values. It allows you to do multiple

comparisons within a single if statement. The indented block of code following the if

statement will only execute if the expressions on both sides of an and operator evaluate to

True. Here are some examples:

if (age >= 12) and (height >= 48):

 # OK to get on roller coaster at amusement park

if (location == 'Hamburger Restaurant') and (nDollars > 4):

 # can buy a hamburger and fries

if (x >= 5) and (x =< 10):

 # x is between 5 and 10

assume three Boolean variables, each set appropriately

if learningPython and studyingHard and workingThroughExamples:

 # can become a professional Python programmer

Table 5-3 is the truth table for the and operator. It shows what happens when two

Boolean expressions are put together with and.

Chapter 5 if, else, and elif statements

134

Notice that you get a result of False in every case except when both inputs are True.

Here’s another way to think about it: the result is True only when all input values are

True.

To work through the application of this table, think about the first coding example:

if (age >= 12) and (height >= 48):

 # OK to get on roller coaster at amusement park

The if statement evaluates the comparisons on either side of the and operator. The

only way that the person can get on the roller coaster is if it is true that they are 12 or

older and it is true that they are at least 48 inches tall. If either comparison evaluates to

False, or if both evaluate to False, then the result of the and is False, and the person is

not allowed to get on the ride.

Earlier in this chapter, there was a programming challenge to write code to see

whether the four sides of a shape represented a rectangle. Using the and operator, the

check for a rectangle can be written in a more natural and clearer way:

def isRect(left, top, right, bottom):

 if (left == right) and (top == bottom):

 return True

 else:

 return False

Table 5-3. Truth Table for the and Operator

Input1 Input2 Result

False and False False

False and True False

True and False False

True and True True

Chapter 5 if, else, and elif statements

135

 The Logical or Operator

The or operator also works between two Boolean values, and it also allows you to do multiple

comparisons in a single if statement. The indented block of code following the if statement

will execute if either side of an or operator evaluates to True. Here are some examples:

if (nDollars > 4) or dateIsPaying:

 # can get ice cream sundae

if (studyingHoursPerDay > 4) or payOffTeacherForGoodGrade:

 # you will do well in class (JOKE!)

if (userCommand == 'q') or (userCommand == 'quit'):

 # quit the program

if (age > 65) or disabled:

 # can get government benefits

Table 5-4 is the truth table for the or operator. It shows what happens when two

Boolean expressions are put together with or.

Table 5-4. Truth Table for the or Operator

Input1 Input2 Result

False or False False

False or True True

True or False True

True or True True

Notice that the result is True in every case except when both inputs are False.

Another way to think about it is this: the result is True when any input value is True.

Note Where python uses the english words for the logical operators and, or, and

not, other computer languages, like C and Java, use symbols: && means and, ||

means or, and ! means not. the use of simple english words for these operators

makes python code more readable for novices.

Chapter 5 if, else, and elif statements

136

 Precedence of Comparison and Logical Operators

Chapter 2 talks about the order of operations with the standard math operations of

addition, multiplication, subtraction, and division. With the introduction of a number of

comparison operators and three logical operators, the rules of precedence get even more

complicated. Consider the following if statement that contains many logical operators

and comparison operators. This if statement is intended to determine whether you are

eligible to buy a house in California’s Silicon Valley:

if not inJail and cash >= 1000000 or haveHighPayingJob and downPayment >=

90000:

 # Can buy a house in Silicon Valley

But this is rather confusing. Does or have priority over and? When is the not operator

applied? Does the code compare downPayment >= 90000? Or does the logical and

operation of haveHighPayingJob and downPayment happen first?

Similar to our discussion about the order of operations for math operators, we can

eliminate all these questions by using parentheses to force the order of comparison and

logical operators. Adding a set or sets of parentheses makes your intentions clear by

creating groupings:

if not(inJail) and ((cash >= 1000000) or (haveHighPayingJob and

(downPayment >= 90000)):

 # Can buy a house in Silicon Valley

In an if statement, the extra parentheses affect the order of evaluation. With the

addition of parentheses, the meaning of the preceding complicated if statement

becomes clear. As long as you are not in jail, and either you have a million dollars

in cash or you have a high-paying job and a down payment of 90,000 dollars, then

congratulations—you can buy a house in Silicon Valley!

 Booleans in if Statements

There is one additional note on using Booleans in if statements. Very often,

programmers use a Boolean variable to remember the result of an early calculation or

setting. Then later, the code tests the Boolean to see which piece of code should run.

Chapter 5 if, else, and elif statements

137

For example, consider a program where we need to know if the user is an adult female.

We might ask the user at the start of the program about their age and gender. Once we

have the user’s responses, we might set a Boolean this way:

if (age > 21) and (gender == 'f'):

 adultFemale = True

else:

 adultFemale = False

Then, later in the program, we might want to make some comment or

recommendation if the user is an adult female. Now that we have this information

captured in a single Boolean variable, we can use that variable in our next if statement.

Many beginning programmers write something like this:

if adultFemale == True:

 # Make some special comment/recommendation

And that works fine. However, comparing a Boolean to True is not necessary. The

following is exactly equivalent:

if adultFemale:

 # Make some special comment/recommendation

There is nothing wrong with the first form—comparing a Boolean to True. If it is

clearer to you, feel free to write it that way. But as you get more comfortable working with

Booleans, you will come to recognize that the second approach, of just using the Boolean

alone, is even simpler.

 Program to Calculate Shipping

Let’s take many of the concepts we have learned in this chapter and put them all together

to build a program. The idea is that we have a company that sells widgets. A user fills

out a form or answers a set of questions, supplying the number of widgets to purchase

and the country to ship to. The program should generate the cost to ship that particular

number of widgets to that country. The cost is dependent on both the country to ship to

and the number of widgets. The company is set up to ship to either the United States or

Canada only. If the user is requesting a shipment to any other country, the company has

to decline the order. The costs are outlined in Table 5-5.

Chapter 5 if, else, and elif statements

138

The key to this program is to build a function that calculates the shipping costs.

When it is called, it expects to be passed two pieces of data: the country to ship to and

the number of widgets purchased. The function will return a resulting shipping cost.

Essentially, we need a way to take the data in Table 5-5 and turn it into code. We’ll start

with an outline of the code:

NOT_YET = 'We don't ship there yet'

Function to determine shipping cost, based on country and quantity

def calculateShipping(country, nWidgets):

 if (country == 'USA') or (country == 'US') or (country == 'United

States'):

 # Calculate costs for US

 elif country == 'Canada':

 # Calculate costs for Canada

 else:

 # We do not ship anywhere else

 shippingCost = NOT_YET # special value to say that we don't ship

to this country

 return shippingCost

In this first pass at the code, we made a decision to look at the table by considering

the country first. (We could have broken up the problem by looking at the number of

widgets first and then at the country, but the former approach seems more logical.) The

user types in their country, so our code allows for any of three acceptable spellings or

Table 5-5. Shipping Costs Based on Country and Quantity

United States Canada

Quantity Cost Quantity Cost

<= 50 6.25 <= 50 8.25

<= 100 9.50 <= 100 12.50

<= 150 12.75 <= 150 18.75

Otherwise 15.00 Otherwise 25.00

Chapter 5 if, else, and elif statements

139

shortened names for the United States. Next, we check whether the user’s country is

Canada. If the country is not the United States or Canada, execution will go into the else

clause. There we assign a special value of the constant NOT_YET to indicate that we do not

ship to the given country. The caller has to check for and deal with this special value. If

the function returns NOT_YET, then the calling code must tell the user that we cannot ship

to that country.

Now let’s build up the rest of the calculateShipping function:

NOT_YET = 'We don't ship there yet'

Function to determine shipping cost, based on country and quantity

def calculateShipping(country, nWidgets):

 if (country == 'USA') or (country == 'US') or (country == 'United States'):

 if nWidgets < 50:

 shippingCost = 6.25

 elif nWidgets < 100:

 shippingCost = 9.50

 elif nWidgets < 150:

 shippingCost =12.75

 else:

 shippingCost = 15.00

 elif country == 'Canada':

 if nWidgets < 50:

 shippingCost = 8.25

 elif nWidgets < 100:

 shippingCost = 12.50

 elif nWidgets < 150:

 shippingCost = 18.00

 else:

 shippingCost = 25.00

 else:

 # We do not ship anywhere else

 shippingCost = NOT_YET # special value to say that we don't ship

to this country

 return shippingCost

Chapter 5 if, else, and elif statements

140

The additional code is implemented for the United States and Canada as a nested

if/elif/else statement. For those two countries, we check the number of widgets

ordered and assign the appropriate value to the shippingCost variable. At the end of

the function, we return the calculated cost. Finally, we write the main code that asks a

number of questions to the user, as follows:

Get user input then call the above function

userWidgets = input('How many widgets are you buying? ')

userWidgets = int(userWidgets) # convert to integer

userCountry = input('What country are you shipping to? ')

Other questions about the shipment here

Call the function to see how much it will cost to ship

amountForShipping = calculateShipping(userCountry, userWidgets)

if amountForShipping == NOT_YET:

 print('Sorry, we do not ship to', userCountry)

else:

 print('It will cost $', amountForShipping, 'to ship your package')

 # more code here to process the shipment

The main code gets information from the user, uses that information in a call to the

function, and then gets back the amount it costs to ship. Notice that the main code contains

a check (using an if statement) to see if we get a valid value for shipping. If so, we tell the

user the cost of shipping, and the program can proceed. If we get back our special constant,

we know that we cannot ship to the given country, and we print an appropriate message. By

having all the shipping calculations inside a function, we could later modify the function to

add more countries to ship to, without making any changes to the calling code.

Chapter 5 if, else, and elif statements

141

 Summary

The chapter began with flowcharting to introduce the concept of branching. Then I

showed you how decision boxes in flowcharts are implemented by if statements, if/

else statements, and if/elif/else statements. I gave many examples of how you can

use nested if statements, if statements inside of functions, and if statements with

multiple elif branches. If you took the challenges, you got some good practice by

writing relatively simple functions with if statements in them.

Next, I introduced the three logical operators: and, or, and not. I showed you the

truth table for each of these operators and demonstrated how we can use these operators

to create more complex but often more natural if statements.

The chapter concluded with a good example of using nested if/elif/else

statements in a program to calculate shipping.

Chapter 5 if, else, and elif statements

143

CHAPTER 6

Loops

In this chapter, we’ll build a Guess the Number program. The computer will pick a

random number between 1 and 20, and the user will have five attempts to guess the

number. For every incorrect guess, the computer will let the user know if the correct

answer is higher or lower than the user’s guess. If the user doesn’t guess the answer in

five attempts, the program will tell the user what the number was.

To learn how to build a game like this, this chapter covers the following topics:

• User’s view of the game

• Loops

• while statement

• First loop in a real program

• Increment and decrement

• Running a program multiple times

• Python’s built-in packages

• Generating a random number

• Simulating flipping a coin

• Other examples of using random numbers

• Creating an infinite loop

• A new style of building a loop: while True and break

• Asking if the user wants to repeat: the empty string

• Pseudocode

• Building our Guess the Number program

• Playing a game multiple times

144

• Error checking with try/except

• continue statement

• Building error-checking utility functions

• Coding challenge

 User’s View of the Game

Rather than start with the code, let’s start by showing what the program looks like from

the user’s point of view:

>>>

Welcome to my Guess the Number program.

Guess my number between 1 and 20

You have 5 guesses.

Take a guess: 5

Your guess is too low

Take a guess: 7

Your guess is too high

Take a guess: 6

You got it in 3 guesses

Play again? Press y to continue or press ENTER to quit: y

Take a guess: 12

Your guess is too low

Take a guess: 18

Your guess is too high

Take a guess: 15

Your guess is too low

Take a guess: 16

Your guess is too low

Take a guess: 17

You got it in 5 guesses

Play again? Press y to continue or press ENTER to quit: y

Take a guess: 10

CHAPTER 6 LOOPS

145

Your guess is too low

Take a guess: 11

Your guess is too low

Take a guess: 12

Your guess is too low

Take a guess: 13

You got it in 4 guesses

Play again? Press y to continue or press ENTER to quit: y

Take a guess: 1

Your guess is too low

Take a guess: 2

Your guess is too low

Take a guess: 3

Your guess is too low

Take a guess: 4

Your guess is too low

Take a guess: 5

Your guess is too low

You didn't get it in 5 guesses.

The correct answer was: 11

Play again? Press y to continue or press ENTER to quit:

From the output, you can probably figure out how some of the code works. You

already know how to get the user’s guesses using a call to input. You also know how

to compare the user’s guess to the randomly chosen target number using an if/elif/

else statement. And you know how to keep track of the number of guesses by setting a

variable to 0, and adding 1 to it every time the user makes a guess. But in order to build

the full program, we need to learn a few more things about programming and how to

implement these things in Python.

 Loops

In the output of the program, you can see how the user was allowed to make multiple

guesses. Also, the user is allowed to play the game multiple times. In order to build code

with these types of repetitions, we need to introduce a new concept called a loop.

CHAPTER 6 LOOPS

146

Definition A loop is a block of code that is repeated until a certain condition

is met.

Figure 6-1 shows the flowchart of a loop.

Figure 6-1. The f lowchart of a loop

To understand how this works, let’s start with a silly real-life example:

I am hungry

while hungry

take a bite of food

chew

swallow

if thirsty:

take a drink

go back to the point of checking if I am still hungry

eat dessert!

CHAPTER 6 LOOPS

147

In this example, we repeatedly take a bite of food, chew, swallow, and if we are thirsty,

take a drink. This process keeps going as long as we are still hungry. When we eventually

reach the point where we are no longer hungry, the loop finishes and we eat dessert.

Here is a second silly real-life example of a loop:

ask son to take out garbage

anger is non-existent, perfectly calm

while son has not taken out the garbage

 increase anger level by a bit

 tell son to take out the garbage

 wait 2 minutes

 go back to checking if garbage has been taken out

In this example, as long as my son has not taken out the garbage, my anger level

continues to go up.

 The while Statement

In Python (as with many languages), a loop is implemented with a while statement. This

is the generic form of the while statement:

while <Boolean expression>: # as long as the expression evaluates to True

 <indented block of code>

Notice that this syntax is very similar to an if statement. The while statement

contains a Boolean expression followed by a colon. After the while statement is an

indented block of code. Again, similar to an if statement, the block of code can be as

short or as long as needed. The block of code is often referred to as the body of the loop.

The while statement and the indented block together are called a while loop. As long

as the Boolean expression in the while statement evaluates to True, the statements in

the body of the loop are repeated. When executing the while statement, if the Boolean

expression evaluates to False, the body of the loop is skipped, and execution continues

with the first statement after the body of the loop.

Again, similar to what happens when you type an if statement, when you type a

while statement with a trailing colon, IDLE automatically indents for you to allow you to

build the body of the loop. When you are finished entering the statement(s) that make

CHAPTER 6 LOOPS

148

up the body of the loop, you can press Backspace (Windows) or the Delete (Mac) key to

move the indenting level back four spaces.

Let’s start with a silly Python example. In the following code, we’ll ask the user to

type the letter a, and we’ll keep asking until the user types an a:

looping = True

while looping == True:

 answer = input("Please type the letter 'a': ")

 if answer == 'a':

 looping = False # we're done

 else:

 print("Come on, type an 'a'!)"

print("Thanks for typing an 'a'")

Before the loop starts, we set a Boolean variable named looping to True. The

Boolean expression in this while statement compares the Boolean to the value True. We

could also have written it as follows:

looping = True

while looping:

This would work the same way, because comparing a Boolean to True is the same as

just the value of the Boolean itself.

At the end of the loop, execution automatically goes back to the while statement

at the top of the loop. As long as the looping variable has a value of True, the lines of

code in the indented block will be repeated. Therefore, when we want the loop to end,

something inside the loop must affect the value of that expression. In this loop, when

the user types the letter a, we set looping to False. When control goes back to the while

statement, because the Boolean expression is now False, we exit the loop. For this

reason, the Boolean expression in the while statement is often called the exit condition—

the condition under which you can exit the loop.

But it is interesting to consider what would happen if we never set looping to False.

If we never have any code that changes the exit condition, then we would create what

is called an infinite loop—a loop that runs forever (or until you quit IDLE or shut down

your computer).

CHAPTER 6 LOOPS

149

ONE INFINITE LOOP

Did you know that when Apple built its corporate headquarters, it paid homage to software

developers? The current headquarters is a series of six buildings. When the buildings were

built, an oval road was built to allow cars to navigate around the buildings. The official address

of Apple is One Infinite Loop Drive in Cupertino, California.

CHAPTER 6 LOOPS

150

 First Loop in a Real Program

Let’s build a simple program using a loop. The program asks the user for a target number.

The goal of the program is to calculate the sum of the numbers from 1 through the target

number. For example, if the user enters 4, then we want to calculate 1 + 2 + 3 + 4, and

report the answer of 10:

#Add up numbers from 1 to a target number

target = input('Enter a target number: ')

target = int(target)

total = 0

nextNumberToAddIn = 1

while nextNumberToAddIn <= target:

 # add in the next value

 total = total + nextNumberToAddIn #add in the next number

 print('Added in:', nextNumberToAddIn, 'Total so far is:', total)

 nextNumberToAddIn = nextNumberToAddIn + 1

print('The sum of the numbers from 1 to', target, 'is:', total)

Notice the setup before the while loop starts. First, we get the target number from

the user and convert it to an integer. We then set total to 0; this variable will eventually

hold the total of all the numbers. We also set the nextNumberToAddIn variable to 1. This

variable will be used to walk through the numbers from 1 to the target number that the

user entered.

Next, we build our while statement. We will keep going through the loop until the

nextNumberToAddIn is greater than the target number. When this happens, the value of

the Boolean expression in the while statement becomes False and we exit the loop.

Every time through the loop, we add the value of nextNumberToAddIn to total. Then,

just to see what’s going on, we add a print statement to print out the number that was

just added in, and the total so far.

Finally, we add one to the nextNumberToAddIn to get to the next number. This

is the key to exiting the loop. Remember, we continue in the loop as long as the

nextNumberToAddIn is less than or equal to the target number.

CHAPTER 6 LOOPS

151

Here is a sample run of the program with an input of 4:

Enter a target number: 4

Added in: 1 Total so far is: 1

Added in: 2 Total so far is: 3

Added in: 3 Total so far is: 6

Added in: 4 Total so far is: 10

The sum of the numbers from 1 to 4 is: 10

>>>

 Increment and Decrement

The previous code contained the following statement:

nextNumberToAddIn = nextNumberToAddIn + 1

That line takes the current value of nextNumberToAddIn, adds 1 to it, and puts the

resulting value back into the same variable. The operation of increasing the value of a

variable this way is extremely common. In fact, it has a special name: increment.

Definition An increment is when a variable adds to itself.

By default, when we say increment, we mean add 1 to the variable, but you can

increment by any amount. Counting by 2 is done by incrementing a variable by 2 in a

loop.

In many cases, you use this type of statement to count the number of times through

a loop, or to count the number of attempts to do something until there is a success or

failure.

This example statement is the standard way of incrementing a variable:

counter = counter + 1

However, there is also another syntax you can use:

counter += 1

CHAPTER 6 LOOPS

152

This line uses a new operator: the plus-equals operator. These two lines do exactly

the same thing and give the exact same result. The plus-equals operator is commonly

used by C programmers. In this book, we will use the first syntax because it uses the

simple assignment operator.

Imagine if you worked for NASA and were asked to write the code to count down for

a rocket launch. For that code, you would want to start with a large number and count

down by ones. There is a similar word to describe this action: decrement.

Definition A decrement is when a variable subtracts from itself.

Again, by default, when we use the word decrement by itself, it is implied that we

want to count down by 1. But just like incrementing, you can decrement by any amount.

Here is an example using the standard assignment statement syntax:

counter = counter - 1

But decrementing also has an alternative syntax using the minus-equals operator:

counter -= 1

And again, in this book, we use the first syntax.

In building our guessing game, to keep track of how many guesses the user has

made, we’ll use a counter and increment it with each guess.

 Running a Program Multiple Times

Let’s say we want to be able to run a program over and over again. For example, in the

earlier program, where we asked the user for a target number and we added up all the

numbers up to that target, we may want to allow the user to be able to do this multiple

times. From the user’s point of view, the whole program would run, and then the user is

asked if they want to try again. If the answer to that question is yes, then the user would

see the program start again, ask for another target number, and calculate the new total.

This loop would continue until the user’s answer to the question asking if they want to go

again is no.

There are a few ways to do this, but one simple approach is to place the core of the

program inside a function. Then we build a loop. In the body of the loop, we call the function,

and at the end of the loop, we ask the user if they want to go again. Here’s the code:

CHAPTER 6 LOOPS

153

Calculate total - repeated

def calculateSum(target):

 total = 0

 nextNumberToAddIn = 1

 while nextNumberToAddIn <= target:

 # add in the next value

 total = total + nextNumberToAddIn

 #increment

 nextNumberToAddIn = nextNumberToAddIn + 1

 return total

answer = 'y' # start off with the value 'y' to go through the first time

while answer == 'y':

 usersTarget = input('Enter a target number: ')

 usersTarget = int(usersTarget)

 thisTotal = calculateSum(usersTarget) # call our function and get back

the answer

 print('The sum of the numbers 1 to', usersTarget, 'is:', thisTotal)

 answer = input('Do you want to try again (y or n): ')

print('OK Bye')

Notice that with this structure, all the core calculations (in this case, generating the

sum) are done inside of a function, and the function returns the answer. The main code

concerns itself mostly with interacting with the user and calling the function.

Alternatively, if you want to run the whole program a certain number of times, you

could modify the looping condition to count the number of times through a loop:

nTimes = 0 # initialize a counter

while nTimes < 3:

 usersTarget = input('Enter a target number: ')

 usersTarget = int(usersTarget)

 thisTotal = calculateSum(usersTarget)

 print('The sum of the numbers 1 to', usersTarget, 'is:', thisTotal)

 nTimes = nTimes + 1 # increment the counter

print('OK Bye')

CHAPTER 6 LOOPS

154

This version allows the user loop to run exactly three times, without the need to ask

the user if they want to go again. Notice that with this change, there is no modification

needed in the function.

 Python’s Built-in Packages

Let’s get back to our Guess the Number program. The next thing we need to do is

generate a random number. The question that arises is: how can a computer, which does

everything exactly the same way every time a program runs, generate a random number?

To answer this question, we have to learn a little more about how the Python language is

put together; specifically, we need to understand Python packages.

In order to keep programs small, the base Python language only has a small number

of keywords (if, elif, else, while, def, and a few more) and built-in functions (int, str,

input, and so on).

Python also has some built-in prewritten packages of code that are available

to programmers. (In other computer languages, each of these packages might be

called a library.) The packages are installed on the hard disk of your computer when

you install Python. Altogether, they comprise what is called the Python Standard

Library.

There are also external packages written by programmers all over the world, who

make their code available to other programmers. To get an external package, you need

to download it from the Internet. For example, one of these packages is called PyGame.

PyGame contains code that allows Python programmers to build games that use

graphics in a window, use a mouse as a pointing device, play sounds, and much more.

There are thousands of such packages available.

Figure 6-2 shows a diagram that should help explain these three categories.

CHAPTER 6 LOOPS

155

 Generating a Random Number

One built-in package is called the random package. It contains a large number of

functions that allow programmers to generate and use random numbers. Because this

is one of Python’s built-in packages, you already have it on your computer; there is no

need to download anything. But because the developers of Python want to keep Python

programs as small as possible, you don’t get access to this package in the same way that

you have immediate access to the built-in functions we discussed earlier.

When you want to use a built-in package, you need to tell Python that you want to

use it. You have to explicitly ask Python to include a package in your program. The way

you do that is to use the import statement, which looks like this:

import <packageName>

In this case, to import the random package, we would use the following statement:

import random

Figure 6-2. Base Python language, Python Standard Library, and external
downloadable packages

CHAPTER 6 LOOPS

156

Let’s take a quick look at the random package using the Shell. Bring up IDLE and enter

the preceding line. When you press Enter or Return, nothing should happen. The fact that

nothing happens is a good thing. It implies that IDLE was able to find the random package

and its contents are now available to you. If you had typed it wrong or attempted to import

a package that IDLE could not find, you would have seen an error message. Here’s an

example of what you would see if you tried to import a package that does not exist:

>>> import NonExistentPackage

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 import NonExistentPackage

ImportError: No module named NonExistentPackage

>>>

When you write a program that uses an import statement, you typically place any

import statement(s) at the top of your code. If you want to see the documentation of all

the functions that are available in this package, you can call the built-in help function

and pass in the name of the package, like this:

help(random)

If you do this, you will get screens and screens worth of documentation. In you

are truly interested in the details of all the functions, feel free to read through this

documentation. There are a large number of functions that you can call in the random

package. For now, we are interested in one specific function named randrange.

The purpose of randrange is to generate a random integer number within a given range.

randrange is interesting because the range itself can be specified in a number of different

ways, with different numbers of arguments. Using the most straightforward form, we’ll call

the randrange function specifying the range as two integers. Here is the way we call it:

random.randrange(<lowValue>, <upToButNotIncludingHighValue>)

You start by specifying the name of the package—in this case, the word random. After

the package name, you type a period (generally read as “dot”). After the dot, you specify

the function you want to call; in this case, you type randrange to say that you want to

use that specific function. In the preceding line, randrange expects to be called with two

arguments: a low-end value and a high-end value. The low-end value is included in the

range, but the high-end value is not included in the range. The way that we say this is,

CHAPTER 6 LOOPS

157

“up to but not including” the high-end value. (We’ll see this “up to but not including”

concept many times in Python.)

The function returns an integer within the specified range. The most typical way to

use randrange is in an assignment statement, where you save the returned value in a

variable, like this:

<resultVariable> = random.randrange(<lowValue>, <upToButNotIncludingHighValue>)

Here are some examples:

#random between 1 and 10

aRandomNumber = random.randrange(1, 11)

#random between 1 and 52, to pick a card number from a deck

anotherRandomNumber = random.randrange(1, 53)

The important thing to remember (which may seem very odd) is that the second

argument needs to be one more than the top end of your intended range. That’s because

the number you specify here is not included in the range.

As an alternative syntax, you can call randrange with only a single argument: the

“up to but not including” high end. If you make this call with only the one argument,

randrange assumes that the low end of your range is zero:

#random between 0 and 8

myRandomNumber = random.randrange(9) # same as random.randrange(0, 8)

 Simulation of Flipping a Coin

Now it’s time for a good example program that uses random numbers. We will simulate

flipping a coin some number of times. The program will run in a loop. Each time through

the loop, we randomly generate a 0 or 1. Then we’ll do a mapping. That is, we’ll say that

if we randomly get a 0, that means tails. If we get a 1, that means heads. When the loop

finishes, we report the results:

Coin flip program

import random

nFlips = 0 # to count the number of flips

nTails = 0 # to count the number of flips that came up as tails

nHeads = 0 # to count the number of flips that came up as heads

CHAPTER 6 LOOPS

158

maxFlips = input('How many flips do you want to do? ')

maxFlips = int(maxFlips)

while nFlips < maxFlips:

 # Randomly choose 0 or 1, because a coin flip can only result in one of

two answers

 # (heads or tails)

 zeroOrOne = random.randrange(0, 2)

 # If we get a zero, say that was a heads

 # If we get a one, we say that was a tails

 if zeroOrOne == 0:

 nTails = nTails + 1

 else:

 nHeads = nHeads + 1

 nFlips = nFlips + 1

print()

print('Out of', nFlips, 'coin tosses, we had:', nHeads, 'heads, and',

nTails, 'tails.')

Notice that we didn’t randomly pick heads or tails directly. We randomly picked from

a range that encompasses all possible outcomes, and then mapped the numeric answer

to the outcomes we were looking for. In this case, there are only two possible outcomes,

so we get random values of 0 or 1, map 0 to tails, and 1 to heads.

 Other Examples of Using Random Numbers

Another example of this approach is if we were writing a program to play the game of

rock-paper-scissors. In this case, there are three possible choices. To make a random

choice, we would generate a random number between 0 to 2 (or 1 to 3, or in fact, any

range of three consecutive numbers), and use the resulting number to make our choice:

import random

choiceNumber = random.randrange(0, 3) # to get a 0, 1, or 2

if choiceNumber == 0:

CHAPTER 6 LOOPS

159

 randomChoice = 'rock'

elif choiceNumber == 1:

 randomChoice == 'paper':

else: # not zero and not one, must be 2

 randomChoice == 'scissors'

Here we use an if/elif/else statement to account for all possible numbers

generated by calling random.randrange, and we set another variable to a string

representing the actual choice.

At the beginning of the Chapter 2, just to get your feet wet with Python, I showed a

sample program. It was a simulation of the Magic 8-Ball children’s toy. Let’s revisit the

portion of that code that selected a random answer:

randomAnswer = random.randrange(0, 8) # pick a random number between 0 and 7

if randomAnswer == 0:

 print('It is certain.')

elif randomAnswer == 1:

 print('Absolutely!')

elif randomAnswer == 2:

 print('You may rely on it.')

elif randomAnswer == 3:

 print('Answer is foggy, ask again later.')

elif randomAnswer == 4:

 print('Concentrate and ask again.')

elif randomAnswer == 5:

 print('Unsure at this point, try again.')

elif randomAnswer == 6:

 print('No way, dude!')

else: # must be 7

 print ('No, no, no, no, no.')

Now it should be obvious how this works. We generate a random number between

0 and 7 using random.randrange, and then we use an if/elif ... elif/else to pick a

message to print, based on the random number that was chosen.

CHAPTER 6 LOOPS

160

 Creating an Infinite Loop

When we introduced the while statement, we said that as long as the Boolean expression

evaluates to True, the while statement would continue to loop. The loop only stops when

the Boolean expression evaluates to False. Any loop can be built using this structure.

Earlier, we said that the Boolean expression in the while statement is called the

exit condition—that is, the test for exiting the loop is done in the while statement. So

far, we’ve shown that the way to handle this is to write some test, typically in an if

statement, where you determine whether you are ready to exit the loop. If you are ready

to exit, you set some variable to a known value that will later be checked in the Boolean

expression of the while statement. Here is an example:

looping = True

while looping:

 <statement(s)>

 if <found exit condition?>:

 looping = False # found the exit condition at this point

 else:

 <continuing statement(s) inside the loop>

In effect, you have found the exit condition, but you can’t exit the loop until

execution goes back to the while statement. Unfortunately, this style often makes it more

difficult to write the continuing part of the loop that follows. The code that you run if the

exit condition has not been reached must get indented.

If you need to detect and handle multiple exit conditions, each if statement would

set the same variable (that is later checked in the while statement), and the code that

continues the normal execution gets indented further. This excessive indenting makes it

difficult to write and even more difficult to read through the normal path through the loop.

Fortunately, there is another way to build a while loop.

 A New Style of Building a Loop: while True, and break

Earlier I talked about how you might accidentally create an infinite loop. I said that as

long as nothing changed the value of the Boolean expression in the while statement, the

loop would run forever. Therefore, the simplest way to create an infinite loop is like this:

while True:

 <statement(s)>

CHAPTER 6 LOOPS

161

That loop would run forever. Python provides another statement called the break

statement, which is made up of just the word break. If your code is running in a while

loop, and a break statement is reached, control is immediately transferred to the first

statement past the last line of the loop. With the addition of the break statement, we can

now think differently about writing loops. Rather than checking for the exit condition

in the while statement, we can check for an exit condition anywhere in the body of the

loop. If we find an exit condition, we use a break statement to exit out of the loop right at

that point. The flowchart in Figure 6-3 shows how this works.

Figure 6-3. Flowchart of a loop using a break statement

CHAPTER 6 LOOPS

162

Here is a simple example:

while True: # loop forever

 line = input("Type anything, type 'done' to exit: ")

 if line == 'done':

 break # transfers control out of the loop

 print('You entered:', line)

print('Finished')

This code allows the user to type anything they want. The program keeps asking the

user to type something until the user types the word done. When the user types done, the

program detects it and exits the loop immediately, using a break statement. If the user

types anything else, the program skips over the indented break statement and prints

out a copy of whatever the user entered. Therefore, there is no need to code an else

statement for the continuing statement(s) in the loop.

Note If you are familiar with the C language, the break statement is effectively

a goto statement, but instead of going to a label, it goes directly to the first

statement past the end of the loop.

In our Guess the Number game, we will have two exit conditions. First, we’ll

check to see whether the user entered the correct answer. If so, we’ll give some

feedback and exit the loop. Second, we’ll check to see if the user ran out of guesses.

In this case, we’ll tell the user that they ran out of guesses and what the randomly

chosen number was, and then exit the loop. Using a break statement at the

appropriate point for each of these two exit conditions makes this code easier to

write and clearer to read.

This general technique of writing an infinite loop using a while True statement and

using break to exit the loop when an exit condition is found is extremely effective and

clear. Almost all the loops I write work this way.

CHAPTER 6 LOOPS

163

 Asking If the User Wants to Repeat: the Empty
String

We are almost ready to build our Guess the Number game. In the demonstration version

of the game, you may have noticed that once a round of the game was over (because

the user either got the right answer or ran out of guesses), the program asked if the user

wanted to play again. Now we have learned all statements needed to build a game with

repetition like that. For example, we can build our game loop this way:

while True:

 # do whatever, e.g., play a round of a game

 # now ask the user if they want to go again

 goAgain = input('Press Return/Enter to quit, or anything else to

continue: ')

 if goAgain == ": # check for no entry

 break # user said they want to quit

print 'Finished'

This code may seem a little odd, so I’ll explain how this works. When the user types

any response to the question posed by the call to input, whatever characters the user

types are assigned into the goAgain variable. If the user enters the string as yes, then

goAgain is assigned the string 'yes'. If the user just enters the letter y, then goAgain is

set to the string 'y'.

But if the user just presses the Return key (Mac) or the Enter key (PC), then input

still returns the characters the user typed. In this case, the user did not type any

characters, so the result of the call is a special string called the empty string—a string with

no characters in it. It is represented as two single quotes ('') or the two double quotes (""),

which we read as “quote quote.” The empty string is essentially the equivalent of zero as a

number—a number with no value. Therefore, if the user types no characters, the goAgain

variable is set to the empty string. We use an if statement to check for this case, and if

we find that the user did not type any characters, then we exit the loop using a break

statement.

CHAPTER 6 LOOPS

164

 Pseudocode

Now we have enough information to write our game. But rather than jump right into the

code, let’s talk about how the program is going to work. We’ll come up with an overall

approach before writing the actual code.

Definition Pseudocode is an English-like description of an algorithm in a made-

up computer language.

Very often, programmers develop an algorithm and write the algorithm in

pseudocode before writing it in a real computer language. This allows programmers to

think through the approach to the overall structure of a solution without having to worry

about the detailed syntax of a computer language.

As a demonstration, here is the pseudocode for one round of our Guess the Number

program:

Show introduction

Choose random target

Initialize a guess counter

Loop forever

 Ask the user to for a guess

 Increment guess counter

 If user's guess is correct, congratulate user, we're done

 If user's guess is too low, tell user

 If user's guess is too high, tell user

 If reached max guesses, tell correct answer, we're done.

We can take this pseudocode and turn each statement into a comment inside

IDLE. We can use the comments essentially as an outline inside the code of the program.

 Building the Guess the Number Program

We are finally ready to build our full game. This is our first significant program. It

requires quite a few lines of code. Rather than write all the code from top to bottom and

test the entire program, we’ll write small portions at a time and test as we go. This is a

standard technique for writing larger programs. Writing or changing too many things at

CHAPTER 6 LOOPS

165

once makes the development process difficult because if an error shows up, it may not

be clear which line of code is the culprit, and there could be logic errors that need to be

addressed.

For this program, we’ll start by writing only the user’s guess and comparison logic

code. It can be difficult to build and test a program that has randomization in it, because

the code typically takes different branches on each run. So, to start building our program,

let’s start by hard-coding a target number of 10. Later, we’ll modify the code to pick the

target number randomly:

Guess the Number (version 1)

Show introduction

Choose random target

target = 10 # start with a known value

Initialize a guess counter

Loop forever

Ask the user to for a guess

userGuess = input('Take a guess: ')

userGuess = int(userGuess)

Increment guess counter

If user's guess is correct, congratulate user, we're done

if userGuess == target:

 print('You got it!')

If user's guess is too low, tell user

elif userGuess < target:

 print('Your guess was too low.')

If user's guess is too high, tell user)

else:

 print('Your guess was too high.'

#If reached max guesses, tell answer correct answer, we're done.

CHAPTER 6 LOOPS

166

Checking the user’s response is essentially a three-way branch: the answer is correct,

the answer is too low, or the answer is too high. We implement this using an if/elif/

else. Then we test this code to ensure that all branches work correctly:

>>> ================================ RESTART ==============================

>>>

Take a guess: 5

Your guess was too low.

>>> ================================ RESTART ==============================

>>>

Take a guess: 15

Your guess was too high.

>>> ================================ RESTART ==============================

>>>

Take a guess: 10

You got it!

>>>

Next, we’ll add code to keep track of the number of guesses and allow the user to

make multiple guesses:

Guess the Number (version 2)

Show introduction

Choose random target

target = 10 # start with a known value

Initialize a guess counter

guessCounter = 0

Loop forever

while True:

 # Ask the user to for a guess

 userGuess = input('Take a guess: ')

 userGuess = int(userGuess)

 # Increment guess counter

 guessCounter = guessCounter + 1

CHAPTER 6 LOOPS

167

 # If user's guess is correct, congratulate user, we're done

 if userGuess == target:

 print('You got it!')

 print('It only took you', guessCounter, 'guess(es).')

 break

 # If user's guess is too low, tell user

 elif userGuess < target:

 print('Your guess was too low.')

 # If user's guess is too high, tell user

 else:

 print('Your guess was too high.')

 # If reached max guesses, tell answer correct answer, we're done.

 if guessCounter == 5:

 print('Sorry, you did not get it in 5 guesses')

 print('The number was:', target)

print('Thanks for playing.')

In this version, we keep track of the number of guesses by introducing a new

variable: guessCounter. We initialize it to zero at the top. Next, we add a while True so

that the user can take multiple guesses. We then indent all the lines below that to turn

these lines into the body of the loop. IDLE provides a quick way to do this all in one

shot. You start by selecting a number of lines of code (using click and drag or click and

Shift-click). With a selection highlighted, click the Format menu. The first item is Indent

Region with a shortcut key of Control+] (Windows) or Command+] (Mac). Selecting this

option from the menu or pressing the appropriate shortcut key will move all the selected

lines in one level of indenting. Notice that the next option, Format ➤ Dedent Region,

moves all selected code in the opposite direction.

With the while True in place, we have an infinite loop. Every time through the loop,

we increment our guess counter. The loop needs to handle two exit conditions. First, if

the user guesses the correct answer, we tell the user and execute a break statement to

leave the loop. Second, if the user reaches the maximum number of guesses, we give the

user feedback and exit the loop with another break statement.

CHAPTER 6 LOOPS

168

We’ll run two tests on this code. First, we’ll test to make sure that the code still works

when you get the correct answer. We’ll check to ensure that the guess counter works

correctly, and that this exit condition gets you out of the loop:

>>>

Take a guess: 5

Your guess was too low.

Take a guess: 15

Your guess was too high.

Take a guess: 10

You got it!

It only took you 3 guess(es).

Thanks for playing.

>>>

Now we’ll run it again. In this run, we know the correct answer is 10, so we’ll give

five incorrect answers to ensure that the code testing for the number of guesses and the

second exit condition work correctly:

>>>

Take a guess: 1

Your guess was too low.

Take a guess: 1

Your guess was too low.

Take a guess: 1

Your guess was too low.

Take a guess: 1

Your guess was too low.

Take a guess: 1

Your guess was too low.

Sorry, you did not get it in 5 guesses

The number was: 10

Thanks for playing.

>>>

CHAPTER 6 LOOPS

169

Now that the core code seems to be working well, we’ll finally add in the

randomization code. We’ll also finish the program by building the introduction and add

some constants to make it more flexible:

Guess the Number (version 3)

import random

MAX_GUESSES = 5 # maximum number of guesses allowed

MAX_RANGE = 20 # highest possible number

Show introduction

print('Welcome to my Guess the Number program.')

print('Guess my number between 1 and', MAX_RANGE)

print('You will have', MAX_GUESSES, 'guesses.')

Choose random target

target = random.randrange(1, MAX_RANGE + 1)

Initialize a guess counter

guessCounter = 0

Loop forever

while True:

 # Ask the user to for a guess

 userGuess = input('Take a guess: ')

 userGuess = int(userGuess)

 # Increment guess counter

 guessCounter = guessCounter + 1

 # If user's guess is correct, congratulate user, we're done

 if userGuess == target:

 print('You got it!')

 print('It only took you', guessCounter, 'guess(es).')

 break

 # If user's guess is too low, tell user

 elif userGuess < target:

 print('Your guess was too low.')

CHAPTER 6 LOOPS

170

 # If user's guess is too high, tell user

 else:

 print('Your guess was too high.')

 # If reached max guesses, tell answer correct answer, we're done.

 if guessCounter == MAX_GUESSES:

 print('Sorry, you did not get it in', MAX_GUESSES, 'guesses.')

 print('The number was:', target)

 break

print('Thanks for playing.')

Because we wanted to choose a random number, we started by importing the random

package. After that, we created two constants: MAX_GUESSES and MAX_RANGE. Using

constants like these makes the code more readable than having “magic numbers” (in this

case, 5 and 20) in the code. The meanings of these constants are much clearer, and their

values are now changeable in a single place. We added a simple introduction that uses

those constants. When calling random.randrange to generate the random number, we

added 1 to the MAX_GUESSES value. We did that because this argument needs to be an “up

to but not including” value. In this case, we want to get a number in the range of 1 to 20,

so we need to pass in values of 1 and 21.

The program now implements one round of playing the game:

>>>

Welcome to my Guess the Number program.

Guess my number between 1 and 20

You will have 5 guesses.

Take a guess: 15

Your guess was too low.

Take a guess: 18

Your guess was too low.

Take a guess: 20

Your guess was too high.

Take a guess: 19

You got it!

It only took you 4 guess(es).

Thanks for playing.

>>>

CHAPTER 6 LOOPS

171

 Playing a Game Multiple Times

In most computer games, when one round of the game is over, you get the option to play

again. In the output at the beginning of this chapter, I showed this option for our Guess

the Number game. On a conceptual level, playing a game multiple times can be thought

of as each round of the game in a loop. That is, we can build an outer loop to play

multiple games, and an inner loop that plays a round within each game.

There are two possible implementations. If the game is simple enough, you can build

a loop within a loop. Here is the pseudocode:

#

Playing multiple games loop

 Play multiple rounds of the current game

 Play a round or move within a game

 Ask if the user wants to play again, if not, exit

The implementation would consist of an outer while loop and another inner while

loop that plays a single round. After the end of the inner loop, we ask the user whether

they want to play again. If they do, the outer loops runs again, and the game restarts.

The other approach is to take the code that implements one round and put that

inside a function. Then the main code can be a simple loop that calls the function to play

a round of the game.

Let’s build that second version. We’ll move all the code dealing with one round into a

function called playOneRound:

Guess the Number (version 4)

import random

MAX_GUESSES = 5 # maximum number of guesses allowed

MAX_RANGE = 20 # highest possible number

Show introduction

print('Welcome to my Guess the Number program.')

print('Guess my number between 1 and', MAX_RANGE)

print('You will have', MAX_GUESSES, 'guesses.')

CHAPTER 6 LOOPS

172

def playOneRound():

 # Choose random target

 target = random.randrange(1, MAX_RANGE + 1)

 # Initialize a guess counter

 guessCounter = 0

 # Loop forever

 while True:

 # Ask the user to for a guess

 userGuess = input('Take a guess: ')

 userGuess = int(userGuess)

 # Increment guess counter

 guessCounter = guessCounter + 1

 # If user's guess is correct, congratulate user, we're done

 if userGuess == target:

 print('You got it!')

 print('It only took you', guessCounter, 'guess(es).')

 break

 # If user's guess is too low, tell user

 elif userGuess < target:

 print('Your guess was too low.')

 # If user's guess is too high, tell user

 else:

 print('Your guess was too high.')

 # If reached max guesses, tell answer correct answer, we're done.

 if guessCounter == MAX_GUESSES:

 print('Sorry, you did not get it in', MAX_GUESSES, 'guesses.')

 print('The number was:', target)

 break

CHAPTER 6 LOOPS

173

#main code

while True:

 playOneRound() # call a function to play one round of the game

 goAgain = input('Play again? (Press ENTER to continue, or q to quit):

')

 if goAgain == 'q':

 break

print('Thanks for playing.')

We’ve taken all the code to play a single round of the game and moved it inside a

function (using the Format ➤ Indent Region to indent all this code). Then we built the

main code, which consists of a loop that calls the function to play one round and asks

the user whether they want to play again. This approach yields code that is very simple

and clear.

 Error Detection with try/except

In any program that asks the user to enter a number, there is a possibility that the user

might make a mistake. For example, when asked for a number (integer or float), the

user might type one or more letters. If the user enters something that is not a number

and your program then attempts to use either the int or float built-in function to try

to convert the user’s input to a number, Python generates an error. Here is a simple

example done in the Shell:

>>> userInput = input('Please enter a number: ')

Please enter an integer: xyz

>>> userInput = int(userInput) # convert user's input to an integer

Traceback (most recent call last):

 File "<pyshell#4>", line 1, in <module>

 userInput = int(userInput)

ValueError: invalid literal for int() with base 10: 'xyz'

When this type of error happens, the program crashes. It is much better to detect an

error like this and inform the user of the error rather than having Python generate an

error message and have the program exit.

CHAPTER 6 LOOPS

174

Python provides a mechanism for doing this type of error checking, but it takes a

little getting used to. Here’s the theory. Before we run some code that might cause an

error (in this case, trying to convert a number to an integer), we ask Python to watch

what’s going on. If an error occurs while Python is in this watching mode, you can tell

Python to run an additional block of code. In that block, you can print out a message of

your choosing, which tells the user more information about what went wrong and maybe

how to fix it.

The error checking is implemented in Python with a try/except block. Here’s what

it looks like:

try:

 <statement(s) that may cause an error>

except:

 <statement(s) to execute IF an error occurs>

else: #optional, often not needed

 <statement(s) to execute if NO error occurs>

In our Guess the Number program, if we wanted to ensure that the user entered a

valid number, we could do it with a try/except block like this:

userGuess = input(' Take a guess: ')

try:

 userInput = int(userInput)

except:

 print('The number you entered was not an integer')

As a general rule, the try block should be built to cover as few statements as

possible. As in the given example, ideally a try block should only contain one statement.

Let’s modify our program to replace the single call to input with the preceding code

and see how it works. The good news is that our code now detects (or catches) the user’s

error and prints an appropriate error message. The bad news is that after printing an

error message, the code keeps going and tries to use the value of our variable userInput

assuming that it is an integer, and fails a little later. Specifically, it fails when trying to

compare the randomly chosen target integer to the string the user entered. Therefore, we

need one more statement to allow us to do some error correction.

CHAPTER 6 LOOPS

175

 The continue Statement

When we detect some error condition in a loop, we typically want to transfer control

back to the while statement at the top of the loop, without executing the rest of the code

inside the loop. To do that, we can execute a new statement called a continue statement,

as shown in Figure 6-4.

Figure 6-4. Flowchart of a loop using a break and a continue statement

CHAPTER 6 LOOPS

176

This is an example:

while True: # loop forever

 line = input("Type anything, type 'done' to exit: ")

 if line == 'done':

 break # transfers control out of the loop

 if line == 'skip':

 continue # transfers control back to the while statement

 print 'You entered:', line

print 'Finished'

In this version, if the user enters the word skip, the second if statement will find a

match, and the continue statement will transfer control immediately back to the top of

the loop—that is, the print statement at the bottom of the loop will not execute.

In the except block of our try/except in our game, in addition to printing an error

message, we will add a continue statement so we do not execute the rest of the code in

the loop.

 Full Game

The addition of a try/except block will now detect and correct potential user errors:

Guess the Number (version 5 - final)

import random

MAX_GUESSES = 5 # maximum number of guesses allowed

MAX_RANGE = 20 # highest possible number

Show introduction

print 'Welcome to my Guess the Number program.'

print 'Guess my number between 1 and', MAX_RANGE

print 'You will have', MAX_GUESSES, 'guesses.'

def playOneRound():

 # Choose random target

 target = random.randrange(1, MAX_RANGE + 1)

CHAPTER 6 LOOPS

177

 # Initialize a guess counter

 guessCounter = 0

 # Loop forever

 while True:

 # Ask the user to for a guess

 userGuess = input('Take a guess: ')

 # Check for potential error

 try:

 userGuess = int(userGuess)

 except:

 print 'Hey, that was NOT an integer!'

 continue # transfer control back to the while

 # Increment guess counter

 guessCounter = guessCounter + 1

 # If user's guess is correct, congratulate user, we're done

 if userGuess == target:

 print 'You got it!'

 print 'It only took you', guessCounter, 'guess(es).'

 break

 # If user's guess is too low, tell user

 elif userGuess < target:

 print 'Your guess was too low.'

 # If user's guess is too high, tell user

 else:

 print 'Your guess was too high.'

 # If reached max guesses, tell answer correct answer, we're done.

 if guessCounter == MAX_GUESSES:

 print 'Sorry, you did not get it in', MAX_GUESSES, 'guesses.'

 print 'The number was:', target

 break

CHAPTER 6 LOOPS

178

main code

while True:

 playOneRound() # call a function to play one round of the game

 goAgain = input('Play again? (Press ENTER to continue, or q to quit):

')

 if goAgain == 'q':

 break

print 'Thanks for playing.'

We added a try/expect block make sure the user enters an integer. Notice that using

this structure, user errors are not counted as actual attempts.

 Building Error-Checking Utility Functions

Using try/except, we can build a set of reusable utility functions to get a number from

the user. The idea is to have two functions (one for integers, one for floats) that ask the

user to enter a number, ensure that the user has entered a valid number, and return the

number to the caller. If the user types something that is not a number, then we show an

error and ask the user to enter a number again. When the user types a valid number, the

function returns the number that the user entered:

def getIntegerFromUser(prompt):

 while True:

 number = input(prompt)

 try:

 number = int(number)

 except:

 print('That is not an integer, please try again.')

 continue

 # everything OK

 return number

def getFloatFromUser(prompt):

 while True:

 number = input(prompt)

CHAPTER 6 LOOPS

179

 try:

 number = float(number)

 except:

 print('That is not a float, please try again.')

 continue

 # everything OK

 return number

myInteger = getIntegerFromUser('Please enter an integer: ')

print(myInteger)

myFloat = getFloatFromUser('Please enter a float: ')

print(myFloat)

Those two functions are almost identical. The only difference is that the first one is

used when you want the user to enter an integer, and the second one expects a float. You

call either function and pass in a prompt string containing any wording you want to ask

the user to enter a number. The function starts a loop and keeps going through the loop

as long as the user does not enter a valid number. Inside the loop, we pose the prompt

string that the caller passes in. Then we have a try block where we attempt to convert

the user’s string to a number. If that fails, control is sent to the except block. There we

print out the error message and then execute a continue statement. This passes control

back to the while statement, and that starts the loop over.

 Coding Challenge

It’s time for you to write some code. In this challenge, I ask you to make a more powerful

version of the getIntegerFromUser function. In addition to ensuring that the user has

entered a valid number, add code to test and ensure that the user has entered a number

within a range of two integers.

Let’s name this function getIntegerInRange. It should be built to expect the

following parameters: prompt, lowEnd, upToButNotIncludingHighEnd. The code

should be modified to add a second check to make sure that the number is within

the given range. If the user enters an invalid response (not an integer, or the number

is not in the range), the user should be given an appropriate error message and be

prompted to enter a number again. This process should continue until the user

enters a valid integer.

CHAPTER 6 LOOPS

180

As with previous challenges, once you understand what is being asked, close the

book and write and test the code using a sample call to the function.

Here is the solution:

Ask the user to enter an integer within a given range

def getIntegerInRange(prompt, lowEnd, includedHighEnd):

 while True:

 number = input(prompt)

 try:

 number = int(number)

 except:

 print('That is not an integer, please try again.')

 continue

 if (number < lowEnd) or (number > includedHighEnd):

 print ('The number you entered is not in between', \

 lowEnd, 'and', includedHighEnd)

 else:

 #Everything OK

 return number

Ask user to give a number between -5 and 20

myInteger = getIntegerInRange('Please enter an integer: ', -5, 21)

print('The number you entered was: ', myInteger)

There are many different ways to write this function. The approach shown here is

to first calculate the largest integer included in the range and save that in a variable.

(This will make the rest of the code clearer.) Then we have the same code as the earlier

version, where we ask the user to enter a number and attempt to convert their response

to an integer. After that test, we added a new test. We check to see whether the value

of the number entered is outside the given range. If so, we print an error message and

execute a continue statement to transfer control back to the while statement, and we go

around the loop again. Notice that we do not need a try/except here because there is no

conversion error—a simple if statement will do. When we pass both tests, the function

returns the value of the number entered by the user.

CHAPTER 6 LOOPS

181

Here is a test run with four invalid entries before entering a valid integer in the range:

>>>

Please enter an integer: abcd

That is not an integer, please try again.

Please enter an integer: 123.45

That is not an integer, please try again.

Please enter an integer: -123

The number you entered is not in the range of -5 to 20

Please enter an integer: 21

The number you entered is not in the range of -5 to 20

Please enter an integer: 7

The number you entered was: 7

>>>

Incorporating error detection like that makes your code more robust by reducing

the frustration that users may experience if they enter an invalid response. The general

approach is to build a function that contains a while loop. Inside the loop, you check for

invalid responses and only return once the user has supplied a valid answer.

 Summary

In this chapter, we worked our way through building the Guess the Number program. To

implement the game, you learned about the concept of a loop, which is implemented

in Python using a while statement. I discussed the concepts of incrementing and

decrementing variables to do simple counting. You learned how to use loops to construct

programs that are run multiple times.

I discussed the concept of a built-in package, which is brought into your program

with an import statement. As a useful example of a built-in package, I talked about

the random package and specifically made calls to the randrange function inside that

package to generate random numbers. I showed you how to use a random number to

choose from a selection, building an example of a simulation of flipping a coin.

Then I showed you a different way to build and exit from a loop. Using while True

builds an infinite loop, but you can check for an exit condition and leave a loop using

a break statement. I also introduced the continue statement that can be helpful in

recovering from user errors.

CHAPTER 6 LOOPS

182

We built loops where we asked the user whether they wanted to run through the

program multiple times. In doing so, you saw how to check for no user input using the

empty string.

We eventually went through the process of building our game. We started with a

pseudocode description of the algorithm and then built up and tested various pieces of

the game.

Finally, I discussed how we could catch user errors using a try/except block. We

then generalized this concept by building some reusable functions to ensure that the

user enters a valid number.

CHAPTER 6 LOOPS

183

CHAPTER 7

Lists

Prior to this chapter, we’ve talked about four types of data: integer, float, string, and Boolean.

But imagine that you want to represent a lot of data—for example, the names of all the

students in a class, or better yet, the names of all students in a school, or city, or state. So far,

our definition of a variable allows us to only represent a single piece of data. Therefore, if we

wanted to represent a group of students’ names, we would do something like this:

student1 = 'Joe Schmoe'

student2 = 'Sally Smith'

student3 = 'Henry Jones'

student4 = 'Betty Johnson'

student5 = 'Chris Smith'

Every time we get a new student, we need to create a new variable to represent that

student’s name. But more importantly, every time we add a new variable, we have to

modify every piece of our code that operates on all students. As you might guess, this

becomes unmanageable very quickly. In this chapter, I introduce a new data type that

allows us to store, access, retrieve, and manipulate collections of data.

This chapter discusses the following topics:

• Collections of data

• Lists

• Elements

• Python syntax for a list

• Empty list

• Position of an element in a list: index

• Accessing an element in a list

• Using a variable or expression as an index in a list

184

• Changing a value in a list

• Using negative indices

• Building a simple Mad Libs game

• Adding a list to our Mad Libs game

• Determining the number of elements in a list: the len function

• Programming challenge 1

• Using a list argument with a function

• Accessing all elements of a list: iteration

• for statements and for loops

• Programming challenge 2

• Generating a range of numbers

• Programming challenge 3

• Scientific simulations

• List manipulation

• List manipulation: an inventory example

• Pizza toppings example

 Collections of Data

Representing a group of students is just one of many examples in the real world where

groups of data are stored. Here are some more examples of collections of related data:

• Computer games that keep a high-scores leader board

• Browser programs that maintain your bookmarked sites

• Credit card companies that remember all the purchases you made

with your credit card

• All the contacts and phone numbers in your phone

• The members of a team

• The teams in a tournament

• Books in a library

• Names of clubs at a school

Chapter 7 Lists

185

 Lists

Rather than using individually named variables to represent a group of related data,

most programming languages allow you to represent this type of data using a single

name. In Python, it is called a list. A list is a new data type.

Definition a list is an ordered collection of data that is referred to by a single

variable name. (in most other computer languages, the same concept is called an

array.)

This is a shopping list made up of all strings:

'apples'

'bananas'

'cherries'

'dates'

'eggplant'

This is a list of test scores:

99

72

88

82

54

 Elements

There is a special name for each thing in a list.

Definition an element is a single member of a list. (it is also known as an item in

the list.)

Chapter 7 Lists

186

Let’s look at our shopping list again:

'apples'

'bananas'

'cherries'

'dates'

'eggplant'

Each string in the list is an element of the list: 'apples' is an element, 'bananas' is

an element, and so on.

 Python Syntax for a List

Let’s see how this looks in Python. When we make a list, like a shopping list on paper,

we typically write the elements vertically, one per line. In a computer language, we need

some special syntax to indicate that we are talking about a list. In Python, we use the

square bracket characters, [and]. A list is represented by an open square bracket, the

elements separated by commas, and a closing square bracket, as follows:

[<element>, <element>, ... <element>]

Just like any other type of data, a list is created using an assignment statement. That is,

you write single variable name followed by an equals sign, and then you define your list.

<myListVariable> = [<element>, <element>, ... <element>]

A list can essentially have any number of elements. The actual number of elements is

limited only by the amount of memory available. Here are some examples:

shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

scoresList = [24, 33, 22, 45, 56, 33, 45]

A list can also be created using a mix of data types:

mixedList = [True, 5, 'some string', 123.45]

Note that we are showing variable names that represent a list in the form of

<name>List. This is not required, but a name in this form clearly indicates that the

variable represents a list rather than an individual piece of data. We will use this naming

convention throughout the rest of this book.

Chapter 7 Lists

187

A list is a new data type. To show that a list is a standard data type in Python, let’s

create a list, print it, and use the type function to find out which data type it is:

>>> mixedList = [True, 5, 'some string', 123.45]

>>> print(mixedList)

[True, 5, 'some string', 123.45]

>>> print(type(mixedList))

<class 'list'>

>>>

So, a list is of type list, independent of the type of data of its contents. A list is unusual

because it is made up of multiple pieces of data, where each one can be of any data type.

 Empty List

Although a list can have any number of elements, there is also a special list that is made

up of no elements. This is known as the empty list:

>>> someList = [] # set a list variable to the empty list – no elements

>>> print(someList)

[]

>>>

You can think of the empty list relative to other lists, like zero in comparison to other

numbers. We will use this later by creating an empty list and then adding elements to it

on the fly.

 Position of an Element in a List: Index

You’ve seen that we can create a list with the square bracket syntax, and we can print

a list using the print statement, but the power of a list comes from the ability to use

the individual elements in the list. Therefore, we need a way to reference (get at) any

individual element of a list. Let’s look at our example shopping list again:

>>> shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

>>> print(shoppingList)

['apples', 'bananas', 'cherries', 'dates', 'eggplant']

>>>

Chapter 7 Lists

188

You can think of any physical list, like a shopping list, as a numbered list. That is, we

could assign a consecutive integer to each element, and reference any element in our

shopping list using that number. In fact, that identifying number has a clear definition.

Definition an index is the position (or number) of an element in a list. (it is

sometimes referred to as a subscript.)

An index is always an integer value. Because each element has an index (number), we

can reference any element in the list by using its associated number or position in the list.

To us humans, in our shopping list, apples is element number 1, bananas is element

number 2, and cherries is element number 3. This is the way that we typically think of

numbering things:

Sample shoppingList:

Human

Number Element

1 'apples'

2 'bananas'

3 'cherries'

4 'dates'

5 'eggplant'

In Python (and most other computer languages), the elements in a list are also

numbered consecutively—but the counting starts at zero. That is, all lists start at an

index of zero. The indices for the preceding list are 0, 1, 2, 3, and 4. 'apples' is element

number 0,'bananas' is element number 1, and up to 'eggplant', which is element 4:

Python

Index Element

0 'apples'

1 'bananas'

2 'cherries'

3 'dates'

4 'eggplant'

Chapter 7 Lists

189

This list has five elements, but they are numbered 0 to 4.

Caution this concept of starting a count at zero is very important, and until you

wrap your head around it, it will cause you much grief!

 Accessing an Element in a List

Now we have a way to represent a list of data in a single variable: enclosing the list in

brackets, separating elements by commas. But we need some way to get at the individual

elements in the list. The way we do that is to use the following syntax:

<listVariable>[<index>]

This syntax results in the value of the element in the list at the given index. Let’s

assume a list of numbers defined with this assignment statement:

numbersList = [20, -34, 486, 3129]

We can access each element in the numbersList as follows:

numbersList[0] # would evaluate to 20

numbersList[1] # would evaluate to -34

numbersList[2] # would evaluate to 486

numbersList[3] # would evaluate to 3129

I’ll demonstrate this in the Shell using our shopping list with some simple print

statements:

>>> shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

>>> print(shoppingList)

['apples', 'bananas', 'cherries', 'dates', 'eggplant']

>>> print(shoppingList[2])

cherries

>>> print(shoppingList[4])

eggplant

>>> print(shoppingList[0])

apples

>>>

Chapter 7 Lists

190

Here are some suggestions for how to read a list variable with an index value. Let’s

say you see something like this:

myList[2]

Rather than read it as “myList bracket 2 bracket,” it is probably clearer if you read it

as any of the following:

• myList element 2

• The element in position 2 of myList

• Element 2 of myList

• The third element of myList

• myList sub 2 (“old school” reference to subscripts)

The first one—“myList element 2”—is probably the most straightforward.

 Using a Variable or Expression as an Index in a List

An index can also be written as a variable or an expression. In fact, most of the time,

we access elements in a list this way. The following is a simple code snippet that

demonstrates this approach. We’ll ask the user to enter an integer and will use that value

as an index to our shopping list:

>>> shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

>>> myIndex = input('Enter an index: ')

Enter an index: 3

>>> myIndex = int(myIndex) # convert to integer

>>> myElement = shoppingList[myIndex] # use as an index into the list

>>> print('The element at index', myIndex, 'is', myElement)

The element at index 3 is dates

Let’s show this as a simple program with a loop. We’ll use concepts from Chapter 6 to

allow the user to run the program multiple times:

shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

while True:

 myIndex = input('Enter a number to use as an index: ')

Chapter 7 Lists

191

 if myIndex == “:

 break

 myIndex = int(myIndex)

 myElement = shoppingList[myIndex]

 print('The element at index, myIndex, 'is', myElement)

print('Bye')

Entering any value between 0 and 4 gives us the appropriate answer:

Enter a number to use as an index: 0

The element at index 0 is apples

Enter a number to use as an index: 1

The element at index 1 is bananas

Enter a number to use as an index: 2

The element at index 2 is cherries

Enter a number to use as an index: 3

The element at index 3 is dates

Enter a number to use as an index: 4

The element at index 4 is eggplant

Now run it again, but this time let’s see what happens if we enter 100 as the index:

Enter a number to use as an index: 100

Traceback (most recent call last):

 File "/Learn to Program with Python/Chapter 7 Lists/Kalb Chapter 7 Code/

IndexAsVariable.py", line 10, in <module>

 myElement = shoppingList[myIndex]

IndexError: list index out of range

Again, when you get a runtime error or a traceback, you should read the last line first.

It tells you which type of error occurred. This error message says, “Index Error: list index

out of range.” It is extremely clear. You tried to access an element that is outside the valid

range of the list indices. There is no element 100, so when you try to use that as an index,

you get an error. Python has built-in range checking to ensure that you are using a valid

number when you attempt to index into a list.

Chapter 7 Lists

192

Note Many other languages do not do range checking. if you use an out-of-

range index in one of those languages, the code accesses a part of the memory of

the computer that is not part of the list, and retrieves some arbitrary value found

there. sometime later, when you attempt to use the value, the program may crash

mysteriously. tracking down errors like that can be extremely difficult.

 Changing a Value in a List

So far, I’ve shown list index references on the right-hand side of an assignment

statement. This is how you get (or retrieve) a value from a list. You can also set a value in a

list—that is, replace the current contents of an element in a list by putting the list variable

with its index on the left-hand side of an assignment, like this:

>>> shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

>>> shoppingList[2] = 'cucumbers'

>>> print(shoppingList)

['apples', 'bananas', 'cucumbers', 'dates', 'eggplant']

>>>

This changes the value of an element at the given index to a new value. Notice that

element 2 was 'cherries' but has been changed to 'cucumbers'.

Now you know how to change the value of a given element. Shortly, I’ll show you

how to change the number of elements in a list. Python people talk about lists as being

mutable, which means changeable.

 Using Negative Indices

In addition to indices starting at 0 and going up to the number of elements minus

1, there is another way to index elements in a list. Python allows you to use negative

integers as indices to a list. A negative index means to count backwards from the end,

the end being the number of elements in the list. Here are the positive and equivalent

negative indices for a list of five elements:

Chapter 7 Lists

193

0 -5 <element>

1 -4 <element>

2 -3 <element>

3 -2 <element>

4 -1 <element>

Let’s demonstrate with our shopping list:

>>> shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

>>> print(shoppingList[-1])

eggplant

>>> print(shoppingList[-2])

dates

>>> print(shoppingList[-3])

cherries

When using a negative number as an index, Python takes the number of elements in

the list and then adds the negative amount to get the positive index. Using our shopping

list as an example, element –2 is 5 (the number of elements in the list) minus 2, which

equals 3, for a value of 'dates'. Negative indexing is rarely used, but the main way to use

it is to use –1 as an index as a quick way of getting to the last element in a list.

 Building a Simple Mad Libs Game

Let’s build an old, popular game: Mad Libs. We’ll start by getting input from the user,

just like in a real Mad Libs game, and use the user’s responses in our story. The starting

version of this game has nothing to do with lists, but once we build the base game, we’ll

modify it to use lists.

The starting version of this program is all about strings. Remember that when we

want to add strings together, it is called concatenation. And the concatenation operator

is the plus sign between strings. Just as we can add a long group of numbers, we can also

concatenate multiple strings. In this version of Mad Libs, our story is just one sentence

that is built using concatenation. Our one-sentence story will be as follows:

<name> <verb> through the forest, hoping to escape the <adjective> <noun>.

MadLib (version 1)

while True:

 name = input('Enter a name: ')

Chapter 7 Lists

194

 verb = input('Enter a verb: ')

 adjective = input('Enter an adjective: ')

 noun = input('Enter a noun: ')

 sentence = name + ' ' + verb + ' through the forest, hoping to escape

the ' + adjective + ' ' + noun + '.'

 print()

 print(sentence)

 print()

 # See if the user wants to quit or continue

 answer = input('Type "q" to quit, or anything else (even Return/Enter)

to continue: ')

 if answer == 'q':

 break

print('Bye')

The program asks the user to enter the four parts of speech and then concatenates

the sentence and prints it. Here’s what our program looks like when it runs:

>>>

Enter a name: Weird Al Yankovic

Enter a verb: screams

Enter an adjective: orange

Enter a noun: dinosaur

Weird Al Yankovic screams through the forest, hoping to escape the orange

dinosaur.

Return/Enter to continue, "q" to quit:

Enter a name: The Teenage Mutant Ninja Turtles

Enter a verb: burped

Enter an adjective: frilly

Enter a noun: Frisbee

Chapter 7 Lists

195

The Teenage Mutant Ninja Turtles burped through the forest, hoping to

escape the frilly Frisbee.

Return/Enter to continue, "q" to quit: q

Bye

>>>

 Adding a List to Our Mad Libs Game

Now, we’ll change the program. Rather than have the user enter a name, we’ll build a

pool of names and select one randomly for the user. The pool of predetermined names

will be built as a list. We could use any names for our list, but to make our Mad Libs game

fun, our list will look like this:

namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles',

'Supergirl', \

 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \

 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy']

Next, we want to choose a random name from this list. This particular list has nine

elements in it. In order to select a random element from the list, we need to generate a

random index between 0 and 8 (remember, list indices start at zero). In Chapter 6, we learned

that to generate a random number, we use the randrange function in the random package:

import random

randomIndex = random.randrange(<lowerLimit>, <upToButNotIncluding>)

Again, our goal is to select a random number to use as an index of an element in the

list. With our list of nine names, we would call random.randrange, passing in a 0 and a

9. It would return a random integer of 0 to 8 (up to but not including 9). The resulting

program would look like this:

MadLib (version 2)

import random

namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles',

'Supergirl', \

 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \

 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy']

Chapter 7 Lists

196

while True:

 nameIndex = random.randrange(0, 9) # Choose a random index into the

namesList

 name = namesList[nameIndex] # Use the index to choose a random name

 verb = input('Enter a verb: ')

 adjective = input('Enter an adjective: ')

 noun = input('Enter a noun: ')

 sentence = name + ' ' + verb + ' through the forest, hoping to escape

the ' + adjective + ' ' + noun + '.'

 print()

 print(sentence)

 print()

 # See if the user wants to quit or continue

 answer = input('Type "q" to quit, or anything else (even Return/Enter)

to continue: ')

 if answer == 'q':

 break

print('Bye')

In this version, we added the list of names and we replaced the code that asked the

user for a name with code that randomly picks a name from the list provided.

 Determining the Number of Elements in a List:
The len Function

The list of names could contain any number of names. Rather than hard-code an integer

for the number of names in our list, we would ideally want to write code that would be

able to work for any number of elements in the list. Therefore, we need a way to find out

how many elements are in a list. Python has a built-in function for this, called len (short

for length).

len(<listVariable>)

Chapter 7 Lists

197

To find the length of a list—that is, the number of elements in a list—you call the len

function and pass in the variable name that holds the list:

>>> shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

>>> nElements = len(shoppingList)

>>> print('There are', nElements, 'items in our shopping list.')

There are 5 items in our shopping list.

>>>

There are five elements in our shopping list, but again, the elements are numbered 0

to 4. If we want to use random.randrange to choose a random element, we certainly want

to use 0 as the low-end value because indices always start at 0. But random.randrange

also requires an <upToButNotIncludingHighEnd> value. The len of a list is perfect for use

as the high end with this call because it gives you one more than the last index to the list.

Let’s incorporate the len function into our Mad Libs program:

MadLib (version 3)

import random

namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles',

'Supergirl', \

 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \

 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy',

'Sam-I-Am']

nNames = len(namesList) # find out how many names are in the list of names

while True:

 nameIndex = random.randrange(0, nNames) # Choose a random index into

the namesList

 name = namesList[nameIndex] # Use the index to choose a random name

 verb = input('Enter a verb: ')

 adjective = input('Enter an adjective: ')

 noun = input('Enter a noun: ')

 sentence = name + ' ' + verb + ' through the forest, hoping to escape

the ' + adjective + ' ' + noun + '.'

 print()

Chapter 7 Lists

198

 print(sentence)

 print()

 # See if the user wants to quit or continue

 answer = input('Type "q" to quit, or anything else (even Return/Enter)

to continue: ')

 if answer == 'q':

 break

print('Bye')

Notice that in this version, we’ve added another name to our list of names. But we

also used the len function to set a variable, nNames, to the number of elements in our list

of names. Finally, we used that variable in our call to randrange. Using this approach, we

can put as many names in our list as we want, and the code will adjust at runtime for us.

 Programming Challenge 1

Similar to the modification to use a list of names, let’s modify the program to include a

list of verbs, a list of adjectives, and a list of nouns. The program should randomly choose

a name, a verb, an adjective, and a noun. You can put as many elements as you want into

each list, and the program should create and print a fully randomized Mad Lib.

Here is our Mad Libs program using lists for names, verbs, adjectives, and nouns.

I have tried to choose silly words to generate humorous sentences:

MadLib (version 4)

import random

namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles',

'Supergirl', \

 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \

 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy',

'Sam-I-Am']

nNames = len(namesList) # find out how many names are in the list of names

verbsList = ['screamed', 'burped', 'ran', 'galumphed', 'rolled', 'ate',

'laughed', 'complained', 'whistled']

Chapter 7 Lists

199

nVerbs = len(verbsList)

adjectivesList = ['purple', 'giant', 'lazy', 'curly-haired', 'wireless

electric', 'ten foot tall']

nAdjectives = len(adjectivesList)

nounsList = ['ogre', 'dinosaur', 'Frisbee', 'robot', 'staple gun', 'hot dog

vendor', 'tortoise', 'rodeo clown', 'unicorn', 'Santa hat', 'garbage can']

nNouns = len(nounsList)

while True:

 nameIndex = random.randrange(0, nNames) # Choose a random index into

the namesList

 name = namesList[nameIndex] # Use the index to choose a random name

 verbIndex = random.randrange(0, nVerbs)

 verb = verbsList[verbIndex]

 adjectiveIndex = random.randrange(0, nAdjectives)

 adjective = adjectivesList[adjectiveIndex]

 nounIndex = random.randrange(0, nNouns)

 noun = nounsList[nounIndex]

 sentence = name + ' ' + verb + ' through the forest, hoping to escape

the ' + adjective + ' ' + noun + '.'

 print()

 print(sentence)

 print()

 # See if the user wants to quit or continue

 answer = input('Type "q" to quit, or anything else (even Return/Enter)

to continue: ')

 if answer == 'q':

 break

print('Bye')

Chapter 7 Lists

200

This code generated the following sample output—without any suggestions from the

user:

The Pillsbury Doughboy burped through the forest, hoping to escape the

giant Frisbee.

Type "q" to quit, or anything else (even Return/Enter) to continue:

Sam-I-Am complained through the forest, hoping to escape the wireless

electric ogre.

Type "q" to quit, or anything else (even Return/Enter) to continue:

The Beatles ate through the forest, hoping to escape the lazy staple gun.

Type "q" to quit, or anything else (even Return/Enter) to continue:

The Beatles laughed through the forest, hoping to escape the ten foot tall

unicorn.

Type "q" to quit, or anything else (even Return/Enter) to continue:

The Stay Puft Marshmallow Man galumphed through the forest, hoping to

escape the giant unicorn.

Type "q" to quit, or anything else (even Return/Enter) to continue: q

Bye

 Using a List Argument with a Function

In the prior code, you may have noticed a pattern. For each of the four lists

(nounsList, verbsList, adjectivesList, and nounsList), we have built essentially

the same code. Whenever we wanted to select a random element, we chose a

random index and then found the element at that index. Although this clearly works,

whenever we see essentially the same code repeated, it is a signal that it is probably

Chapter 7 Lists

201

a good candidate to turn into a function. In this case, rather than repeat the same

set of operations four times, we’ll build a single function to select a random element

from a list and call it four times:

MadLib (version 5)

import random

def chooseRandomFromList(aList):

 nItems = len(aList)

 randomIndex = random.randrange(0, nItems)

 randomElement = aList[randomIndex]

 return randomElement

namesList = ['Weird Al Yankovic', 'The Teenage Mutant Ninja Turtles',

'Supergirl', \

 'The Stay Puft Marshmallow Man', 'Shrek', 'Sherlock Holmes', \

 'The Beatles', 'Powerpuff Girl', 'The Pillsbury Doughboy',

'Sam-I-Am']

verbsList = ['screamed', 'burped', 'ran', 'galumphed', 'rolled', 'ate',

'laughed', 'complained', 'whistled']

adjectivesList = ['purple', 'giant', 'lazy', 'curly-haired', 'wireless

electric', 'ten foot tall']

nounsList = ['ogre', 'dinosaur', 'Frisbee', 'robot', 'staple gun', 'hot dog

vendor', 'tortoise', 'rodeo clown', 'unicorn', 'Santa hat', 'garbage can']

while True:

 name = chooseRandomFromList(namesList)

 verb = chooseRandomFromList(verbsList)

 adjective = chooseRandomFromList(adjectivesList)

 noun = chooseRandomFromList(nounsList)

 sentence = name + ' ' + verb + ' through the forest, hoping to escape

the ' + adjective + ' ' + noun + '.'

 print()

 print(sentence)

 print()

Chapter 7 Lists

202

 # See if the user wants to quit or continue

 answer = input('Type "q" to quit, or anything else (even Return/Enter)

to continue: ')

 if answer == 'q':

 break

print('Bye')

In this version, we’ve built a small function called chooseRandomFromList. It is

designed to expect to have one parameter passed in when it is called. It is expected

to be passed in a list. The aList parameter variable takes on the value of the list

passed in. We used a very generic name here because we do not know what the

contents of the list are, and inside the function, we do not care. The function uses

the len function to see how many items are in the list, chooses a random index, finds

the element at that index, and returns that element. From the main code, we now

call the function four times, passing in four different lists. This version of the code

generates the same type of Mad Libs sentences as the earlier version, but it is easier

to read and is less prone to errors.

It turns out that Python actually provides this exact functionality with a built-in

function in the random package. The function is called choice. To get a randomized

selection from a list, you make a call like this:

random.choice(<list>)

Here is a simple example:

>>> optionsList = ['rock', 'paper', 'scissors', 'lizard', 'Spock']

>>> anOption = random.choice(optionsList)

>>> print(anOption)

paper

>>>

Chapter 7 Lists

203

 Accessing All Elements of a List: Iteration

Using bracketing syntax such as someList[someIndex], we have a way to access any

element in a list. But we need a way to access all elements in a list. As a simple example,

let’s say we just wanted to print out the value of all the elements of a list. We can write this:

print(myList)

And that works fine. But it prints the list in the Python list syntax (including the

square brackets and commas), and prints all elements horizontally. What if we wanted

to print one element per line? Or what if the list contains numbers and we want to add

them up? We need some way to get at all the elements of a list, but one at a time. That’s

called iteration.

Definition Iterate means to traverse through, or visit all elements of a list.

Using code that we already know, we can build a loop using a while statement to get

the job done. The following is some code to print our shopping list, one item per line.

(This is for demonstration purposes only—it is not the best way.)

shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

nItems = len(shoppingList)

myIndex = 0 # start with an index for the zero'th element

while myIndex < nItems:

 print(shoppingList[myIndex])

 myIndex = myIndex + 1 # increment the index

The idea here is to create a myIndex variable that starts at zero. Each time through

the loop, we use that variable as an index, get the element at that position, and print it.

Then we increment the variable, preparing for the next time through the loop. The code

produces the correct result but seems a little “clunky.” You have to remember a lot of

details and get them all right to make this loop work correctly.

Chapter 7 Lists

204

 for Statements and for Loops

The people who designed Python came up with a better way to handle iterating through

a list. As long-time programmers, they noticed that this pattern of looping and doing

something with each element of a list happens quite often. So they came up with an

additional statement and a new type of loop that gives you an extremely simple way to

iterate through a list. It is called the for statement. Here is the generic form:

for <elementVariable> in <list>:

 <indented statement(s)>

The for statement is made up of new keyword, for, a variable name, another new

keyword, in, and then the list you want to iterate through. The statement ends with a

colon. After the colon is an indented block of statement(s) called the body of the loop.

Together, the for statement and the indented block are called a for loop.

The key to the for loop is the <elementVariable>. Here’s how it works. The for

statement causes the body of the loop to execute once for every element in the <list>.

Each time through the loop, the variable you specify as <elementVariable> is set to the

value of the next element in the list.

When you see a for statement, think of it as saying, “for each element in the list.”

Notice the new in keyword, which makes the for statement very English-like and

readable. For example, let’s say you saw a for statement like this:

for name in namesList:

You could read it as, “for each name in the list namesList”—that is, it would iterate

through namesList, and in each iteration would set the variable name to the next name in

the namesList.

The flowchart of a for loop is shown in Figure 7-1.

Chapter 7 Lists

205

Notice that you do not need to use any index to get the value of each element in

your list. The for loop does that for you automatically. It takes care of the tedious

bookkeeping. This syntax is extremely elegant and simple.

Let’s build a simple example. Suppose you want to print out your shopping list with

one item per line:

shoppingList = ['apples', 'bananas', 'cherries', 'dates', 'eggplant']

for anItem in shoppingList:

 print(anItem)

Figure 7-1. The f lowchart of a for loop

Chapter 7 Lists

206

In this example, every time through the loop, the anItem variable is given the value

of the next element in shoppingList, and the body of the loop prints each element on a

separate line.

Here is another simple example. In this code, we have a list of teammates, and we

want to say, “Good luck,” to each of them:

teammatesList = ['Joe', 'Sue', 'Marcia', 'Sally']

for teammate in teammatesList:

 print('Good Luck ' + teammate)

This code iterates through teammatesList. Each time through the list, the next

element of teammatesList is put into the teammate variable. In the body of the loop, a

separate greeting message is printed for each person:

Good Luck Joe

Good Luck Sue

Good Luck Marcia

Good Luck Sally

>>>

 Programming Challenge 2

In this challenge, you have an opportunity to use a for loop to iterate through a list.

Write a program that starts with a list of numbers. For example, write a list like this:

numbersList = [23, -10, 37, 4.5, 0, 123.4]

Then use a for loop to add all the numbers in the list. Print the total.

Here is the solution:

Calculate the total of numbers in a list

numbersList = [23, -10, 37, 4.5, 0, 123.4]

total = 0

for number in numbersList:

 total = total + number

print('The total of all numbers is:', total)

Chapter 7 Lists

207

The key to writing this code is to create a variable with a name like total and initialize

it to zero. Then build a for loop to iterate through the list of numbers. Every time through

the loop, the number variable is given the value of the next number in the list. In the body of

the loop, add each value to the previous total. At the end, print the total:

>>>

The total of all numbers is: 177.9

 Generating a Range of Numbers

There are many situations where you would like to have a consecutive ordered sequence

of integer numbers. For example, imagine you are doing some math, such as adding up

the numbers from 1 to n. To help with problems like this, Python has a built-in function

called range that creates an ordered sequence of integers. The typical way of calling the

range function is like this:

range(<lowEnd>, <upToButNotIncludingHighEnd>)

The range function generates a collection of numbers that includes the

<lowEnd> value and goes consecutively up to, but does not include, the value of

<upToButNotIncludingHighEnd>. This approach to defining a range of numbers is

identical to the way that random.randrange works.

Note Because range is very often used with lists, you can call the range function

with a single argument instead of two arguments. When called this way, the single

argument represents only the high end of the range. the low end of the range

defaults to be zero. For example, specifying range(25) is identical to specifying

range(0, 25), and will both create a collection of numbers from 0 to 24. to make

things explicitly clear, we always use the range function with two arguments.

The interesting use case for the range function is in a for statement. Remember that a

for statement is designed to let you easily iterate through a collection, typically through a

list. The range function works seamlessly in a for statement. Here is a good example:

for number in range(0, 10):

 print(number)

Chapter 7 Lists

208

This for statement iterates through a collection of numbers from 0 to 9. Every time

through the loop, it assigns the next value to the variable number. This code would print

the numbers 0 to 9, each on a separate line.

 Programming Challenge 3

This challenge gives you practice in using the range function in a for loop. The challenge

is to write a program that allows the user to enter an integer. The program should

calculate and print the total of all integers from 1 up to and including the user’s number.

For example, if the user enters 3, then the program should add up 1 + 2 + 3 and print the

total of 6. If the user enters 10, then the program should calculate the total of 1 + 2 + 3 + ...

+ 10, and output a total of 55.

This is a solution to the challenge:

Calculate the total of numbers up to a number entered by the user

usersNumber = input('Please enter an integer: ')

usersNumber = int(usersNumber)

highEndOfRange = usersNumber + 1

total = 0

for number in range(1, highEndOfRange):

 total = total + number

print('The total numbers from 1 to', usersNumber, 'is', total)

This uses a similar approach to adding up a list of numbers as used in the previous

coding challenge (by starting a total at zero and then adding each number). But in this

challenge, the numbers to be added are not predefined. Instead, you must generate

the numbers using a call to the range function. In order to get the proper upper bound

for the call to range, you have to add one to the user’s number, because the value of

highEndOfRange is not included in the range itself. Here is the output of a few runs of

this program:

>>>

Please enter an integer: 3

The total numbers from 1 to 3 is 6

Chapter 7 Lists

209

>>> ================================ RESTART ==============================

>>>

Please enter an integer: 10

The total numbers from 1 to 10 is 55

>>> ================================ RESTART ==============================

>>>

Please enter an integer: 100

The total numbers from 1 to 100 is 5050

>>> ================================ RESTART ==============================

>>>

Please enter an integer: 1000

The total numbers from 1 to 1000 is 500500

>>>

Note in python 2, the range function worked differently. it created and returned

a list. if the requested range was large, the list might have taken up a considerable

amount of memory. in python 3, the range function does not return a list. instead,

range has become a new type called a generator. a generator creates the next

number in the sequence every time a new number is needed. therefore, when

using range in python 3 in a for loop, there is a good chance that your loop may

run faster than the equivalent code in python 2. (the python 2 xrange function is

the equivalent of the python 3 range function.)

 Scientific Simulations

In the scientific community, computers are often used to simulate the outcome of a large

number of trials. In each trial, one or more pieces of data are given randomized values

from all possible values. The scientists then look at the result of many trials to see if they

can identify patterns.

Chapter 7 Lists

210

Consider a simulation of rolling dice. In our simulation, we will perform many

rounds of rolling two six-sided dice and then we will count the number of times that the

dice generate doubles (that is, when both dice show the same value or face).

First, let’s do a little math to see what we would expect for an answer. In each round,

the first die can have any value from 1 to 6, and so can the second die. Figure 7-2 is a

chart showing all possible rolls of two dice.

In this chart, the left side shows the possible faces for the first die. The top shows the

possible faces for the second die. Out of the 36 possible combinations, 6 of them result in

a doubles. That means that we should expect 6/36ths or 1/6th or 16.6666666 percent of

rolls to be doubles.

Here’s the code for doing this simulation. We’ll ask the user to enter the number of

rounds, and for each round, we’ll simulate rolling two dice:

Dice: count doubles in user-defined number of rounds

import random

simulate rolling a six-sided die and return its value

def rollOneDie():

 # generate a random numbers between 1 and 6

 thisFace = random.randrange(1, 7)

 return thisFace

nDoubles = 0

Figure 7-2. Possible rolls of two dice

Chapter 7 Lists

211

maxRounds = input('How many rounds do you want to do? ')

maxRounds = int(maxRounds)

for roundNumber in range(0, maxRounds):

 die1 = rollOneDie()

 die2 = rollOneDie()

 if die1 == die2:

 nDoubles = nDoubles + 1

percent = (nDoubles * 100.0) / maxRounds

print('Out of', maxRounds, 'you rolled', nDoubles, 'doubles, or',

percent, '%')

In this program, the user specifies a number of rounds to roll two dice. As an

example, let’s say that the user wants to run ten rounds of dice rolls. We take the 10 the

user gives us, convert it to an integer, and use it in a call to the range function. Passing

0 and 10 to range builds a collection of the numbers from 0 to 9. This is an example

of zero-based counting; 0 through 9 is ten numbers, so the code will run through the

loop ten times. The roundNumber variable is given the value of the next number in the

collection, but we never use that variable anywhere in this loop. (If we wanted to report

the result of every round, we could print that value each time through the loop.) The key

concept here is that we are using the range function to help us go through the loop the

correct number of times. In essence, the for loop is acting as a counter for us.

In each round (every time through the loop), we call the rollOneDie function twice.

rollOneDie does what its name implies and simulates the rolling of a single die. We

assign the answers to two different variables: die1 and die2. If these two variables have

the same value, then we had a doubles, and we increment the count of doubles. When

the loop is finished, we do a calculation of percentage (multiplying by 100.0 ensures that

this will be a floating-point calculation), and we print the answer.

Here is the output of a sample run:

>>>

How many rounds do you want to do? 1000

Out of 1000 you rolled 158 doubles, or 15.8 %

>>>

Chapter 7 Lists

212

If we want to run our simulation again, we would have to run the program again.

Instead, let’s make a modification to the code to allow the user to continue to enter

different values for the number of rounds:

Dice - count doubles in user-defined number of rounds ... repeated

import random

simulate rolling a six-sided die and return its value

def rollOneDie():

 # generate a random numbers between 1 and 6

 thisFace = random.randrange(1, 7)

 return thisFace

while True:

 nDoubles = 0

 maxRounds = input('How many rounds do you want to do? (Or ENTER to

quit): ')

 if maxRounds == ":

 break

 try:

 maxRounds = int(maxRounds)

 except:

 print('Please enter an integer number.')

 continue # go back to the while statement

 for roundNumber in range(0, maxRounds):

 die1 = rollOneDie()

 die2 = rollOneDie()

 if die1 == die2:

 nDoubles = nDoubles + 1

 percent = (nDoubles * 100.0) / maxRounds

 print('Out of', maxRounds, 'you rolled', nDoubles, 'doubles, or',

percent, '%')

print('OK Bye')

Chapter 7 Lists

213

In this version, the code has been modified so that the main portion is now inside

a larger while loop. Each time through the outer while loop, we ask the user how many

rounds they want to do. The program also has a try/except to ensure that the value the

user enters is an integer. The program keeps running simulations until the user presses

Enter (Windows) or Return (Mac) to exit.

Here is the output of a run where we entered increasingly larger values:

>>>

How many rounds do you want to do? (Or ENTER to quit): 1000

Out of 1000 you rolled 164 doubles, or 16.4 %

How many rounds do you want to do? (Or ENTER to quit): 10000

Out of 10000 you rolled 1690 doubles, or 16.9 %

How many rounds do you want to do? (Or ENTER to quit): 100000

Out of 100000 you rolled 16638 doubles, or 16.638 %

How many rounds do you want to do? (Or ENTER to quit): 1000000

Out of 1000000 you rolled 166751 doubles, or 16.6751 %

How many rounds do you want to do? (Or ENTER to quit): 10000000

Out of 10000000 you rolled 1666941 doubles, or 16.66941 %

How many rounds do you want to do? (Or ENTER to quit):

OK Bye

>>>

There are two interesting things to note here. First, these simulations run quite

quickly. Even with the last one, where we did ten million rounds, the program took only

a matter of seconds. Second, notice that the more rounds we ran, the more accurate the

answer was—the closer it got to the predicted value of 16 .6666666.

Python is becoming more and more popular in the scientific community because

of these two reasons. Very often, scientists set up random simulations like this and then

run them a large number of times to test out theories. Further, the random distribution

of results is extremely even. The fact that we get a result very close to 16.666666

demonstrates this.

Chapter 7 Lists

214

 List Manipulation

Let’s go back to our example of a shopping list one more time, but this time consider

what happens to a shopping list in a typical house. Right after a shopping trip, you might

put up a new, empty shopping list on the refrigerator. As you notice that you are running

low on groceries, you add items to the list. So maybe you add three items to your list one

day, add two more the next day, and another the following day. Later, you move a box

of cereal in your pantry and discover a hidden box of crackers that was on your list. You

go back to the list and cross off crackers. If your list becomes long, you probably want to

see if an item already appears in the list before adding it. You may also want to count the

number of occurrences of an item to see if it appears more than once.

Python provides many built-in operations that allow you to manipulate and search

through lists. The syntax of these operations is a little different from what we have seen

before. This is the general syntax:

<listVariable>.<operation>(<any argument(s)>)

THE “OBJECT” IN COMPUTER SCIENCE

in the world of computer science, there is an important concept called an object. My definition

of an object is: data—and code that acts on that data—over time. although objects are

beyond the scope of this book, i can tell you that internally in python, all lists are implemented

as objects. the data (from my definition) is the content of the list—the collection of elements.

the code (from my definition) is the operations that act on any list. these list operations are

available on any list just because they are lists. in this sense, each list object “knows” how to

do each of these operations. Generically, the code of every object is provided by functions, but

these functions go by another name. When functions are applied to an object, they are called

methods of an object. this is the syntax used to call a method of an object:

<object>.<method>(<any argument(s)>)

that is why the syntax of the list operations in table 7-1 look the way they do.

Chapter 7 Lists

215

The full documentation on all list operations can be found in the official Python

documentation at https://docs.python.org/3/tutorial/datastructures.html in

section 5.1.

The keyword in can also be used as an operator with a list:

<value> in <listVariable>

This syntax defines a Boolean expression that will generate a True if the value is

found in the list, and a False if the value is not found. This type of expression can be

used in an if statement or a while loop. The keywords not in can be used to reverse

the result.

Table 7-1. The Built-In List Operations

Operation Description

<list>.append(<thing>) add <thing> to the end of a list

<list>.count(<thing>) returns the number of times <thing> was found in the <list>

<list>.

extend(<otherList>)

appends all elements in <otherList> to <list>

<list>.index(<thing>) returns the first index in the <list> where <thing> is found

<list>.insert(<thing>,

<index>)

inserts <thing> into the <list> at position <index>

<list>.pop() remove and return the last element from a <list>

<list>.pop(<index>) remove and return the element from a <list> at the given

<index>

<list>.remove(<thing>) Find first occurrence of <thing> in a <list> and remove it

<list>.reverse() reverse the position of all the elements in a <list>

<list>.sort() sort elements in a <list> from low to high

Chapter 7 Lists

https://docs.python.org/3/tutorial/datastructures.html

216

 List Manipulation Example: an Inventory Example

Consider an adventure game where you wander around a landscape. Games like this often

allow you to maintain an inventory. At the start of the game, you have nothing, or an empty

inventory. As you move about the environment, you find different items and can add them

to your inventory. Later in the game, you may find yourself in a situation where you need to

use something in your inventory to get out of a tricky situation. Here is an example of some

code that can simulate these actions—first, let’s build up an inventory from scratch:

>>> inventoryList = [] # start as an empty list.

>>>

>>> inventoryList.append('treasure')

>>> print(inventoryList)

['treasure']

>>>

>>> inventoryList.append('magic stones')

>>> print(inventoryList)

['treasure', 'magic stones']

>>>

>>> inventoryList.append('potion')

>>> print(inventoryList)

['treasure', 'magic stones', 'potion']

>>>

We started with an empty list and as we found items, we appended them to the list.

Our list now has three elements. Later in the game, we learn that in order to kill a dragon,

we need to throw some magic stones at it:

>>> print('magic stones' in inventoryList)

True

>>>

>>> indexOfStones = inventoryList.index('magic stones')

>>> itemToThrow = inventoryList.pop(indexOfStones)

>>> print(inventoryList)

['treasure', 'potion']

>>> print(itemToThrow)

magic stones

>>>

Chapter 7 Lists

217

First, we check to ensure that we have the magic stones in our inventory by using the

in operator. Seeing that we have the stones, we check to see where the magic stones live

in our inventory by using the index operation. Once we have the index of where they are

found, we use the pop operation to remove the magic stones from our inventory list and

put them in a variable so that we can then throw the stones at the dragon.

 Pizza Toppings Example

Let’s wrap up this chapter by building a program that creates and modifies a list, one that

uses many built-in list operations, while loops, and for loops.

In this sample program, you own a pizzeria. Customers are allowed to get any

toppings on their pizza that they want. Your program needs to cater to their wishes. The

program will handle the following operations:

• a or add: Adds a topping

• c or change: Changes a topping

• o or order: Orders the current pizza

• q or quit: Quits the program

• r or remove: Removes a topping

• s or startover: Starts the current pizza over

Here is the pseudocode of our program:

Function To Show Pizza Toppings

 If there are no toppings, say there are none

 Else

 print each topping on a separate line

Print Welcome message, instructions, and large form of menu

Loop forever

 Show short form of menu

 Ask the user what they want to do:

 If "add"

 ask user what topping to add, add it

 Else if "change"

Chapter 7 Lists

218

 find topping to change

 ask user what topping to change to, change it

 Else if "order"

 Show pizza being ordered

 Thank user

 Ask if they want to order another

 If yes, start over

 Else quit

 Else if "remove"

 Ask user what topping to remove

 Remove that topping if found

 Else if "startover"

 Reset to starting state

 Else

 Tell user we did not understand

 Show the current pizza

Based on that approach, we can write the code in Python. A key concept driving this

program is that we will maintain the user’s topping choices as a Python list. Each section

of the code uses some different list operation to manipulate that list. This is the longest

program we have seen so far. If you read through the code slowly to see how it matches

the pseudocode, it should not be too hard to follow:

Pizza toppings program

Function to show the list of toppings

def showPizzaToppings(theList):

 print()

 if len(theList) == 0:

 print('Your pizza has no toppings.')

 else:

 print('The toppings on your pizza are:')

 print()

 for thisItem in theList: # iterate through the list, print each item

 print(' ' + thisItem)

 print() # blank line

Chapter 7 Lists

219

main code

print('Welcome to my Pizzeria, where you get to choose your toppings.')

print('When prompted, enter the first letter or the full word of what you

want to do.')

print()

print('---- Operations ----')

print('a/add Add a topping')

print('c/change Change a topping')

print('o/order Order the pizza')

print('q/quit Quit')

print('r/remove Remove a topping')

print('s/startover Start over')

print()

toppingsList = [] # begin as an empty list

while True:

 print('What would you like to do?')

 menuChoice = input(' add, change, order, quit, remove, startover: ')

 if (menuChoice == 'a') or (menuChoice == 'add'): # add a topping

 newTopping = input('Type in a topping to add: ')

 toppingsList.append(newTopping) # append adds to the end of a list

 elif (menuChoice == 'c') or (menuChoice == 'change'): # change a

topping

 oldTopping = input('What topping would you like to change: ')

 if oldTopping in toppingsList: # is it in the list

 index = toppingsList.index(oldTopping) # find out where it is

in the list

 newTopping = input('What is the new topping: ')

 toppingsList[index] = newTopping # set a new value at that index

 else:

 print(oldTopping, 'was not found.')

Chapter 7 Lists

220

 elif (menuChoice == 'o') or (menuChoice == 'order'): # order the pizza

 showPizzaToppings(toppingsList)

 print()

 print('Thanks for your order!')

 print()

 another = input('Would you like to order another pizza (y/n) ? ')

 if another == 'y':

 toppingsList = [] # reset to the empty list

 else:

 break

 elif (menuChoice == 'q') or (menuChoice == 'quit'): # quit

 break

 elif (menuChoice == 'r') or (menuChoice == 'remove'): # remove a

topping

 delTopping = input('What topping would you like to remove: ')

 if delTopping in toppingsList: # check to see if the topping is in

our list

 index = toppingsList.index(delTopping) # find out where it is

 toppingsList.pop(index) # remove it

 # The code above only removes the first occurrence of the

topping.

 else:

 print(delTopping, 'was not found')

 elif (menuChoice == 's') or (menuChoice == 'startover'): # reset to no

toppings

 print("OK, let's start over.")

 toppingsList = [] # reset to the empty list

 else:

 print("Uh ... sorry, I'm not sure what you said, please try again.")

 showPizzaToppings(toppingsList) # show the list of toppings on the pizza

print()

print('Goodbye')

Chapter 7 Lists

221

The key to this program is the toppingsList list variable in the main section of

the code. It starts off as the empty list to represent a pizza with no toppings on it. The

user can then add toppings to the pizza, and in response, the program uses the append

operation to add to the end of the list. For a change operation, we first use the in

operator to ensure that the topping to be changed exists in the list of toppings. If so, we

replace the old topping with the new topping by using the index of where the old topping

was found. Ordering winds up resetting the toppingsList back to the empty list. Should

the user ask to remove a topping, the program checks to see if that topping is in the

list, and if so, finds the index of the topping and uses the pop operation to remove that

topping. Starting over simply resets to the empty list.

At the top of the program is a small function that prints the list of toppings. If there

are none, the function prints that. Otherwise, it uses a for loop to iterate through the list

of the pizza toppings and prints each one on a separate line. The output of a typical run

could look like this:

Welcome to my Pizzeria, where you get to choose your toppings.

When prompted, enter the first letter or the full word what you want to do.

---- Operations ----

a/add Add a topping

c/change Change a topping

o/order Order the pizza

q/quit Quit

r/remove Remove a topping

s/startover Start over

What would you like to do?

add, change, order, quit, remove, startover: add

Type in a topping to add: mushrooms

The toppings on your pizza are:

 mushrooms

What would you like to do?

add, change, order, quit, remove, startover: a

Type in a topping to add: pineapples

The toppings on your pizza are:

Chapter 7 Lists

222

 mushrooms

 pineapples

What would you like to do?

 add, change, order, quit, remove, startover: uvwxyz

Uh ... sorry, I'm not sure what you said, please try again.

The toppings on your pizza are:

 mushrooms

 pineapples

What would you like to do?

 add, change, order, quit, remove, startover: add

Type in a topping to add: bacon

The toppings on your pizza are:

 mushrooms

 pineapples

 bacon

What would you like to do?

 add, change, order, quit, remove, startover: change

What topping would you like to change: bacon

What is the new topping: pepperoni

The toppings on your pizza are:

 mushrooms

 pineapples

 pepperoni

What would you like to do?

 add, change, order, quit, remove, startover: r

What topping would you like to remove: pineapples

The toppings on your pizza are:

 mushrooms

 pepperoni

Chapter 7 Lists

223

What would you like to do?

 add, change, order, quit, remove, startover: o

The toppings on your pizza are:

 mushrooms

 pepperoni

Thanks for your order!

Would you like to order another pizza (y/n) ? n

Goodbye

>>>

 Summary

In this chapter, you learned how to store, access, retrieve, and manipulate ordered

collections of data called lists. You learned that lists are made up of elements, and each

element has a position known as its index. Lists are defined in Python using the square

brackets with elements separated by commas. We can refer to an individual element in

a list by using the bracket syntax and specifying the index of the element we want. An

index can be a constant, a variable, or an expression.

We built a fun Mad Libs game and then modified it to use lists. The program

chose random words from a number of lists. We used the len function to find out

how many elements are in a list. You saw how to use a list as an argument in a

function call.

Then we explored the topic of iteration—the ability to visit all elements of a list. To

do this, we used a for statement and built a for loop. We used iteration to sum up the

numbers in a list. We found that the range function can be used to generate a list of

consecutive integers, and is often used in for loops. We demonstrated how the range

function can be used to run a loop through a set number of iterations.

Finally, we introduced a number of list-manipulation operations that can be used

modify and search through the contents of a list. We ended with a demonstration

program that maintains a list of pizza toppings as a list and uses these list manipulation

operations to do so.

Chapter 7 Lists

225

CHAPTER 8

Strings
Other than using them to nicely format output, we haven’t talked much about strings. In

this chapter and the next two chapters, we get heavily into strings. I'll show you how to

manipulate them and find smaller strings within larger strings.

We started using strings in Chapter 1 with this statement:

print('Hello World')

Later, we talked about how you get input from the user as a string, and how to

convert that input into a number:

>>>

>>> age = input('Please enter your age: ')

Please enter your age: 24

>>> age = int(age)

>>>

Then I showed you how to concatenate strings, like this:

>>>

>>> string1 = 'Hello'

>>> string2 = 'there'

>>> greeting = string1 + ' ' + string2

>>> print(greeting)

Hello there

>>>

This chapter covers the following topics:

• len function applied to strings

• Indexing characters in a string

• Accessing characters in a string

226

• Iterating through characters in a string

• Creating a substring: a slice

• Programming challenge 1: creating a slice

• Additional slicing syntax

• Slicing as applied to a list

• Strings are not changeable

• Programming challenge 2: searching a string

• Built-in string operations

• Examples of string operations

• Programming challenge 3: directory style

 len Function Applied to Strings

Though it may not seem obvious, strings are very similar to lists. Think of a string as a list

of characters. That is worth repeating: think of a string as a list of characters. Many of the

operations you can do with lists, you can also do with strings.

For example, like a list, a string can be any length. To find out how many elements

are in a list, you use the len built-in function. But len can also be used on a string:

>>> state = 'Mississippi'

>>> theLength = len(state)

>>> print(theLength)

11

>>>

 Indexing Characters in a String

Again, if we think of a string as a list of characters, then we can think of each character as

an element. Further, we can use an index to refer to a character in a string the same way

we index an element in an array. Remember from the definition, the index is the position

of an element. With respect to a string, an index is the position of a character in a string.

Given the earlier assignment statement, where we set the variable state to the string

'Mississippi', Figure 8-1 shows the indices of the characters in the string.

Chapter 8 StringS

227

The string in Figure 8-1 has 11 characters. Notice that the characters in a string are

numbered (or indexed) identically to the elements in a list. What we humans would think

of as the first character (uppercase M) in Python is considered the character at index 0.

The last character is always found at an index equal to the length of the string minus one.

Because there are 11 characters in this string, the last character is found at index 10.

Similar to the indices of a list, you can also use negative indices to access the

characters in a string, as shown in Figure 8-2.

Figure 8-1. The indices of the characters in the string

Figure 8-2. Negative indices of the characters in a string

You can think of the negative index as the positive index minus the length of the

string. For example, the first p in Mississippi is at index 8. But it can also be addressed

by using –3, because 8 – 11 = –3. In practice, negative indexing is not used very often.

Perhaps its most useful purpose is when you want to get the last character in a string; its

index is always –1.

 Accessing Characters in a String

As with a list, we can also use the bracket syntax to identify a character at a specific index

in a string:

>>> print(state[0])

M

>>> print(state[1])

CHAPTER 8 STRINGS

228

i

>>> print(state[2])

s

>>>

If you try to access a character that is beyond the end of a string, Python will generate

an appropriate error message:

>>> print(state[1000]) # only has 11 characters

Traceback (most recent call last):

 File "<pyshell#12>", line 1, in <module>

 print(state[1000])

IndexError: string index out of range

>>>

Remember that there is the special case of the empty string—a string with no

characters in it. Its length is zero, and indices do not apply:

>>> myString = "

>>> print(len(myString))

0

>>>

 Iterating Through Characters in a String

Similar to the way we iterate through all elements of a list, we often want to iterate

through all characters in a string. And similar to the while loop that I first showed to

iterate through a list, we could build an identical while loop to iterate through a string:

Iterate through a string

This is the WRONG approach, just showing a concept!

state = 'Mississippi'

myIndex = 0

while myIndex < len(state):

 print(state[myIndex])

 myIndex = myIndex + 1

Chapter 8 StringS

229

This code would correctly print all characters in the string, one per line. But just like

when visiting all elements in a list, the for statement allows you to easily loop through (or

iterate through) all characters in a string. Figure 8-3 is the same flowchart of a for loop that

we saw earlier, but this time applied to iterating through the characters in a string.

Figure 8-3. The flowchart of a for loop iterating through a string

Chapter 8 StringS

230

This syntax and the operation are identical to the for loop used to iterate through a

list:

for <characterVariable> in <string>:

 <indented statement(s)>

The only difference is that because we are iterating through a string, the

<characterVariable> is given the next character in the string (rather than the next

element in a list). For example, this

myString = 'abcdefg'

for letter in myString:

 print(letter)

prints this:

a

b

c

d

e

f

g

 Creating a Substring: A Slice

Very often when you are dealing with strings, you want to extract a shorter string from

a longer string—for example, when you want to find a particular piece of information

within a string. In programming, this is generally called creating a substring. In Python,

we do this by taking a slice of a string, and in the Python world, this is commonly called

slicing. Figure 8-4 illustrates this.

Chapter 8 StringS

231

To make a slice of a string, we have to specify the start index and the end index of

the slice we want to create. If you think of a string as a loaf of bread, then the analogy

of cutting a slice makes this concept very clear. But when you make a slice in a string,

Python makes a copy of the characters in the slice. It does not remove those characters

from the string.

To specify a slice, Python provides the following syntax:

<string>[<startIndex> : <upToButNotIncludingEndingIndex>]

Once again, we see this consistent concept of a Python range, where the

start value is included and an ending value is not included. The character at

<startIndex> is included as the first character of the substring. But the ending index,

<upToButNotIncludingEndingIndex>, is the index of the first character that is not

included in our slice. For example, we could have a string like this:

myName = 'Joe Schmoe'

To get just the first name, we want to take a slice starting at index 0 (the J), through

index 2 (the e). Therefore, to create a substring that includes just the first name, we

would ask for this slice:

>>> print(myName[0:3])

Joe

>>>

Figure 8-4. Think of a string as a loaf of bread and take a slice of it

Chapter 8 StringS

232

To get the last name, we would use this slice:

>>> nChars = len(myName)

>>> print(nChars)

10

>>> print(myName[4 : nChars])

Schmoe

>>>

Notice that you can use constants, variables, or expressions in defining the starting

or ending value of a slice.

 Programming Challenge 1: Creating a Slice

To see if the concept of a slice is making sense, it’s time for a programming challenge. In

this challenge, we start with the following string:

months = 'JanFebMarAprMayJunJulAugSepOctNovDec'

Your job is to write a program that allows the user to enter a month number and

print the three-letter abbreviation for that month. For example, if the user enters 1, the

program should print Jan. If the user enters 12, the program should print Dec.

To get you going in the right direction, I’ll give you the “scaffolding” of this

assignment and leave the tricky part for you:

Given a month number, find the three letter abbreviation for that month

months = 'JanFebMarAprMayJunJulAugSepOctNovDec'

monthNumber = input('Enter a month number (1-12): ')

monthNumber = int(monthNumber)

Some code that generates the appropriate start and end indices.

Generate the appropriate slice

monthAbbrev = months[startIndex : endIndex]

print(monthAbbrev)

This program can be done in two or three lines of code. (Do not cheat by using 12 if

statements!).

Chapter 8 StringS

233

Hint think about the slice indices that have to be created for Jan and the slice

that has to be created for Feb, for Mar, and for Apr. is there a pattern? Can you

write some simple code that generates a solution to this pattern?

To work through a solution, let’s start with a chart (see Table 8-1) that shows the

mapping between the month number and the start index in our months string.

The idea is to look for a pattern. If you look at these numbers long enough, you

start to recognize that the start index can be calculated by taking the month number,

subtracting one from it, and then multiplying the result by three. Writing this in Python

looks like this:

startIndex = (monthNumber – 1) * 3

We can calculate the end index two different ways. We could look in our string and

see which character is the end character for each month. (Remember, when making

a slice, the end index is the index of the first character that is not included.) We could

extend the chart as shown in Table 8-2.

Table 8-1. Mapping Month Number to the Related Start Index

monthNumber startIndex

1 Jan 0

2 Feb 3

3 Mar 6

4 Apr 9

...

12 Dec 33

Chapter 8 StringS

234

The values in the last column also make logical sense. Because each abbreviation is

three letters long, it may now seem obvious that the end index is three more than each

start index. Let’s write the Python code for that:

endIndex = startIndex + 3

Now we plug those two lines into our program, and the full solution becomes the

following:

Given a month number, find the three letter abbreviation for that month

months = 'JanFebMarAprMayJunJulAugSepOctNovDec'

monthNumber = input('Enter a month number (1-12): ')

monthNumber = int(monthNumber)

startIndex = (monthNumber - 1) * 3

endIndex = startIndex + 3

Generate the appropriate slice

monthAbbrev = months[startIndex : endIndex]

print(monthAbbrev)

Here are a few runs to test our code:

>>>

Enter a month number (1-12): 1

Jan

Table 8-2. Mapping Month Number to the Related Start and End Index

monthNumber startIndex endIndex

1 Jan 0 3

2 Feb 3 6

3 Mar 6 9

4 Apr 9 12

...

12 Dec 33 36

Chapter 8 StringS

235

>>> ================================ RESTART ==============================

>>>

Enter a month number (1-12): 2

Feb

>>> ================================ RESTART ==============================

>>>

Enter a month number (1-12): 12

Dec

>>>

 Additional Slicing Syntax

Python also allows additional syntax if you want the slice to start at the first character or

end at the last character of a string. You can leave off the starting index of a string like this:

 <someString>[: <upToButNotIncludingIndex>]

This means to create a slice starting at the first character of a given string, and go up

to but don’t include the character at index <upToButNotIncludingIndex>. Similarly, you

can also use this syntax:

 <someString>[<startIndex> :]

This means start at the given index and include all characters through the end of the

string.

Finally, you can use this syntax:

<someString>[:]

That means to make a copy of the whole string. Here are some examples:

>>> sample = 'This is a sample string'

>>> print(sample[10:])

sample string

>>> print(sample[:16])

This is a sample

>>> print(sample[:])

This is a sample string

>>>

Chapter 8 StringS

236

 Slicing as Applied to a List

I didn’t mention this in the last chapter, but the slicing syntax I have just shown for

creating a substring can also be used with a list to create a sublist. The exact same

syntax is used:

<someList>[<startingIndex> : <upToButNotIncludingIndex>]

For example:

>>> startingList = [22, 104, 55, 37, -100, 12, 25]

>>> mySubList = startingList[3 : 6]

>>> print(mySubList)

[37, -100, 12]

>>>

 Strings Are Not Changeable

There is one big difference between lists and strings. Strings are not changeable.

Remember that I said that lists are changeable, or mutable. In Python terms, strings are

immutable. You cannot set or change an individual character in a string. For example,

let’s say you wanted to change a specific character of a string to some other character.

Let’s try to change the second character of a given string to a different letter:

>>> someString= 'abcdefghijkl'

>>> someString[2] = 'x'

Traceback (most recent call last):

 File "<pyshell#18>", line 1, in <module>

 someString[2] = 'x'

TypeError: 'str' object does not support item assignment

>>>

This error message happens because strings are not changeable. However, you can

always create a new string or reassign a different value to an existing string variable. To

change the second character of a string to another value, you have to reassign a string or

create a new string. To accomplish our task, we can take this approach:

Chapter 8 StringS

237

>>> someString= 'abcdefghijkl'

>>> someString = someString[:2] + 'x' + someString[3:]

>>> print(someString)

abxdefghijkl

>>>

We’ve taken our original string, created a slice before the character we want,

concatenated the letter we want, and then concatenated another slice starting right after

the character we wanted to eliminate. Finally, we assigned the resulting string back into

our string variable.

 Programming Challenge 2: Searching a String

In this challenge, I ask you to write a small function called countCharInString. It is

passed the following two parameters:

• findChar: A character to find

• targetString: A string to be searched

It should return the number of times findChar is found in targetString.

You can test your function with the following calls:

print(countCharInString ('s', 'Mississippi')) # expect 4

print(countCharInString ('p', 'Mississippi')) # expect 2

print(countCharInString ('q', 'Mississippi')) # expect 0

Here is a solution:

Count a single char in another string

def countCharInString(findChar, targetString):

 count = 0

 for letter in targetString: # for each letter in the target string

 if findChar == letter: # if there is a match

 count = count + 1 # increment the count

Chapter 8 StringS

238

 return count

print(countCharInString ('s', 'Mississippi')) # expect 4

print(countCharInString ('p', 'Mississippi')) # expect 2

print(countCharInString ('q', 'Mississippi')) # expect 0

And the following output is what we expect:

>>>

4

2

0

>>>

 Built-in String Operations

Although it is fun to build these types of functions, it turns out we don’t have to. The

people who built Python have done all this work for us. In fact, there is a whole set of

string manipulation routines built in to Python.

Similar to our discussion of lists in Chapter 7, strings are also internally implemented

as objects in Python. Because of that, you use the same syntax we used for list operations

to invoke a string operation:

<string>.<operationName>(<optionalArguments>)

Table 8-3 describes the most commonly used built-in string operations.

Chapter 8 StringS

239

To see the list of all string operations, you can enter this in the Shell:

dir('abc')

That prints out a list of the names of all string operations. You can ignore the ones

that start with one or two underscores. The ones that seem human readable (at the

end of the list) are the interesting ones. The full documentation on all string operations

can be found in the official Python documentation at https://docs.python.org/2/

library/stdtypes.html in section 5.6.1.

Table 8-3. The Most Commonly Used Built-In String Operations

Operation Description

<string>.count(<substring>) returns the number of times <subString> was found

in <string>.

<string>.find(<subString>) returns the index of the first occurrence of

<substring> in <string>. returns –1 if

<substring> is not found.

<string>.index(<subString>) returns the index of the first occurrence of

<substring> in <string>.

<string>.lower() returns a lowercase version of <string>.

<string>.lstrip() returns the string with leading (left) whitespace

removed.

<string>.replace(<old>, <new>) returns a version of <string> where all <old> are

replaced by <new>.

<string>.rstrip() returns the string with trailing (right) whitespace removed.

<string>.startswith(<prefix>) returns True if <string> starts with <prefix>,

otherwise returns False.

<string>.strip() returns the string with leading and trailing whitespace

removed.

<string>.title() returns a version of <string> where the first letter

of every word is uppercase, and all other letters are

lowercase.

<string>.upper() returns an uppercase version of <string>.

Chapter 8 StringS

https://docs.python.org/2/library/stdtypes.html
https://docs.python.org/2/library/stdtypes.html

240

 Examples of String Operations

In one of our earlier programming challenges, I asked you to write a function to count

the number of times a character appears in a target string. Although it’s good practice to

write functions like this, built-in string operations are available to do much of the work

like that for you. For example, the count operation does everything that our function

does and more. The count operation finds not only a single character within another

string, it finds a substring of any length in a string:

>>> myString = 'Ask not what your country can do for you, ask what you can

do for your country.'

>>> print(myString.count('o')) # how many of the letter o

11

>>> print(myString.count('can do'))

2

>>>

Whenever you ask the user for a text-based answer to a question, you can never

know whether the user will enter the answer in all lowercase, all uppercase, or some

mix of cases. This is a problem because Python string comparisons are case sensitive.

An answer of OK is not the same as ok and is not the same as Ok. Therefore, whenever

you want to check for a user’s text response, it is a good idea to convert the user’s answer

using either the lower operation (generally preferred) or the upper operation, before

comparing their input. For example:

>>> userAnswer = input('Type OK if you want to continue: ')

Type OK if you want to continue: OK

>>> if userAnswer.lower() == 'ok':

 # user answered OK, do whatever you need to do to continue

Another example is where you ask the user a yes-or-no question. Again, you cannot

know in advance whether the user will type Yes, or yes, or yES, or even just the letter y.

You can use two string operations to handle all of these cases easily:

>>> userInput = input('Type yes to continue, no to quit: ')

Type yes to continue, no to quit: yes

>>> userInput = userInput.lower()

>>> if userInput.startwith('y'):

 # user said yes, continue on with the program.

Chapter 8 StringS

241

In this example, we take whatever the user types and convert it to lowercase. Then

we only look at the first character to see if the user’s answer starts with the letter y.

 Programming Challenge 3: Directory Style

It’s time for the final programming challenge in this chapter. In this challenge, you ask

the user to enter their name in the normal first name/last name style. Your job is to

convert the name to directory style. Here are the details:

 1. Ask the user to enter their name in the form <firstName><space>

<lastName>.

 2. Take the name the user enters and find the index of the space.

 3. Given that index, break up the user’s string into a first name and

last name.

 4. Create a new string by reassembling the name to be shown in

directory style, <lastName>,<space><lastName>, and print it.

Here is the solution:

First name last name, produce directory style:

fullName = input('Please enter your full name: ')

indexOfSpace = fullName.index(' ')

firstName = fullName[:indexOfSpace]

lastName = fullName[indexOfSpace + 1:]

print(lastName + ', ' + firstName)

This one is fairly straightforward. The key is to find the index of the space. Once you

find where the space character is in the string, you can use the slicing syntax to create a

slice for the first name (starting at the first character), and a slice for the last name (that

goes through the last character).

Often in programming, in order to eliminate potential errors where the program

might crash, we use defensive coding techniques to ensure that the user provided valid

input. In this programming challenge, our original solution assumed that the user

entered a single space character in between the names. But what if the user forgot to

enter a space, or entered multiple spaces, or entered spaces at the beginning and/or

ending of the name? We can check for all these cases without crashing.

Chapter 8 StringS

242

Here is another version of the code that has some additional defensive coding to

ensure that the program would not crash from these types of errors:

Read in first name last name, produce directory style with error

detection

while True:

 fullName = input('Please enter your full name: ')

 fullName = fullName.strip() # remove any spaces before or after

 nSpaces = fullName.count(' ')

 if nSpaces == 1: # OK if there is a single space

 break

 print('Please try again. Enter your name as first name, space, last name')

 print()

indexOfSpace = fullName.index(' ')

firstName = fullName[:indexOfSpace]

firstName = firstName[0].upper() + firstName[1:] # Force first letter to

uppercase

lastName = fullName[indexOfSpace + 1:]

lastName = lastName[0].upper() + lastName[1:] # Force first letter to

uppercase

print(lastName + ', ' + firstName)

In addition to checking for incorrect spacing, the code also makes sure that the first

letter of the first and last names are uppercase. The following is a sample run, first with

an error and then with the user entering the name in all lowercase:

>>>

Please enter your full name: joeschmoe

Please try again. Enter your name as first name, space, last name

Please enter your full name: joe schmoe

Schmoe, Joe

>>>

Chapter 8 StringS

243

 Summary

In this chapter, you learned to think of a string as a list of characters. You saw how the

len function, indexing, and accessing characters in a string are identical to the way we

use them in lists. You also learned that a for loop can be used to iterate through all the

characters of a string. A new concept of a substring, known as a slice in Python, can be

created using a new bracketing syntax.

You saw that the main difference between a string and a list is that a string is

immutable (not changeable), whereas lists are mutable (easily changeable). I introduced

a number of built-in string operations that can be used to manipulate string data.

The next two chapters continue our discussion of strings, with more examples of how

strings are used in real-world programs.

Chapter 8 StringS

245

CHAPTER 9

File Input/Output
In every program we have talked about so far, when the program ends, the computer

forgets everything that happened in the program. Every variable you created, every string

you used, every Boolean, every list—it’s all gone. But what if you want to keep some of

the data you generate in a program and save it for when you run the program later? Or

maybe you want to save some data so that a different program could use the data you

generated.

If you want to keep some information around between runs of a program, you need

a way of having what is called persistent data—you want the data to remain available

on the computer. To do that, you need the ability to write to and read from a file on the

computer.

This chapter discusses file input/output, often shortened to file I/O, and covers the

following topics:

• Saving files on a computer

• Defining a path to a file

• Reading from and writing to a file

• File handle

• The Python os package

• Building reusable file I/O functions

• Example using our file I/O functions

• Importing our own modules

• Saving data to a file and reading it back

• Building an adding game

• Programming challenge 1

246

• Programming challenge 2

• Writing/reading one piece of data to and from a file

• Writing/reading multiple pieces of data to and from a file

• The join function

• The split function

• Final version of the adding game

• Writing and reading a line at a time with a file

• Example: multiple-choice test

• A compiled version of a module

 Saving Files on a Computer

There are many examples of storing data in a file that you are already familiar with.

Think about a word processor or spreadsheet program. You create a document in your

word processor or spreadsheet application, save it as a file on your computer, and then

quit the program. Later, you reopen the word processor or spreadsheet program, reopen

the saved file, and all the information you entered is brought back.

In fact, the Python source files that you write work the same way. You open the Python

IDLE editor and create a Python source file (a document). As you edit your source code in

IDLE, the content is kept in the memory of the computer. When you save it, the content

(which is really just a string of text) is written to a file on the computer. You can then quit

IDLE. Later, when you come back into IDLE and open the file, the text of your program

is read in and displayed. IDLE displays the text, character by character, across each line.

Whenever it finds an end-of-line character, it moves down to the first character of the next

line. The content is displayed for you, and you can edit again. Whenever you save, the

current version of your program is written out to the file—again, as a long string of text.

But as I said at the start of this chapter, when we run a Python program and then

stop it or quit IDLE, any data that we have manipulated in the program goes away. In

order to save data, we need a way to write data from a running program to a text file, and

when we run the program again, be able to read that data back into our program. Python

allows programmers to easily write and read files of text. When dealing with files that

contain only text, the convention is to name such a file with a .txt extension.

Chapter 9 File input/Output

247

 Defining a Path to a File

When you want to read or write a text file, you must first identify which file you want to

write to or read from.

Definition a path is a string that uniquely identifies a file on a computer. (it is

sometimes called a filespec, short for file specification.)

A path is a string. There are two different ways to specify a path: absolute and

relative. An absolute path is one that starts at the top of the file system on your computer

and ends in the name of the file. For example, an absolute path might look like this in

Windows:

C:\MyFolder\MySubFolder\MySubSubFolder\MyFile.txt

It might look like this on a Mac:

Macintosh HD/MyFolder/MySubFolder/MySubSubFolderMyFile/MyFile.txt

However, one of the great things about Python is that it is designed to allow

programmers to write portable code, which can be used on different computers and

on different operating systems. Because a path on one computer may not match a

path on another one (because of different drive letters or drive names, or by being in

different folders on different computers), most code that uses absolute paths is not

portable.

Therefore, in this discussion, we will use relative paths. Instead of starting at the top

of the file system on your computer, a relative path starts in the folder that contains your

Python source file. We say that the path is relative to the location of the source file. That

means any file we want to use or create resides either in the same folder as your Python

source file or in a folder somewhere below that folder.

To see how this works, let’s assume a folder structure like the one shown in

Figure 9- 1.

Chapter 9 File input/Output

248

In this example, we have an enclosing folder located anywhere on a computer. In

that folder, there is a Python source file named PythonSource.py and a text file called

MyDataFile.txt. In addition to these two files, there is also a folder named MyFolder.

Within MyFolder, there is another data file called SomeDataFile.txt and a folder called

MySubFolder. Within MySubFolder, there is a data file called OtherDataFile.txt and

a subfolder. From the point of view of the PythonSource.py file, Figure 9-2 shows the

relative paths to the three different data files.

Figure 9-1. Example contents of a folder

Figure 9-2. Example contents of a folder with relative paths to text files

Chapter 9 File input/Output

249

In the simplest case, if you are running a Python program and you want to use a file

in the same folder, then the path for the data file is simply the name of the file as a string.

In our example, if we were running PythonSource.py and we wanted to use the file

MyDataFile.txt, we would specify the path as this string:

'MyDataFile.txt'

However, if you want to use a file that is inside a folder where the Python program lives,

then you specify the folder name, a forward slash (/)—which is more commonly referred

to as simply a slash—and then the file name, all as a string. From PythonSource.py,

we get to SomeDataFile.txt by using this path:

'MyFolder/SomeDataFile.txt'

To go down two levels of folders and then find a file, specify the name of the first

folder, followed by a slash, and then the next subfolder, followed by a slash, and then

the name of the file. The following is the path to get to the OtherDataFile.txt file from

PythonSource.py:

'MyFolder/MySubFolder/OtherDataFile.txt'

This can go on for any number of levels of subfolders. Just add a slash after every

folder name, eventually placing the name of the file at the end. Through testing, we

have found that although Windows uses the backward slash (\) as the folder separator

character, using the slash (/) as the folder separator character in Python paths works

correctly across operating systems. That means using the slash character in paths allows

you to build platform-indepent relative paths. That is, this approach allows you to build

programs with relative paths on a Mac, and the program will be able to access files in the

same relative folders on Windows (and vice versa) without changing code.

 Reading from and Writing to a File

When you want to write to or read from a file, you first need tell the operating system that

you want to open the file for reading or writing. To read, you read the contents of the file

into a string variable. To write, you take the contents of a string variable and write that

out to a file. When you are done reading or writing, you close the file.

Chapter 9 File input/Output

250

Reading text from a file requires three steps:

 1. Open the file for reading

 2. Read from the file (usually into a string variable)

 3. Close the file

Writing text to a file requires three similar steps:

 1. Open the file for writing

 2. Write a string (usually from a string variable) to the file

 3. Close the file

 File Handle

Notice that whenever you deal with a file, you first need to open the file. In all operating

systems, when a program opens a file, the operating system gives back a file handle.

Rather than give you a formal definition of what a file handle is, you should think of it

like the illustration shown in Figure 9-3.

Figure 9-3. Think of a file on the computer as a bag with a handle

Chapter 9 File input/Output

251

The bag in Figure 9-3 represents a file. Any time you want to put something into the

bag or take something out of it, you have to grab the handle. Similarly, any time you want

to read from or write to a file on your computer, you have to use the file handle that the

operating system gives you when you open the file. When you are done using the file, you

have to close the file using the file handle; this is like releasing the handle of the bag.

The following is the core code needed to read from and write to a file. We will wind

up wrapping this code into functions for you to use. For now, just pay attention to the

basic steps involved.

Here is the code to read from a file:

fileHandle = open(filePath, 'r') # r for reading

data = fileHandle.read() # read into a variable

fileHandle.close()

text read in is now in the variable called data

And here is the code to write text to a file:

text to be written is contained in the variable textToWrite

fileHandle = open(filePath, 'w') # w for writing

fileHandle.write(textToWrite) # write out text from a variable

fileHandle.close()

Notice filePath (which is a string) and fileHandle (which is returned by the call to

open). We use that file handle in the calls to read, write, and close.

Before attempting to read from a file, there is one more thing you need to do.

Obviously, you cannot read from a file that doesn’t exist. So, you need to check that the

file you want to read from actually exists before you attempt to read from it.

 The Python os Package

In the same way that the random module provides a great deal of code for dealing with

random numbers, there is a module that provides information about the operating

system. It is called the os module. To use it, you first import it:

import os

Chapter 9 File input/Output

252

For now, we’re only interested in one operation that can tell us whether a file exists.

Here’s how to use it:

exists = os.path.exists(filePath) #returns a boolean

The call to os.path.exists returns True if the file exists, or False if the file does not

exist.

OS MODULE

For anyone who is into uniX, or who wants to write the equivalent of shell scripts (for automation),

the os module is extremely important. the os module allows you to do many uniX commands as

python statements. here are just a few of the things the os module allows you to do:

• os.listdir: Generate a list containing the names of the entries in a

directory (folder)

• os.mkdir: Make a directory (folder)

• os.rename: rename a file

• os.walk: Generate the names of files in a directory (folder)

• os.getcwd: Get the current working directory (folder)

• os.chmod: Change the mode of a path

For a complete listing and detailed information, check the official python documentation at

https://docs.python.org/2/library/os.html.

 Building Reusable File I/O Functions

We now have enough information to build three very useful, highly reusable functions.

We’ll build the following:

• fileExists: Returns a Boolean to say whether a file with a given path

exists or not

• writeFile: Takes a string of data and writes it to a file with a given path

• readFile: Reads the contents of a file and returns the contents to the

caller

Chapter 9 File input/Output

https://docs.python.org/2/library/os.html

253

Let’s start by creating a new Python source file named FileReadWrite.py. We’ll put

the following code into it:

FileReadWrite.py

Functions for checking if a file exists, read from a file, write to a file

import os

def fileExists(filePath):

 exists = os.path.exists(filePath)

 return exists

def writeFile(filePath, textToWrite):

 fileHandle = open(filePath, 'w')

 fileHandle.write(textToWrite)

 fileHandle.close()

def readFile(filePath):

 if not fileExists(filePath):

 print('The file, ' + filePath + ' does not exist - cannot read it.')

 return "

 fileHandle = open(filePath, 'r')

 data = fileHandle.read()

 fileHandle.close()

 return data

These functions provide very nice wrappers for the functionality. For example,

now that we have written fileExists, we don’t need to remember the details of the os

module (that you need to use os.path.exists). Instead, we have built a simple function

with a nice clean name of fileExists. We can reuse this function in any of our projects.

writeFile is very easy to use. You pass it a file path to write to and a string, and

it writes the string to the file. If the file already exists, the older version of the file is

completely overwritten by the new text.

The readFile function is also very straightforward. You pass in a path to a file, it checks

to ensure that the file exists, and if so, does all the work to read all the text from the file and

then returns that text to the caller. If the file does not exist, it prints an appropriate error

message and returns the empty string to signify that there was no text to read.

Chapter 9 File input/Output

254

 Example Using Our File I/O Functions

Let’s work through an example of writing to and reading from a file. We’ll start by

selecting all the code we just built in FileReadWrite.py by using Command+A (Mac) or

Control+A (Windows). Once all of it is selected, copy the code. Now open a new Python

file. Paste the code into this new window. Save it with any name you want (be sure that

the name ends in .py). Let’s call this file TestFileIO.py.

Now we’ll write some code to use these functions. The program we want to write will

take a sample string, write it out to a file, and read it back in. Add the following after the

three functions you pasted into this file:

Previous code from FileReadWrite pasted here

DATA_FILE_PATH = 'TestData.txt' # path to the file as a constant

stringToWriteOutToFile = 'abcdefghijkl' # contents could be anything,

this is just a test

writeFile(DATA_FILE_PATH, stringToWriteOutToFile)

stringReadInFromFile = readFile(DATA_FILE_PATH)

print('Read in: ', stringReadInFromFile)

When we save and run this program, we see this output in the Shell:

>>>

Read in: abcdefghijkl

>>>

What has happened here is that this code called our writeFile function to write out

some text to a file. Then we used the readFile function to read from the same file back

in, and saved the text in a different variable. Because we are using the same file path for

reading and for writing, we specified the path to the file as a constant.

After running the program, if we look in the folder where this Python source file

resides, we now see that a file named TestData.txt is present. Opening that text file in

any text editor shows that the contents consist of the string we wrote out.

Chapter 9 File input/Output

255

 Importing Our Own Modules

We could certainly use this approach of copying and pasting these three functions into

any program that wants to perform any file I/O. But consider what happens if we find a

bug in our FileReadWrite.py file, or if we want to add more functions to help read files

in different ways. In either case, we would have to go back into every Python source file

that incorporated these three functions and modify the code there to fix the bug and/or

add functionality. There is a better way.

You have seen how to use the import statement to make a built-in Python package

available to our program. For example, you import the random package with this

statement:

import random

When we import a package this way, we have to explicitly specify the name of the

package when we make a call to a function in that package. For example, when we want

to get a random number, we write this:

value = random.randrange(0, 10)

That is very clear. It says that inside the random package, we want to call the

randrange function.

In addition to being able to import built-in modules like the random and the os

modules, we can use the import statement to import our own Python files. If we are

building a program where we need to read from or write to a file, we can import our own

FileReadWrite.py file. We can use the same import statement, like this:

import FileReadWrite

Note an important thing to notice is that when you specify a <moduleName>

to import, you do not specify the .py extension. i explain why it is done this way

at the end of this chapter. For now, remember to remove the .py extension when

specifying a file to import.

Chapter 9 File input/Output

256

After importing this way, you construct a line like this to write to a file:

FileReadWrite.writeFile('SomeFilePathToWriteTo', 'some test string')

However, there is another syntax available for the import statement. This alternative

syntax allows you to specifically name which function(s) and/or variable(s) to import.

This is what it looks like:

from <moduleName> import <functionOrVariableName>,

<optionalFunctionOrVariableName>, ...

If you use the from syntax, then when you make a call to a function, you do not

specify the package name, only the function name(s). The advantage is simplicity. For

example, if you wanted to make a call to readFile, you would write this:

from FileReadWrite import readFile

data = readFile('SomePathToAFileToRead')

The downside is twofold. First, if you import many source files this way, there is a

chance of a name conflict. That is, it is possible that your main program file and one or

more of your imported modules have a function or a variable that has the same name.

(In that case, whichever one was used last overrides the earlier one(s)). Second, if you

import many modules, it may be confusing as to where a function name or a variable

name came from, because it could come from one of many different files.

For the sizes of programs used in this book, neither of these should be considered a

serious drawback. Most Python programmers use the from syntax when importing their

own modules.

As an even simpler approach, you can tell Python to import an entire file of code

using a line like this:

from <moduleName> import *

The asterisk (*) means bring in the entire contents of that file. For example, to import

the FileReadWrite module and read a file, we would write this:

from FileReadWrite import *

data = readFile('SomePathToAFileToRead')

Using this syntax essentially says to Python, “Bring in the full code of the

FileReadWrite file as though I had written that code right here.” See Figure 9-4.

Chapter 9 File input/Output

257

If you plan to use most of or all of the code from an external Python file, use the

asterisk to bring in the entire file. The case where you should name the functions

individually is when the Python file you are importing is extremely large and you are only

using a small number of functions.

For our purposes, using the asterisk syntax is fine and ensures that all functions in

the external Python file are available to our code.

Building and using external Python files this way allows programmers to split up

large programs into a number of files. Having the ability to import these types of Python

source files allows you to build up files of reusable code and incorporate this code into

multiple programs. Further, finding and fixing a bug in a file like this fixes the bug in

every program that imports the file.

 Saving Data to a File and Reading It Back

Now that we have built our three reusable functions in an external file, we can build a

sample main program. Our goal is to write a program that counts the number of times

it has run. To implement this, the program reads a data file that contains the number of

times the program has been run. Every time the program runs, it should read the file, add

1 to the number, and then rewrite the file.

Figure 9-4. Using the from statement to import contents of another file

Chapter 9 File input/Output

258

Immediately, we run into a problem: the first time we run the program, there is no

file. So, we need to check for the existence of the file right from the outset. Let’s first write

the approach as pseudocode:

If the file does not exist

 Write a file with a 1 in it

Otherwise

 Read the content of the file into a variable

 Add 1 to the variable

 Write out the value of the variable to a file

When we feel that our approach solves the problem, we turn the pseudocode into

a real Python program. We’ll take advantage of the three reusable functions we already

built: fileExists, readFile, and writeFile. To make things clear, let’s use a constant

for the file path:

Increment test

from FileReadWrite import *

Here is a constant - the name of the data file that we will use

throughout

DATA_FILE_PATH = 'CountData.txt'

Main program - reads from file, increments a counter, writes to file

if not fileExists(DATA_FILE_PATH):

 # The file was not found, this is the first time we are running the

program

 print('First time - creating the data file.') # for testing

 writeFile(DATA_FILE_PATH, '1')

else:

 # The file was found. We have run this program before

 count = readFile(DATA_FILE_PATH)

 print('Found the file, data read was: ', count) # for testing

 count = int(count)

 count = count + 1

 textToWrite = str(count)

 writeFile(DATA_FILE_PATH, textToWrite)

print('This was run number:', count)

Chapter 9 File input/Output

259

Because we already have our reusable functions in FileReadWrite.py, we first use

an import statement to bring in the code of the three functions that are found in that file.

Now let’s walk through the logic of the program. The first time the program runs, the

data file does not exist. So, we explicitly write out the string '1' to our external data file.

Every subsequent time we run the program, the file does exist, and the else clause

will run. In the code of the else block, we read in the contents of the file (which is just a

number, as text), we convert what we read into an integer and then increment it to add 1

to the number of times we have run the program. Finally, we convert the number back to

a string and write out the new value to the file.

Here is the output of several runs of the program:

>>>

First time - creating the data file.

This was run number: 1

>>> ================================ RESTART ==============================

>>>

Found the file, data read was: 1

This was run number: 2

>>> ================================ RESTART ==============================

>>>

Found the file, data read was: 2

This was run number: 3

>>> ================================ RESTART ==============================

>>>

Found the file, data read was: 3

This was run number: 4

>>> ================================ RESTART ==============================

>>>

Found the file, data read was: 4

This was run number: 5

As you can see from the output, the code following the if ran the first time that the

program ran. In every subsequent run, the code following the else ran because the

program found the data file.

Chapter 9 File input/Output

260

 Building an Adding Game

Let’s take these concepts and use them in a real program—a simple adding game for

kids. Rather than build a large game in one shot, we’ll split it up into four versions,

adding complexity as we go.

Let’s start by building the core part of the game, where we ask the user to add two

integers and then see if the user answers correctly. We’ll expand the program to allow

for any number of questions and keep score. Then we’ll expand it further to write out the

score when we exit the program, and then read the score back in when we start up the

program again. Finally, we’ll modify the program yet again to write out and read back in

several pieces of information about the game.

You’ll write the first version of the game as a programming challenge.

 Programming Challenge 1

Build a simple adding game. These are the details:

 1. Allow the program to choose two random integers, each between

0 and 10.

 2. Build and pose an addition question for the user, using the

following form:

What is <num1> + <num2>?

 3. Compare the user’s answer to the correct answer.

 4. Give feedback: correct or incorrect (if incorrect, show the correct

answer).

Here is the output of two sample runs of the program:

>>>

What is: 10 + 3? 13

Yes, you got it!

>>>

>>>

What is: 10 + 5? 14

No, sorry, the correct answer was: 15

>>>

Chapter 9 File input/Output

261

Your code should look something like this:

Adding game version 1

import random

firstNumber = random.randrange(0, 11)

secondNumber = random.randrange(0, 11)

correctAnswer = firstNumber + secondNumber

question = 'What is: ' + str(firstNumber) + ' + ' + str(secondNumber) + '? '

userAnswer = input(question)

userAnswer = int(userAnswer)

if userAnswer == correctAnswer:

 print('Yes, you got it!')

else:

 print('No, sorry, the correct answer was: ', correctAnswer)

The key to this program is generating two random numbers within the appropriate

range and adding them together so that you know what the correct answer should be.

Then you ask the user for their answer. Finally, you compare the correct answer to the

user’s answer and give appropriate feedback.

 Programming Challenge 2

Once you have the first challenge code running correctly, the next steps are to modify it

to allow the program to run in a loop and keep score. The details are as follows:

 1. Add a score counter (start at zero).

 2. Add a loop (to ask multiple questions).

 3. If the user presses Return/Enter, exit loop.

 4. If the user answers correctly, add 2 points to score.

 5. Otherwise, for an incorrect answer, subtract 1 point from score.

 6. Print the score.

 7. When the user chooses to leave the program, say goodbye.

Chapter 9 File input/Output

262

Here is the output of a sample run of this version of the program:

What is: 7 + 6? 13

Yes, you got it!

Your current score is: 2

What is: 1 + 4? 5

Yes, you got it!

Your current score is: 4

What is: 4 + 1? 5

Yes, you got it!

Your current score is: 6

What is: 10 + 1? 11

Yes, you got it!

Your current score is: 8

What is: 3 + 8? 9

No, sorry, the correct answer was: 11

Your current score is: 7

What is: 5 + 0?

Thanks for playing

>>>

This is the solution to the challenge:

Adding game version 2

import random

score = 0

Main loop

while True:

 firstNumber = random.randrange(0, 11)

 secondNumber = random.randrange(0, 11)

 correctAnswer = firstNumber + secondNumber

 question = 'What is: ' + str(firstNumber) + ' + ' + str(secondNumber)

+ '? '

Chapter 9 File input/Output

263

 userAnswer = input(question)

 if userAnswer == ":

 break # user wants to quit

 userAnswer = int(userAnswer)

 if userAnswer == correctAnswer:

 print('Yes, you got it!'(

 score = score + 2

 else:

 print('No, sorry, the correct answer was: ', correctAnswer)

 score = score - 1

 print(Your current score is: ', score)

 print()

print('Thanks for playing')

In this version, the changes are relatively small. We kept score (using a variable called

score) by adding two points for each correct answer and subtracting one if an answer was

incorrect. The important change was to put the main portion of the code in a while loop

so that the user had as many addition questions as they wanted. We also checked for no

answer (the empty string), which is the indication that the user wanted to quit the game.

 Writing/Reading One Piece of Data to and from a File

In the next version of the game, let’s add the ability to have persistent data by modifying

the program so that when the user quits the program, the code writes out the score to a

file. When the user chooses to start the program again, the score is read in from the file,

and the program starts up using the previous score.

I’ll present the code of this version, as follows, and then I’ll explain the changes:

Adding game version 3

Save only the score

import random

from FileReadWrite import * # means import everything as though it were

typed here

Chapter 9 File input/Output

264

DATA_FILE_PATH = 'GameData.txt'

Start up code

if not fileExists(DATA_FILE_PATH):

 score = 0

 print('Hi, and welcome to the adding game.')

else:

 score = readFile(DATA_FILE_PATH)

 score = int(score)

 print('Welcome back. Your saved score is:', score)

Main loop

while True:

 firstNumber = random.randrange(0, 11)

 secondNumber = random.randrange(0, 11)

 correctAnswer = firstNumber + secondNumber

 question = 'What is: ' + str(firstNumber) + ' + ' + str(secondNumber)

+ '? '

 userAnswer = input(question)

 if userAnswer == “:

 break

 userAnswer = int(userAnswer)

 if userAnswer == correctAnswer:

 print('Yes, you got it!')

 score = score + 2

 else:

 print('No, sorry, the correct answer was: ', correctAnswer)

 score = score - 1

 print('Your current score is: ', score)

 print()

writeFile(DATA_FILE_PATH, str(score))

print('Thanks for playing')

Chapter 9 File input/Output

265

In this version, the key changes are at the beginning and end of the program. The

first thing we do in this program is bring in the code we developed earlier, which allows

us to do file I/O. We import the code using this line:

from FileReadWrite import *

That gives us access to the previously written fileExists, readFile, and writeFile

functions. In order for this import to work correctly, the source file we are developing

and the FileReadWrite.py file must be in the same folder.

Next, we define a constant for our file path. Any file name will work, so let’s choose

the very clear name of GameData.txt. Because the content is string data, we choose to

use a .txt extension, meaning that it is filled with only text.

When the program starts, similar to our earlier IncrementTest program, we check

for the existence (actually, the nonexistence) of our data file. If the data file does not

exist, then we know this is the first time we are running the program. In that case, we

welcome the user to our game and set our score variable to 0. If we find that the file

does exist, we read the contents of the file into our score variable. Data read from a

text file comes in as text in the same way that input produces text. Therefore, we have

to convert the score to an integer. Then we welcome the user back to the game and tell

them their previous score.

The central part of the code is identical. The user plays as many rounds as they like.

When the user is ready to quit the program, we take the current score and write it out to

the data file. Finally, we thank the user for playing.

The data file is created (or updated) in the same folder as the source file and the

FileReadWrite.py file. You can easily open it and view the contents with any text editor.

When we look at the contents of the file after playing any number of rounds, all we see

is a text version of the most recent score. If you write to a file that already exists (any run

after the first run), the previous contents of the file are overwritten.

Chapter 9 File input/Output

266

 Writing/Reading Multiple Pieces of Data
to and from a File

In the final version of the game, we’ll want to keep track of, write out, and read back four

pieces of information:

• User name

• Score

• Number of problems tried

• Number of problems answered correctly

To write out and read back multiple pieces of information, we need two more built-in

functions: split and join.

 The join Function

Let’s start with the join function. The data we want to write to a file must be one long

text string. If we want to write out multiple pieces of data, we need to build a string that

incorporates of all of them. We’ll do this in two steps:

 1. Take all data that we want to save (converting any numbers to

string versions) and then create a list containing the data.

 2. Combine the list into a string.

The purpose of the join function is to take a list (of strings) and concatenate all

elements to create a single long string. In the resulting string, each piece of original data

is separated by a character of your choice. The comma is the most typical character used

to separate this type of data. join is a string operation, but it has an odd syntax. It is most

often used in an assignment statement, like this:

<string> = <separatorCharacter>.join(<list>)

join takes the list (of strings) and creates a new string by concatenating all the

elements of the list, separated by the given separator character. Here is an example:

>>> myList = ['abc', 'de', '123', 'fghi', '-3.21']

>>>

>>> # Use a comma as a separator character

Chapter 9 File input/Output

267

>>> myString = ','.join(myList)

>>>

>>> print(myString)

abc,de,123,fghi,-3.21

>>>

Here you can see that the join function has taken a list of string data and created a

single comma-separated string.

 The split Function

The other built-in function is the split function, which takes a string and splits it at

every point where it finds a given separator character, into multiple pieces of data in a

list. split is typically used in an assignment statement, like this:

<list> = <string>.split(<separatorChar>)

Here is an example:

>>>

>>> myString = 'abc,de,123,fghi,-3.21'

>>>

>>> myList = myString.split(',')

>>>

>>> print(myList)

['abc', 'de', '123', 'fghi', '-3.21']

>>>

Because split is an operation on a string, we can use it after we read in data from a

file and separate out the individual pieces of data that were used to make up the string

when the file was written.

Because of the syntax, split and join are both considered string operations. join

operates on a separator character, whereas split operates on a string to be broken apart.

But these operations perform complimentary or opposite actions. Think of it like this:

join is passed a list and produces a string, but split takes a string and produces a list.

join is often used for writing out to a file, whereas split is often used for reading data in

from a file.

Chapter 9 File input/Output

268

 Final Version of the Adding Game

Now, in addition to remembering the score, let’s modify the game further by keeping

track of three more pieces of data. The first time we play the game, we’ll ask for and

remember the user’s name. We’ll also remember the number of problems the user has

seen and the number of problems the user has answered correctly.

To keep track of this additional information, we’ll add three more variables:

userName, nProblems, and nCorrect. When the user chooses to quit the program (by

pressing Return or Enter), we’ll add some code to write the information we want to

remember out to a file. As a format for the content of the file, we’ll use the following:

<name>,<score>,<nProblems>,<nCorrect>

For example, after playing the game once and answering 14 out of 15 questions

correctly, the file for our user Joe Schmoe looks like this:

Joe Schmoe,27,15,14

Here is the code of the final version that implements these changes. The

modifications are significant, but everything should be understandable:

Adding Game version 4

Saving lots of data

import random

from FileReadWrite import * # means import everything as though it were

typed here

DATA_FILE_PATH = 'AddingGameData.txt'

Main program starts here

if not fileExists(DATA_FILE_PATH):

 userName = input('You must be new here, please enter your name: ')

 score = 0

 nProblems = 0

 nCorrect = 0

 print('To quit the game, press RETURN/ENTER and your info will be saved')

 print('OK', userName, "let's get started ...")

 print()

Chapter 9 File input/Output

269

else:

 savedDataString = readFile(DATA_FILE_PATH) #read the whole file into a

variable

 savedDataList = savedDataString.split(',') # turn that into a list

 userName = savedDataList[0]

 score = savedDataList[1]

 score = int(score)

 nProblems = savedDataList[2]

 nProblems = int(nProblems)

 nCorrect = int(savedDataList[3]) # can do both in a combined step

 print('Welcome back', userName, 'nice to see you again! ')

 print('Your current score is: ', score)

 print()

Main loop

while True:

 firstNumber = random.randrange(0, 11)

 secondNumber = random.randrange(0, 11)

 correctAnswer = firstNumber + secondNumber

 question = 'What is: ' + str(firstNumber) + ' + ' + str(secondNumber)

+ '? '

 userAnswer = input(question)

 if userAnswer == “:

 break

 userAnswer = int(userAnswer)

 nProblems = nProblems + 1

 if userAnswer == correctAnswer:

 print('Yes, you got it!')

 score = score + 2

 nCorrect = nCorrect + 1

Chapter 9 File input/Output

270

 else:

 print('No, sorry, the correct answer was: ', correctAnswer)

 score = score - 1

 print('Your current score is: ', score)

 print()

print('Thanks for playing')

print()

print('You have tried', nProblems, 'problems and you have correctly

answered', nCorrect)

Make a list of the useruserName, userScore, nProblems, nCorrect then

create a string from that using join

dataList = [userName, str(score), str(nProblems), str(nCorrect)]

outputText = ','.join(dataList)

writeFile(DATA_FILE_PATH, outputText)

We chose to use a different file path from the previous version because this version

writes out different data.

As with the previous version, we start by checking to see if our data file exists. If it

does not, we conclude that this is the first time the user is playing the game. If the file

does exist, we assume the user has played the game before and we need to read in the

data from the file.

If this is the first time playing the game, we give a greeting to the user, ask their name,

and initialize the variables score, nProblems, and nCorrect all to zero.

If the user has played the game before, we read the contents of the file using the

readFile function we developed earlier and use the split function on the data that

we read in. That generates a list. In the list that is created, we know that element 0

contains the user’s name, element 1 contains the score, element 2 contains the number

of problems, and element 3 contains the number of problems answered correctly. We

extract these pieces of information from the list and store them into the same three

variables. Finally, we print out some messages to welcome the user back and tell them

their current score.

The central part of the game is nearly identical, except we have added code to

increment the number of problems asked and to increment the number of problems

answered correctly.

Chapter 9 File input/Output

271

When the user chooses to quit the program, we tell them the number of problems

they have seen and the number they answered correctly. Then we take the data we want

to save, build a list out of it (while ensuring that each piece of information is converted

to a string), and then use the join function to turn that list into one comma-separated

string. Finally, we write that string out to the data file using the writeFile function we

developed earlier.

Though this program was set up to write out and read in four pieces of data, you

can use these same techniques to write out, and later read back in, any number of

pieces of data.

 Writing and Reading a Line at a Time with a File

In the code we have developed so far, you have seen how to write a text file from a

single variable or read a text file into a single variable. But there are times where we

want to write data to a file a line at a time or read data from a file a line at a time. Here

are five more small functions that should be added to the bottom of the earlier file,

FileReadWrite.py. These additional functions allow us to write and read files this way:

(Earlier code for fileExists, writeFile, readFile)

#

Functions for opening a file, writing & reading a line at a time, and

closing the file

def openFileForWriting(filePath):

 fileHandle = open(filePath, 'w')

 return fileHandle

def writeALine(fileHandle, lineToWrite):

 # Add a newline character '\n' at the end and write the line

 lineToWrite = lineToWrite + '\n'

 fileHandle.write(lineToWrite)

def openFileForReading(filePath):

 if not fileExists(filePath):

 print('The file, ' + filePath + ' does not exist - cannot read it.')

 return “

Chapter 9 File input/Output

272

 fileHandle = open(filePath, 'r')

 return fileHandle

def readALine(fileHandle):

 theLine = fileHandle.readline()

 # This is a special check for attempting to read past the end of the

file (EOF).

 # If this occurs, let's return something unusual: False (which is not a

string)

 # If the caller wishes to check, their code can easily detect the end

of the file this way

 if not theLine:

 return False

 # If the line ends with a newline character '\n', then strip that off

the end

 if theLine.endswith('\n'):

 theLine = theLine.rstrip('\n')

 return theLine

def closeFile(fileHandle):

 fileHandle.close()

Here is the basic idea of how to use these functions. If you have a case where you

want to write data one line at a time, you have to follow the same three steps outlined

earlier: open the file, write to the file, and close the file. Rather than doing the three

steps in a single call (as we did with writeFile), here we use three separate functions to

implement the three steps:

• openFileForWriting: Opens the file for writing.

• writeALine: Call this as many times as you want; each call writes a

line of text.

• closeFile: Closes the file.

Feel free to read the code of these three functions, but once you know that they work

correctly, you do not need to remember the details of the implementation. By adding

these functions to the earlier FileReadWrite.py file, these functions become part of your

Chapter 9 File input/Output

273

reusable library. As discussed earlier in the chapter, to make these functions available in

your Python source file, you import the FileReadWrite package using this line:

from FileReadWrite import *

Let’s look at an example of how you might use these new functions. In the

following code, we will write three lines of text to a file named MultiLineData.txt.

The FileReadWrite.py file must be in the same folder as our source file because it is

imported into the source file:

Write multiple lines of text to a file

from FileReadWrite import *

DATA_FILE_PATH = 'MultiLineData.txt'

myFileHandle = openFileForWriting(DATA_FILE_PATH)

data1 = 'Here is some data as a string'

writeALine(myFileHandle, data1)

data2 = 'Here is a second line of string data'

writeALine(myFileHandle, data2)

Could have some code join several pieces of data into a single string

data3 = '123,Joe Schmoe,123.45,0'

writeALine(myFileHandle, data3)

closeFile(myFileHandle)

The code should be very clear. We open the file for writing, write three lines of text,

and then close the file. The key to using these functions is that the call to open the file

returns a file handle. You then use this file handle in every call to writeALine. When you

are done writing, you close the file with a call to closeFile passing in the file handle.

Running this program creates a text file (in the same folder as the program) called

MultiLineData.txt, with the following contents:

Here is some data as a string

Here is a second line of string data

123,Joe Schmoe,123.45,0

Chapter 9 File input/Output

274

If we have a file such as this MultiLineData.txt and we want to read it into our

program, we perform very similar steps: open the file for reading, read the data, close the

file. We use calls to the following functions to read in the data:

• openFileForReading: Opens the file for reading.

• readALine: Call this as many times as you need to; each call reads in

a line of text.

• closeFile: Closes the file.

To read in the data that was previously written out to our MultiLineData.txt file, we

could have a program like this:

Read in multiple lines of text

DATA_FILE_PATH = 'MultiLineData.txt'

myFileHandle = openFile(DATA_FILE_PATH)

data1 = readALine(myFileHandle)

print(data1)

data2 = readALine(myFileHandle)

print(data2)

data3 = readALine(myFileHandle)

print(data3)

Could add code to split data3 into several different pieces of data

closeFile(myFileHandle)

Again, the key concept is the file handle that is generated by a call to

openFileForReading. We use this file handle in every call to readALine. When we are

finished reading, we call closeFile, passing in the file handle.

Having all these functions bundled into a separate file (FileReadWrite.py) makes

for a nice reusable package. We only need to know the names of the functions and what

data each one needs to be passed.

Chapter 9 File input/Output

275

 Example: Multiple Choice Test

Let’s put many of these concepts together and build a useful example program. We’ll

create a program that allows the user to take a multiple-choice test. The interesting thing

about the program is that we’ll write it in a way that it can be used to pose any number of

questions on any topic.

Definition Content independence is a program’s ability to use data that is not

built into the program.

We will build our multiple-choice test program in a content-independent way by

having the questions and answers in an external text file. If we define and use a clear

layout for this text file, the program can be used as a generic “engine” that runs through

any number of questions on any topic.

We’ll first make the decision that each multiple-choice question has four possible

answers. We’ll define a layout for our questions file, like this:

<Test title line>

<Number of questions>

<Question 1>

<Correct answer for question 1>

<Incorrect answer 1 for question 1>

<incorrect answer 2 for question 1>

<Incorrect answer 3 for question 1>

<Question 2>

<Correct answer for question 2>

<Incorrect answer 1 for question 2>

<incorrect answer 2 for question 2>

<Incorrect answer 3 for question 2>

...

<Question n>

<Correct answer for question n>

<Incorrect answer 1 for question n>

<incorrect answer 2 for question n>

<Incorrect answer 3 for question n>

Chapter 9 File input/Output

276

In this layout, the first line of the file is a title line that will be presented to the user.

The second line contains a text version of an integer that will tell us how many questions

there are in the test.

After that, each question is made up of a grouping of five lines. The first line of each

group is the question itself. After that is the correct answer to the question. Then there

are three incorrect or “distracter” answers.

Here is a sample test file with four questions:

Stupid answers quiz

4

What color was Washington's white horse?

White

Blue

Red

Beige

How many green Chinese pots are there in a dozen?

12

1

10

-6

What is the state song of Alabama?

Alabama

New Jersey is the place for me

My home is in Australia

I like monkeys

What is the first verb in the Pledge of Allegiance?

pledge

I

allegiance

snorkel

For each question, the program reads in five lines, poses the question, randomizes

the answers, and presents the randomized answers. It waits for a user response, checks

to see whether the user got the question correct or not, and gives appropriate correct or

incorrect feedback.

Chapter 9 File input/Output

277

During the test, the program keeps and presents a running score. At the end of the

test, the program calculates the percentage correct.

Here is the code for the multiple-choice test program:

Multiple choice test

import random

from FileReadWrite import *

FILE_PATH = 'MultipleChoiceQuestions.txt'

LETTERS_LIST = ['a', 'b', 'c', 'd']

Open the file for reading, read in the title line

fileHandle = openFileForReading(FILE_PATH)

titleText = readALine(fileHandle)

Find out how many questions there will be

nQuestions = readALine(fileHandle)

nQuestions = int(nQuestions)

print('Welcome! This test is:')

print()

print(titleText) # print whatever title we got from the file

print()

print('There will be', nQuestions, 'questions.')

print()

print("Let's go ...")

print()

score = 0

Each time through the loop, handle a single question

for questionNumber in range(0, nQuestions):

 questionText = readALine(fileHandle) # read a line of a question

 answers =[]

 for i in range(0, 4):

 thisAnswer = readALine(fileHandle) # read each answer

 answers.append(thisAnswer)

Chapter 9 File input/Output

278

 correctAnswer = answers[0] # save away the correct answer

 random.shuffle(answers) # randomize the 4 answers

 indexOfCorrectAnswer = answers.index(correctAnswer) # see where the

correct answer is

 # present the question and the four randomized answers

 print

 print(str(questionNumber + 1) +'. ' + questionText) #ask question

 for index in range(0, 4):

 thisLetter = LETTERS_LIST [index]

 thisAnswer = answers[index]

 thisAnswerLine = “ + thisLetter + ') ' + thisAnswer

 print(thisAnswerLine)

 print

 # Ensure that the user enters a valid letter answer

 while True:

 userAnswer = input('Your answer (a, b, c, or d): ')

 userAnswer = userAnswer.lower() # convert usersAnswer to lowercase

 if userAnswer in LETTERS_LIST: # valid answer

 break

 else: # invalid answer

 print('Please enter a, b, c, or d')

 # Find the index associated with the user's answer

 # The following maps a to 0, b to 1, c to 2, d to 3

 indexOfUsersAnswer = LETTERS_LIST.index(userAnswer)

 # Give feedback

 if indexOfCorrectAnswer == indexOfUsersAnswer:

 score = score + 1

 print('Correct!')

 else:

 print("Sorry, that's not it.")

 correctLetter = LETTERS_LIST[indexOfCorrectAnswer]

 print('The correct answer was: ', correctLetter + ') ' +

correctAnswer)

Chapter 9 File input/Output

279

 print()

 print('Your score is:', score)

Done, show the percent correct and close the file

pctCorrect = (score * 100.)/ nQuestions

print()

print('All done! You got:', str(pctCorrect) + '% correct')

closeFile(fileHandle)

I won’t go into all the details of this program because it is well commented. The only

tricky part is finding the index of the correct answer and matching it up to the index of the

answer the user chose. We use the built-in list index operation to find the index of where

the correct answer wound up in our randomized list. We also use the index operation to

map the user’s letter answer (a, b, c, or d) into an index (0, 1, 2, 3). We compare the user’s

choice index to the correct index to see if the user answered the question correctly. When

we run the program, the output looks like this:

>>>

Welcome! This test is:

Stupid answers quiz

There will be 4 questions.

Let's go ...

1. What color was Washington's white horse?

a) Red

b) White

c) Blue

d) Beige

Your answer (a, b, c, or d): b

Correct!

Your score is: 1

Chapter 9 File input/Output

280

2. How many green Chinese pots are there in a dozen?

a) 10

b) -6

c) 1

d) 12

Your answer (a, b, c, or d): d

Correct!

Your score is: 2

3. What is the state song of Alabama?

a) New Jersey is the place for me

b) I like monkeys

c) Alabama

d) My home is in Australia

Your answer (a, b, c, or d): c

Correct!

Your score is: 3

4. What is the first verb in the Pledge of Allegiance?

a) snorkel

b) allegiance

c) pledge

d) I

Your answer (a, b, c, or d): a

Sorry, that's not it.

The correct answer was: c) pledge

Your score is: 3

All done! You got: 75.0% correct

>>>

The ability to put data (such as the question data for this program) in an external

file is a very powerful technique. Content-independent programs like this can have very

wide applicability.

Chapter 9 File input/Output

281

 A Compiled Version of a Module

If you have run a program that imports the FileReadWrite module that we built in

this chapter, you might notice that in the same folder, there is now a folder named

__pycache__. In that folder is a file named FileReadWrite.cpython-3x.pyc. I’ll explain

what this is.

Earlier I said that when you run a Python program, the Python compiler reads your

code and “compiles” it into a simpler form called bytecode. The bytecode version is

what actually runs on the computer. Whenever a program imports another Python file,

the imported file must also be compiled. To simplify, let’s say that we have a program

called A.py that imports B (from the Python source file B.py). In this case, both A.py and

B.py must be compiled. Python does this in a very smart way. Because you are typically

editing A.py before your run, it makes sense to recompile that file every time you run.

But most of the time, B.py does not change. Therefore, when Python sees a statement to

import B, it checks to see if B.pyc exists in the folder named __pycache__. If that file does

not exist, it compiles B.py and produces a compiled bytecode version named B.pyc.

The .pyc extension stands for Python compiled. The next time you go to run your A.py

program, Python sees the B.pyc file and uses that version of B since it has already been

compiled. This results in faster compile times (the time between when you say, “Run,”

and when the program actually starts to run).

If you make a change to B.py, Python must recompile that file and produce a new

B.pyc. The way it knows when to do this is simple and clever. Whenever Python finds

an import statement asking to import a module, it checks to see if there is a related .pyc

file. If there is, it compares the last edited date/time of the .py file against the last edited

date/time of the .pyc file. If the date/time of the .py file is after the date/time of the

related .pyc file, it knows that the source file has been changed and it must recompile

the .py file to produce a new .pyc file.

When you write a program that imports FileReadWrite.py, Python looks for

FileReadWrite.pyc. in the __pycache__ folder. If that file does not exist in that folder,

Python reads your FileReadWrite.py, compiles it, and produces the bytecode version of

the file: FileReadWrite.pyc. It now uses the bytecode version of the file.

Now it should be clearer that when you write an import statement, you only specify a

module name (such as FileReadWrite) and leave off the file extension.

Chapter 9 File input/Output

282

 Summary

In this chapter, you learned how to write to and read from a file. To use a file, you must

first identify the file that you want to use by specifying its path as a string. Reading from

or writing to a file involves three steps: open the file, read from or write to it, and close

the file. Whenever you programmatically open a file, the operating system gives you

back a file handle that you use in subsequent calls to write or read data. When you are

finished, you must close the file, again using the file handle. You saw that Python’s

built- in os package contains many useful operating systems functions.

We then built a set of three reusable functions: fileExists, writeFile, and

readFile. Given these functions, we built a small example that used those functions to

write a string of text to a file and read it back in. To make the functions truly reusable, we

learned how to keep the functions in a separate Python source file and use the import

statement to bring an external file into our code.

We then built four versions of a simple children’s adding program. The final version

was able to save its state by writing out and reading back multiple pieces of data used by

the program. This allowed the program to pick up right where the user left off. Internally,

we used two new functions: join (to combine the data into a single string before writing

to a file) and split (to read back the data from the file and break it up into the original

data).

Our final topic on file I/O was the ability to read and write a line of data at a time with

a file. Although we still must use the same three steps of opening a file, reading or writing

it, and closing the file, we built a set of functions for these three steps. You saw how to use

the file handle provided when you open the file in subsequent calls to read a single line

of data or write a single line of data and then to close the file. This technique allows us to

read and write large quantities of data using text files. I provided an example of building

a generic multiple-choice testing program that is completely content independent by

moving the data into a text file.

Lastly, we discussed how Python creates a compiled version of a Python module that

is imported into other Python source files.

Chapter 9 File input/Output

283

CHAPTER 10

Internet Data

In the previous two chapters, we discussed different ways to get and manipulate strings.

That makes this our third chapter on strings. Earlier, I talked about how a program can

get text input from the user by using a call to input. In the previous chapter, I showed

how a program could get data from and save data to a file. But there is another place

where programs can get text data from: the Internet!

This chapter discusses the following topics:

• Request/response model

• Getting a stock price

• Pretending to be a browser

• API

• Requests with values

• API Key

• Example program to get stock price information using an API

• Example program to get weather information

• URL encoding

 Request/Response Model

When you use a browser to go to a web site, you enter a URL (which stands for Universal

Resource Locator), you press Enter or Return, and soon you see a nicely formatted web

page. I’ll explain what happens behind the scenes when you use a browser this way

(see Figure 10-1).

284

When you use any browser on any device (computer, tablet, phone, and so on) to go

to a web site, the system you are using is called the client and the computer that hosts

the web site is called the server. After typing a URL, when you press Enter or Return the

browser on the client makes a query called a request that is sent across the Internet.

Assuming that the URL is well formatted, the request is sent to the appropriate server of

the site given in the URL. The browser running on the client then waits for an answer to

the query from the server.

Having received the request, the server does whatever it needs to do to answer the

request. In the case of a typical request to display a web page, it prepares and formats its

answer. The answer is known as a response (see Figure 10-2).

Figure 10-1. Client computer making a request to a server

Figure 10-2. Server sending back a response to a client computer

CHAPTER 10 INTERNET DATA

285

The response is made up of text, formatted in a language called HTML (for HyperText

Markup Language). Additionally, the response can contain other data, such as pictures,

sounds, videos, and so forth. For this discussion, we’ll concentrate only on the HTML

portion of the response. When the response is ready, it is sent back from the server to the

client’s browser.

The browser reads through the returned HTML, formats the resulting page, and

shows the page in the browser window.

This sequence is commonly known as the request/response model. The key thing to

realize here is that the browser sends a string (the request URL) to the server and then

receives a string (the response HTML) from the server.

If you think about what the browser is doing, the steps are very similar to the way we

make a function call. The main difference is that instead of calling a function in its own

program, or a built-in function in its own language, the action of the browser making a

request is like making a function call, but across the Internet. Similar to what happens

when you make a call to a function in Python where the caller waits until the function is

finished, the browser waits until the server returns a response.

Note In this chapter we will discuss a number of Internet web sites. As of this

writing (summer 2018), all the examples and related sample code work perfectly.

But some of these examples may fail later if the companies that provide them

change the way things are done on their sites. The important thing to learn is the

generalized underlying concepts.

 Getting a Stock Price

Suppose you want to find out the current stock price of a company. First, you have to

know the stock symbol. (If you don’t know a company’s stock symbol, you can find it

by using a search engine and entering “stock symbol for xxx,” where xxx is the name of

the company.) Let’s say you wanted to find the price of Apple stock, whose symbol is

AAPL. There are a number of sites that you can go to in order to get the price of a stock.

One very useful one is the site of the NASDAQ stock exchange. You can use any browser

and enter the following URL to get the current price of Apple stock:

https://www.nasdaq.com/symbol/aapl

CHAPTER 10 INTERNET DATA

https://www.nasdaq.com/symbol/aapl

286

When you press Enter or Return, the browser sends the request. The NASDAQ server

receives the request and looks up current information about Apple stock. It then builds

the appropriate HTML code to send back to the browser. The browser receives all of the

returned HTML as a single string, formats the information, and displays the page on

the screen. You see the current stock price for Apple near the top of the page. You also

see the change and percent change of the stock price, some key stock data (such as the

best bid/ask price, 1-year target, today’s high value, and many more), along with an

interactive chart of previous prices, and even some recent news about Apple.

The underlying HTML code that makes up any web page is available to view in the

browser. In Google Chrome, you can see it by right-clicking any web page and, from the

context menu, choosing View Source. In Safari, you can see it by clicking Develop ➤

Show Page Source.

In the source of the page, you can see that a huge amount of text has been returned

from this request—more than a thousand lines of text. Somewhere in there is the price of

Apple stock.

Let’s remember what we just did and relate it back to the world of Python.

 Pretending to Be a Browser

In Python, we can write a program that effectively pretends to be a browser. That is,

instead of the browser making the request to get information from the NASDAQ site

(or other similar site), we can write a Python program that can make the same request.

The response—all the HTML text—will come back to our program, and we can save all

that text into a variable. But instead of painting the entire page like the browser does,

we’ll just look for the specific information we want to find: the price of a stock.

Python has a module called urllib and a submodule called request that provide

the code needed to allow programs to make requests over the Internet. As with other

packages we have discussed, you bring this package into your code with this line:

import urllib.request

Once you have done that, the following two lines can be used to make the request

across the Internet:

connection = urllib.request.urlopen(<URL>)

responseString = connection.read().decode()

CHAPTER 10 INTERNET DATA

287

First, we call urllib.request.urlopen, specifying the URL you want to connect to.

This call returns a value similar to the file handle we used when dealing with file I/O in

Chapter 9. Across the Internet, this call returns what you can think of as a connection.

Assuming that works, the returned connection value is then used in a call to the read

function to get the data from the given URL. However, we need to do one more step.

The data that is read from a site is often encoded (I’ll explain more about this later in this

chapter). We have to decode the data to turn it into a string that we can use in a Python

program. The resulting string is stored into a variable.

For example, to get stock-quote information for Apple, we can use this code:

nasdaqAppleURL = 'https://www.nasdaq.com/symbol/aapl'

connection = urllib.request.urlopen(nasdaqAppleURL)

responseString = connection.read().decode()

When these lines run, the variable responseString is set to the exact same

underlying HTML information that the browser gets for that page when it makes the

request. We know that the stock price is included somewhere in the returned text

because when the browser makes the request and gets the response, we see the stock

price on the screen. If we were to spend a lot of time analyzing the HTML we got back as

a response, we could find an identifying tag that precedes the actual price string. In this

case, there is an HTML tag <div id="qwidget_lastsale" class="qwidget-dollar">

right before the price of the stock. Knowing that this exists in the HTML, we can write

some code that reaches into the long HTML string an using a slice, grabs just the

characters that make up the price.

This technique is called screen scraping. That is, we are taking data that is intended

for drawing on the screen of the computer and reading through it to find the particular

piece or pieces of information we want.

This approach does work, but it can fail. The problem is that the code to find our

specific piece of information is based on knowledge of how the page looks on the screen

today. The company that owns the base URL (NASDAQ, in this example) could decide

at any time to change the way the page is laid out. Further, we were able to find the piece

of information because we noticed that the specific tag was built into the HTML of the

page. At any point, the company responding to a request could also change the internal

tag—for example, to <div id="qwidget_lastprice" class="qwidget-dollar">. In

either of these cases, the program would break because the page is no longer formatted

the way the program expects.

CHAPTER 10 INTERNET DATA

288

The bottom line is that although this technique works (temporarily), it is not a

good way to get information from the Internet into your program. Let’s look at a much

better way.

 API

Companies that want to share their data make it available to computer programmers

by publishing a set of guidelines for retrieving this type of data in a much more efficient

way. These guidelines are called an API.

Definition An API (short for Application Programming Interface) is a set of URLs

and parameters that is designed to be called by programs across the Internet.

The idea is that instead of receiving a full page of HTML designed for display, using

an API programmers can ask for and get just the information they want and use it in their

programs. For example, there is a company named Alpha Vantage that has a set of APIs

for retrieving data about stocks, physical and crypto currencies, stock indicators, and

sector performances. It is fully documented at www.alphavantage.co/documentation/.

To get a stock quote, there is a single URL with a number of different parameters

you can specify. The base URL is www.alphavantage.com/query. But in order to make a

useful request, you must also specify a number of additional values.

 Requests with Values

If we think of the request/response model being like a function call, it would make the

model more complete if we could pass data with a request, just as we pass values when

we make a call to a Python function. It turns out that you can do exactly that. However,

passing data with a URL has a different syntax than the way we do it in Python. The

reason for this difference is that requests over the Internet are independent of the

programming language. When passing data with a URL, there has to be a very general

syntax. That syntax looks like this:

http://<URL>?<parameterName1>=<value1>&<parameterName2>=<value2> etc.

CHAPTER 10 INTERNET DATA

http://www.alphavantage.co/documentation
http://www.alphavantage.com/query

289

At the end of the base URL, you add a question mark to indicate that more information

is coming. Following the question mark, you build any number of sequences of the form

parameterName=value (with no spaces). Each grouping is commonly known as a name/

value pair. After the first name/value pair, additional parameterName=value pairs must be

separated by an ampersand character (&). This syntax is different from how we make a call

in Python, where we pass an argument simply as a variable or a value. With a URL request,

you must supply the exact name of each parameter that the site expects. The names of

these parameters are typically given in the documentation of the API. Each value to be

passed must be a string,but without quotes, because the entire URL is specified as one long

string. Some example name/value pairs in a URL could look like this:

?firstname=Joe&lastname=Schmoe&age=36

These name/value pairs say that for the firstname parameter, use a value of Joe; for

the lastname parameter, use a value of Schmoe; and for the age parameter, use a value of 36.

Now we are almost ready to build the full URL to get a stock quote using the Alpha

Vantage API. According to its documentation, to get a stock quote we need to specify

three pieces of information. The first two are very straightforward.

The first piece of information tells the site what “function” to perform. In this case,

we want a stock quote (there are many other options). To indicate that, we need to add

this to the URL:

?function=BATCH_STOCK_QUOTES

Next, we need to specify which stock symbol to get a quote for. To do that, we add the

stock symbol for Apple like this:

&symbols=AAPL

The last piece of information is an identifier called an API key.

 API Key

Companies (and government agencies) that provide data via APIs often provide the data

free to programmers who use their extensive APIs. But in order to prevent overuse and/

or potential malicious intent, organizations often require that you obtain an identifying

key from them. An API key is a unique string that identifies you as the person whose

code is making a request. API keys are typically given out for free by filling out an online

CHAPTER 10 INTERNET DATA

290

form. Once you get an API key, you need use it in all your API queries to that company. If

you expect to build a commercial program, or you expect to make extensive uses of their

APIs, you may have to pay a fee to the company for the use of the API key.

The process of obtaining an API key from a company is typically very easy. An

API key can be obtained from Alpha Vantage at this site: www.alphavantage.co/

support/#api-key. There are only a few questions to answer in the form, as shown in

Figure 10-3.

If you fill out the form and press the GET FREE API KEY button, you should soon get

an e-mail back that includes a string of about 16 characters. This is your API key. You can

use that key to make API requests to Alpha Vantage.

As the final piece of information, you need to add the following:

&apikey=<yourAPIKeyHere>

Figure 10-3. Requesting an API key from Alpha Vantage

CHAPTER 10 INTERNET DATA

http://www.alphavantage.co/support/#api-key
http://www.alphavantage.co/support/#api-key

291

Let’s put it all together. In order to get the stock proce of Apple, you would build up

this URL:

https://www.alphavantage.co/query?function=BATCH_STOCK_QUOTES&symbols=AA

PL&apikey=xxxxxxx

The xxxxxx is the API key you received from AlphaVantage.

 Example Program to Get Stock Price Information
Using an API

Now that we have all the pieces, we can build a program to get the price of a stock using

an API. If we make a call using the API just discussed, with a valid API key, the answer

comes back as a single string that looks like this:

{

 "Meta Data": {

 "1. Information": "Batch Stock Market Quotes",

 "2. Notes": "IEX Real-Time Price provided for free by IEX

(https://iextrading.com/developer/).",

 "3. Time Zone": "US/Eastern"

 },

 "Stock Quotes": [

 {

 "1. symbol": "AAPL",

 "2. price": "177.8500",

 "3. volume": "20536464",

 "4. timestamp": "2018-04-18 16:30:20"

 }

]

}

In the next chapter, I show you how this information is laid out in a special text

format (called JSON). For now, let’s just view this information as one long string. We

can see that the stock price for today is 177.8500. But in order to find the price of a

stock in this string generically, we will have to write code to build a slice to extract it. In

the preceding string, we see that the price is preceded by the string "2. price": and

is ended by a double quotation mark. We’ll write some code to calculate the indeces

needed to identify that slice.

CHAPTER 10 INTERNET DATA

292

Here is our full program to make the request, get the response, and extract the price

information, based on any stock symbol entered by the user:

Getting a stock quote

import urllib.request

API_KEY = 'xxxxx' ## <- Replace xxxxx with your API key

Data provided for free by Alpha Vantage. Website: alphavantage.co

#

typical URL:

https://www.alphavantage.co/query?function=BATCH_STOCK_QUOTES&

symbols=AAPL&apikey=<key>

def getStockData(symbol):

 baseURL = 'https://www.alphavantage.co/query?function=BATCH_STOCK_

QUOTES&symbols='

 ending = '&apikey=' + API_KEY

 fullURL = baseURL + symbol + ending

 print()

 print('Sending URL:', fullURL)

 # open the URL

 connection = urllib.request.urlopen(fullURL)

 # read and convert bytes to a string

 responseString = connection.read().decode()

 print('Response is: ', responseString)

 # Look for a prefix in the response

 prefixString = '"2. price": "'

 # do a little math to figure out the start and end index of the real price:

 prefixStringPosition = responseString.index(prefixString)

 prefixStringLength = len(prefixString)

 start = prefixStringPosition + prefixStringLength

 end = responseString.index('"', start)

CHAPTER 10 INTERNET DATA

293

 # extract the price using a slice, and return it

 price = responseString[start:end]

 return price

while True:

 print()

 userSymbol = input('Enter a stock symbol (or press ENTER to quit): ')

 if userSymbol == '':

 break

 thisStockPrice = getStockData(userSymbol)

 print()

 print('The current price of', userSymbol, 'is:', thisStockPrice)

 print()

print('OK bye')

This program’s code is very straightforward. At the bottom, the main code has an

infinite loop where we ask the user for a stock symbol. That symbol is passed to the

getStockData function. That function builds a full URL including the operation we want

to perform, the stock symbol, and our API key. The function makes a request over the

Internet using that URL. The server hands back a long string as documented earlier.

(I’ve left in the print statements that show the URL that is sent and the response string

that is returned—you can comment these lines out or remove them if you want.) The

function then extracts the price of the stock by calculating the start and end indices for

the appropriate slice. Finally, it returns that price to the caller.

An important point here is that companies build APIs like this so that programs

running on computers and devices can quickly get the data they are asking for. Some

APIs are intended only for the use of the company’s employees. Others, like the Alpha

Vantage’s stock API, are available to the general public. Unlike using the screen-scraping

technique, where the screen layout may change at any time, APIs are designed not to

change, although as a company learns how its users (programmers) are using its data, it

may choose to amend some API details and/or add new API calls.

CHAPTER 10 INTERNET DATA

294

Caution APIs have the potential for abuse. If you wind up making too many calls to

an API per hour, or if you make calls too quickly, you may be locked out from making

such calls. Owners of sites that have APIs often throttle the number of calls allowable

within a certain time period. Please do not abuse APIs with your code.

 Example Program to Get Weather Information

There is a wonderful site at OpenWeatherMap.org that allows programmers to retrieve

a wide variety of weather data from around the world. Its APIs are well documented at

http://openweathermap.org/API. In order to use any of the APIs, you must first obtain a

free API key using a similar form to the one you saw earlier.

There are many choices for the types and quantities of weather information you can

retrieve. As a demonstration, I’ll show you how to get the current weather information

for any city. Our more specific goal is to retrieve the current temperature in that city.

The API works as follows. You make a call to the base API and, as data, supply the city you

want information about, the return format for your data, and your API key. For example:

api.openweathermap.org/data/2.5/weather?q=Phoenix&mode=xml&APPID=xxxxx

Using that URL, here is an example of the current weather information returned for

the city of Phoenix:

<?xml version="1.0" encoding="UTF-8"?>

<current><city id="5308655" name="Phoenix"><coord lon="-112.08"

lat="33.45"></coord><country>US</country><sun rise="2018-04-20T12:50:59"

set="2018-04-21T02:03:33"></sun></city><temperature value="292.37"

min="291.15" max="293.15" unit="kelvin"></temperature><humidity

value="22" unit="%"></humidity><pressure value="1016" unit="hPa">

</pressure><wind><speed value="4.6" name="Gentle Breeze"></speed><gusts

value="9.3"></gusts><direction value="270" code="W" name="West">

</direction></wind><clouds value="20" name="few clouds">

</clouds><visibility value="16093"></visibility><precipitation mode="no">

</precipitation><weather number="801" value="few clouds" icon="02d">

</weather><lastupdate value="2018-04-20T17:58:00"></lastupdate></current>

CHAPTER 10 INTERNET DATA

http://openweathermap.org/API

295

There is a lot of information there, and it may seem intimidating. In the next chapter,

I show you how this information is laid out in another text format called XML. For now,

let’s just view this as one long string. If you look through the string, you will see a tag

that says <temperature value=". Immediately following that is the actual temperature.

We can use the same approach we used for getting stock data. That is, we can calculate

the indices of the start and end points of the temperature and use a slice to extract the

information we want.

However, the data this program generated for the temperature in Phoenix shows a

value of 292.37, which seems quite hot, even for Phoenix. In the United States, we use

the Fahrenheit scale, and most of the rest of the world uses the Centigrade scale, so when

reporting temperatures, OpenWeatherMap.org decided to represent temperatures in yet

a third scale: Kelvin. The Kelvin scale is based on the concept of absolute zero. To make

the answers clearer for readers in the United States, I wrote and used a small function

to convert a temperature from degrees Kelvin into degrees Fahrenheit. The resulting

Fahrenheit temperature is a much more enjoyable 66.866 degrees.

The following full program allows the user to enter the name of any major city. The

program makes an API call to get all the weather information for that city. After the

server responds, the program then extracts the temperature information and converts it

to a Fahrenheit value that it reports to the user:

import urllib.request

API documentation from: http://openweathermap.org/API

Sample, try: api.openweathermap.org/data/2.5/weather?q=Phoenix&mode=xml&

APPID=xxxxx

API_KEY = 'xxxxx' ## <- Replace xxxxx with your API key

def getInfo(city):

 URL = 'http://api.openweathermap.org/data/2.5/weather?q=' + city +

'&mode=xml'+ '&APPID=' + API_KEY

 print("URL request is: " + URL)

 print()

 # Make the request and save the response as a string.

 connection = urllib.request.urlopen(URL)

 responseString = connection.read().decode()

CHAPTER 10 INTERNET DATA

296

 print(responseString)

 print()

 prefixString = '<temperature value="'

 # do some small math to figure out the start and end index of the

temperature:

 prefixStringLength = len(prefixString)

 prefixStringPos = responseString.index(prefixString)

 start = prefixStringPos + prefixStringLength

 end = responseString.index('"', start)

 # extract the temperature and return it

 degreesK = responseString[start : end] # this is in degrees Kelvin

 degreesK = float(degreesK)

 return degreesK

Convert from Kelvin degrees to Fahrenheit

def convertKToF(degreesK):

 degreesF = (1.8 * (degreesK - 273.)) + 32

 return degreesF

while True:

 city = input('What city would you like the temperature of? ')

 if city == “:

 break

 tempK = getInfo(city)

 # Convert from Kelvin degrees to Fahrenheit

 tempF = convertKToF(tempK)

 print(tempF)

 print()

print('Bye')

CHAPTER 10 INTERNET DATA

297

This program includes print statements to show the URL that was created and the

response string that was returned. If you comment those lines out, a typical run would

look like this:

What city would you like the temperature of? Phoenix

68.99000000000002

What city would you like the temperature of? Boston

38.714000000000034

 URL Encoding

When we use parameter values in conjunction with API calls, the values that are passed

in are always strings. For most strings made up of standard characters, everything works

fine, but certain characters are considered “unsafe” when used in parameter values.

Most importantly, the space character is considered not to be safe. The original reason

has to do with people reading values from one place and typing them into fields or forms

that wind up in URLs. Because the space character is essentially an invisible character,

the number of spaces that were in the original text may not be clear.

In order to include a space in a parameter value, the space character must be

translated to either the plus character (+) or the numeric value of the space character.

Every character is assigned a unique number. All characters can be represented by a

special string that gives the number associated with that character as a hexadecimal

(base 16) number. For example, the space character as a hexadecimal number is written

as %20. The process of replacing a character with another character or sequence of

characters is called encoding.

If we wanted to only encode the space character, we could take any string that we

might use as a parameter value in a URL and apply a string replace operation to it. For

example:

>>> originalString = 'New Jersey'

>>> encodedString = originalString.replace(' ', '+')

>>> print(encodedString)

New+Jersey

>>>

CHAPTER 10 INTERNET DATA

298

Or this:

>>> originalString = 'New Jersey'

>>> encodedString = originalString.replace(' ', '%20')

>>> print(encodedString)

New%20Jersey

>>>

Either of these versions of the encoded string could then be used within a URL in

an API call. When a parameter value is received by a server, any plus character or %20

sequence is decoded back to the space character.

There are a number of other characters that are also considered unsafe for use in a

URL, including the following:

• " (Quote mark)

• < and > (Less-than and greater-than symbols)

• # (Pound sign)

• % (Percent sign)

• And the following: {, }, |, \, ^, ~, [,], `

That is a lot of characters to remember and find replacement hexadecimal

representations for. Fortunately, there is a built-in Python function that can do this work

for us. If we ever believe that a value of a parameter to be passed in a URL might contain

any of these characters, then before building the value into a URL, we can use the

following function from the urllib package:

import urllib.parse

encodedString = urllib.parse.quote_plus(<original string>)

To use it, you pass in the original string, and it returns an encoded version of the

string that works within a URL. For example, if we want to make an API call where we

want to specify a value of the string 'New Jersey', we would encode it this way:

>>> import url.libparse

>>> originalString = 'New Jersey'

>>> encodedString = urllib.parse.quote_plus(originalString)

>>> print(encodedString)

New+Jersey

>>>

CHAPTER 10 INTERNET DATA

299

This call encodes the space as a plus in the same way you saw earlier with the

string replace operation. However, the call to urllib.parse.quote_plus takes care of

encoding all potentially unsafe characters for us. Here is an example:

>>> import url.libparse

>>> originalString = 'The sales tax of "New Jersey" is > 1%'

>>> encodedString = urllib.parse.quote_plus(originalString)

>>> print(encodedString)

The+sales+tax+of+%22New+Jersey%22+is+%3E+1%25

>>>

As a result of this call, in addition to encoding the spaces into plus signs, the double-

quote characters have been converted to their hexadecimal form (%22), the greater-than

character has been changed to a %3E, and the percent sign has been replaced with %25.

After doing this type of encoding using urllib.parse.quote_plus, you can be assured

that your parameter values are safe for transmission to a server within a full URL.

 Summary

This chapter was all about getting text data over the Internet. I explained the request/

response model, which is used to exchange information between a computer and a

server. I then showed you how to take a request and add parameter values by adding

them in as name/value pairs to the end of a URL string. After reading the response and

decoding it, the response string is typically saved in a Python variable. I demonstrated

this technique by showing you how to get a stock price from a financial site. We built a

Python program that made the same request that we made in a browser, and got back

the same HTML the browser got back. Then we extracted the stock price we were looking

for. Although this was an interesting demonstration, it is not the proper way to get

information because the HTML is designed for display on the screen.

The proper way to get data over the Internet is to use an API. Using an API allows us to

get the data we are looking for in a much more concise way. Many companies attempt to

ensure that their APIs are not overused or used maliciously by issuing and requiring the use

of an API key. I explained how to build a URL (for an API) that includes a base URL and add

parameters onto the end. Using an API, I showed you how to a get the price of a given stock.

I also showed a program that uses an API to get weather information for any given city.

The chapter wrapped up by discussing a technique used to ensure that potentially

unsafe characters can be encoded so that they are correctly transmitted in requests.

CHAPTER 10 INTERNET DATA

301

CHAPTER 11

Data Structures

Let’s start this chapter with a definition.

Definition A data structure is a collection of multiple pieces of data, arranged in

a way that the data can be accessed efficiently.

The only data structure we have discussed so far is a list. A list allows us to refer to

any one of multiple pieces of data using an index. Python has a few more built-in data

structures.

This chapter covers the following topics:

• Tuples

• Lists of lists

• Representing a grid or a spreadsheet

• Representing the world of an adventure game

• Reading a comma-separated value (.csv) file

• Dictionary

• Using the in operator on a dictionary

• Programming challenge

• A Python dictionary to represent a programming dictionary

• Iterating through a dictionary

• Combining lists and dictionaries

• JSON: JavaScript Object Notation

• Example program to get weather data

302

• XML data

• Accessing repeating groupings in JSON and XML

 Tuples

Python has a built-in data structure called a tuple. (There is ongoing debate about

whether this should be pronounced “toople” or “tuhpple.” The latter, pronounced as in

“quintuple,” seems more popular, but both are acceptable.) A tuple is essentially a list

that cannot be changed. We’ll review some basic operations of a list and then look at how

a tuple differs from it. Let’s start by creating a list:

>>> friendsList = ['Joe', 'Martha', 'John', 'Susan']

>>> print(friendsList)

['Joe', 'Martha', 'John', 'Susan']

>>>

We can find the length of the list using the len function and access any element in

this list using an index:

>>> print(len(friendsList))

4

>>> print(friendsList[0])

Joe

>>> print(friendsList[3])

Susan

>>>

We can also change the value of a given element in the list and add (append) an

element to the list:

>>> friendsList[2] = 'Greg'

>>> print(friendsList)

['Joe', 'Martha', 'Greg', 'Susan']

>>> friendsList.append('Diane')

>>> print(friendsList)

['Joe', 'Martha', 'Greg', 'Susan', 'Diane']

>>>

CHAPTER 11 DATA STRUCTURES

303

We can set a new value and perform the append operation because lists are mutable

(changeable). By contrast, a tuple is immutable (not changeable).

A tuple is defined using a similar, but slightly different syntax from a list. Instead of

the left and right square brackets used to define a list, a tuple is defined using left and

right parentheses:

(<element1>, <element2>, ... <elementN>)

Like a list, a tuple is typically created in an assignment statement:

<tupleVariable> = (<element1>, <element2>, ... <elementN>)

Let’s say we want to create a list of friends. If we know that the list of friends will not

change during a run of the program, we would create a tuple of friends and initialize it at

the start of the program, as follows:

>>> friendsTuple = ('Joe', 'Martha', 'John', 'Susan')

>>> print(friendsTuple)

('Joe', 'Martha', 'John', 'Susan')

>>>

So far, it looks the same as our earlier friendsList, except for the use of parentheses

instead of square brackets. We can use the len function to see how many elements are in

a tuple and the bracket syntax to get at an individual element of a tuple:

>>> print(len(friendsTuple))

4

>>> print(friendsTuple[0])

Joe

>>> print(friendsTuple[3])

Susan

>>>

But if we try to modify an individual element of the friendsTuple, we get an error

message:

>>> friendsTuple[2] = 'George'

Traceback (most recent call last):

 File "<pyshell#19>", line 1, in <module>

CHAPTER 11 DATA STRUCTURES

304

 friendsTuple[2] = 'George'

TypeError: 'tuple' object does not support item assignment

>>>

If we try to append a new name onto the tuple, we also get an error message:

>>> friendsTuple.append('Diane')

Traceback (most recent call last):

 File "<pyshell#21>", line 1, in <module>

 friendsTuple.append('Diane')

AttributeError: 'tuple' object has no attribute 'append'

>>>

Both of these error messages show that the contents of a tuple cannot be changed.

You might be asking, “What good is this? Why would I ever want to use a tuple over

a list?” The answer is speed. When a list is represented as a tuple, Python internally

organizes the data in a way that it can access each individual element faster than in a

list. Therefore, if you want to write code that runs as fast as possible, then look for any

case where you have a list that never changes in your program. You can redefine it from

a list to a tuple by changing the square brackets to parentheses. Eventually, this concept

becomes second nature. You start thinking of unchanging lists as tuples and define them

that way right from the start.

There is one additional small benefit to using a tuple. If you have a list of data and

you want to ensure that there is no code that makes any changes to it, use a tuple.

Any code that attempts to append to, delete from, or modify an element of a tuple will

generate an error message. The offending code can quickly be identified and corrected.

Note If you ever write any code using PyGame (an extension to Python that

allows you to put graphics on the screen), you will notice that screen coordinates

are almost always written as x, y tuples, and in (<xValue>, <yValue>). Further,

rectangles in PyGame are typically written as four- element tuples: (<xValue>,

<yValue>, <width>, <height>).

CHAPTER 11 DATA STRUCTURES

305

 Lists of Lists

In our earlier discussion of lists, I said that one interesting thing about a list is that the

content—the data inside a list—can be of any data type. It turns out that not only can the

data be of type integer, float, string, or Boolean, but any element of a list can also be a list.

For example, consider the following list:

>>> myList = [5, -1, [23, 45, 14], 62]

>>> print(myList)

[5, -1, [23, 45, 14], 62]

To find out how many elements are in this list, we’ll use the len function:

>>> print(len(myList))

4

The list has four elements, but element 2 is also a list:

>>> print(myList[2])

[23, 45, 14]

>>>

If we wanted to get to a value in this list within a list, there are two approaches. First,

we could assign the inner list to a new list variable, and then reference the particular

element we want from that list:

>>>

>>> innerList = myList[2]

>>> print(innerList)

[23, 45, 14]

>>> print(innerList[1])

45

>>>

Or we could use a different syntax. To get to an element of a list within a list, we can

do this:

<outerList>[<outerListIndex>][<innerListIndex>]

CHAPTER 11 DATA STRUCTURES

306

For example:

>>> myList = [5, -1, [23, 45, 14], 62]

>>> print(myList[2][1])

45

>>>

This syntax reaches into myList and gets element 2 (which is the inner list of [23, 45,

14]). Because that is a list, we then get element 1 of that list (which is the value 45) and

print it. (As you will soon see, this concept can extend to lists of lists of lists, and so on.)

 Representing a Grid or a Spreadsheet

Lists within lists are a great way to represent data in a grid or a spreadsheet, or any

application where you have a need for rows and columns. Grids can be used to represent

the playing boards of many games. For example, we could represent a tic-tac-toe board

as a grid of three rows and three columns, like this:

EMPTY = "

X = 'x'

O = 'o'

Build a 3 by 3 grid

grid = [\

 [EMPTY, EMPTY, EMPTY],\

 [EMPTY, EMPTY, EMPTY],\

 [EMPTY, EMPTY, EMPTY]\

]

As each player makes a move in the game, we would write code to put an X or an O

into the appropriate spot in the grid. For example, if a player decided to place an X in the

upper right-hand square, we would use this code to modify that cell:

Typically set the row and col based on user input, this is just for

demonstration:

row = 0

col = 2

grid[row][col] = X

CHAPTER 11 DATA STRUCTURES

307

Any game board that is made up of any number of rows and columns can be

represented this way. For example, you could build an eight-by-eight grid to represent

the board for a game of checkers or chess.

 Representing the World of an Adventure Game

Adventure games are a very popular form of text-based games. In an adventure game,

the user is placed in a world that can also be represented as a grid. Here is an example of

a start to a program that builds a six-by-six grid:

Adventure game demo

import random

EMPTY = 'e'

TREASURE = 't'

MONSTER = 'm'

Build 6 by 6 grid

NROWS_IN_GRID = 6

NCOLS_IN_GRID = 6

grid = [\

 [EMPTY, TREASURE, EMPTY, EMPTY, EMPTY, MONSTER],\

 [EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY],\

 [EMPTY, EMPTY, EMPTY, EMPTY, MONSTER, EMPTY],\

 [EMPTY, MONSTER, EMPTY, EMPTY, EMPTY, EMPTY],\

 [EMPTY, EMPTY, EMPTY, EMPTY, TREASURE, EMPTY],\

 [EMPTY, TREASURE, EMPTY, EMPTY, EMPTY, EMPTY],\

]

Find a random starting cell that is empty

while True:

 locRow = random.randrange(NROWS_IN_GRID)

 locCol = random.randrange(NCOLS_IN_GRID)

 if grid[locRow][locCol] == EMPTY:

 break # found an empty cell, we will place the player here

print('Starting at row:', locRow, ' col:', locCol)

print()

CHAPTER 11 DATA STRUCTURES

308

while True: # move around the grid

 direction = input('Press L, U, R, or D to move: ')

 direction = direction.lower()

 print()

 if direction == 'l':

 locCol = locCol - 1

 elif direction == 'u':

 locRow = locRow - 1

 elif direction == 'r':

 locCol = locCol + 1

 elif direction == 'd':

 locRow = locRow + 1

 else:

 print('Oops - staying where we are ... ')

 foundInCell = grid[locRow][locCol]

 print('Now at row:', locRow, ' col:', locCol, ' cell contains:',

foundInCell)

 # Add code here to do whatever you want with the contents of the

current cell

 # (e.g., fight, run, pick up, etc.)

This code is a good start for creating and populating the world represented by the

grid, and for handling the navigation within it. To make it fun, you would want to add

code to handle the interactions between the player and whatever they find as they

navigate around in the world. Additionally, it would be important to add code to check

and handle the cases of potentially moving off all edges. For example, the user might be

in the first column (column 0) and press the l key to say that they want to go left. In a case

like this, you could either have some code that gives the user a message saying that they

cannot go there, or allow an action like this to wrap around the grid. That is, if the user

tries to go off the left edge of the world, they reappear on the right edge in the same row.

A similar thing could be done for an attempt to move off any edge.

CHAPTER 11 DATA STRUCTURES

309

The preceding code works fine, but every time the game is played, the grid is laid out

the same way. The following is some code that generates a random grid every time the

game is played:

Adventure game demo dynamic

import random

Define some constants for items that will be found in the grid

EMPTY = 'e'

TREASURE = 't'

MONSTER = 'm'

SWORD = 's'

POTION = 'p'

addInToGrid = (TREASURE, TREASURE, TREASURE, MONSTER, MONSTER, MONSTER,\

 SWORD, SWORD, POTION, POTION)

NROWS_IN_GRID = 6

NCOLS_IN_GRID = 8

Find a random cell that is empty

def findEmptyCell(aGrid, nRows, nCols):

 while True:

 aRow = random.randrange(nRows)

 aCol = random.randrange(nCols)

 if aGrid[aRow][aCol] == EMPTY:

 return aRow, aCol

Build grid, start it off all empty

grid = []

for r in range(0, NROWS_IN_GRID):

 aRow = []

 for c in range(0, NCOLS_IN_GRID):

 aRow.append(EMPTY)

 grid.append(aRow)

Add in items randomly

for item in addInToGrid:

 locRow, locCol = findEmptyCell(grid, NROWS_IN_GRID, NCOLS_IN_GRID)

 grid[locRow][locCol] = item

CHAPTER 11 DATA STRUCTURES

310

For testing, print the grid, row by row

for thisRow in grid:

 print(thisRow)

print()

locRow, locCol = findEmptyCell(grid, NROWS_IN_GRID, NCOLS_IN_GRID)

For testing, print out the starting location so we know where we are in

the grid

print('Starting at row:', locRow, ' col:', locCol)

< ... same navigation code as before>

The important difference in this code is that the grid is built dynamically. To do that,

we start our grid variable as an empty list. Then we use a for loop to iterate through all

the potential rows in the grid. Notice that we are using constants to define the number

of rows and columns in the grid, and that we use these constants in our for loops. Each

time through our outer loop, we initialize an aRow variable to the empty list. Then we

have a nested for loop that appends a value of EMPTY to aRow. At the end of the inner

loop, we have built a single row of our grid, represented as a list of all EMPTYs. Each time

through the outer loop (for each row), we then append this list to our grid. This ends up

building the grid as a list of lists.

Next, we iterate over a tuple of items to be added to the grid that were stored in a

variable named addInToGrid. For each item in that tuple, we call findEmptyCell. This

function returns both a row and a column of an empty cell in the grid. We use the syntax

of two indices in brackets to identify the outer index (the row) and an inner index (the

column) of the cell into which we will store a value. The code calls the same function to

find a random starting point for the user in the grid.

Just for demonstration purposes, let’s print the resulting grid, a row at a time, so that

you can see what was built. Here is the output from a typical run:

['e', 'p', 'e', 'e', 't', 'm', 'e', 'e']

['e', 'e', 'e', 'e', 'e', 'p', 'e', 'e']

['e', 'e', 'e', 'e', 'e', 't', 'e', 'e']

['e', 'e', 'e', 'e', 'm', 'm', 's', 'e']

['e', 'e', 'e', 'e', 'e', 'e', 'e', 'e']

['t', 's', 'e', 'e', 'e', 'e', 'e', 'e']

Starting at row: 5 col: 5

Press L, U, R, or D to move:

CHAPTER 11 DATA STRUCTURES

311

 Reading a Comma-Separated Value (.csv) File

Another example of data that can be represented as a list of lists is data that comes from

a spreadsheet program. We’ll work through an example of how we can take data from a

spreadsheet created in Microsoft Excel (and probably other spreadsheet programs) and

bring it into a Python program.

Figure 11-1 shows a spreadsheet that a teacher might construct for keeping track of

grades on homework assignments, a midterm exam, and a final exam.

Figure 11-1. Grades spreadsheet

In this course, the homework assignments have a maximum of 20 points each,

the midterm has a maximum of 40 points, and the final has a maximum of 60 points.

Therefore, the maximum total possible points for the class is 200 points. If a student does

not turn in an assignment, the cell representing that assignment is left blank.

Spreadsheet files like this are typically saved with the default format and the .xls

or .xlsx extension. These are standard file formats for Microsoft Excel. However, as an

option, you can click Save As and choose to save the file as a .csv file, which stands for

comma-separated value. If you choose to save a spreadsheet as a .csv file, the data is

written out line by line in plain text, where the data of each cell is separated from the

adjacent one by inserting a comma character. I have saved the spreadsheet shown in

Figure 11-1 in .csv format; the resulting file looks like what’s shown in Figure 11-2.

CHAPTER 11 DATA STRUCTURES

312

The first line contains the titles of the columns. Following that is one line for each

student. As you can see, the data values in each of these lines are separated by commas.

Notice also that any cell that was empty is represented as zero characters in the text

line—that is, a missing entry is represented by two commas. Now we need a way to read

data formatted this way into a Python program.

Definition Parse means to take information and separate it into more easily

processed components. For example, the Python compiler parses the code you

write and breaks it down into the individual words and symbols in each line, so

that it can turn your code into the bytecode form that can run on the computer.

To help read in and parse the data, let’s use another of Python’s many built-in

packages. There is a package (not surprisingly, called the csv package) that is designed

to read in CSV-formatted files.

Figure 11-2. Grades spreadsheet data saved as a comma-separated value file

CHAPTER 11 DATA STRUCTURES

313

In the following code, we read in the data from this .csv file, calculate a score for

each student, and then translate that score into a letter grade (the translation to a letter

grade comes from code that we developed earlier with the if/elif/else statements):

Read grades from csv file, compute grade letter for course

import csv # Comma separated value package

DATA_FILE_NAME = 'GradesExample.csv'

#Convert a number score to a letter grade:

def letterGrade(score):

 if score >= 90:

 letter = 'A'

 elif score >= 80:

 letter = 'B'

 elif score >= 70:

 letter = 'C'

 elif score >= 60:

 letter = 'D'

 else:

 letter = 'F' #fall through or default case

 return letter

Open the file in 'read Universal' (return char) mode)

This allows for dealing with files created by spreadsheet programs like Excel

fileHandle = open(DATA_FILE_NAME, 'rU')

Let the csv reader parse the file into rows

csvParsed = csv.reader(fileHandle)

Treat each row (which represents data for a single student) as a list

readingHeaderLine = True

for row in csvParsed: # iterate through each line

 if readingHeaderLine: # first line?

 readingHeaderLine = False

 continue # skip the header line

CHAPTER 11 DATA STRUCTURES

314

 # This is what the data looks like coming in to the program

 #print('Original: ', row)

 name = row[0] # save the student's name

 total = 0 # prepare to add 'em up

 for index in range(1, 8): # elements 1 through 7 are the scores

 thisGrade = row[index]

 if thisGrade == ":

 thisGrade = 0.0 # change a nothing to a zero

 else:

 thisGrade = float(thisGrade) # convert score from string to

float

 total = total + thisGrade

 percent = (total * 100.)/ 200. # out of a possible 200 points

 gradeToReport = letterGrade(percent)

 print(name, ' Percent:', percent, ' Letter Grade:', gradeToReport)

fileHandle.close() #close the file

This code starts by importing the csv package. In the main code, we open the file in a

new way, specifying the open mode as 'rU', which stands for read universal. This mode

allows programs to read text files that were created on any operating system, because

these files may have a variety of different end-of-line and/or newline characters. Once

the file is opened, we call csv.reader. This is an operation in the csv package that reads

through the entire file and modifies the data so that each line of the file is represented

as a Python list. (Internally, it most likely calls the Python split function to separate the

individual pieces of data.) When that completes, our code goes through a loop, iterating

for each row in the original file.

We set a readingHeaderLine Boolean variable to True before the loop started.

Inside the loop, we treat each row as a list. The first row is a list containing the header

information (Name, Homework1, Homework2, and so on). We don’t want to do anything

with this line, so all we do is set the readingHeaderLine Boolean to False to indicate that

we are no longer looking at the header line. Then we use a continue statement to send

control back to the top of the loop.

CHAPTER 11 DATA STRUCTURES

315

For each subsequent row, we now can deal with the data representing a single

student. That data is made up of a list of eight elements: element 0 is the student’s name,

and elements 1 through 7 are the score values, where each is a string. We build another

loop to add up the scores of all homework values and the two test scores. If we find that a

value is missing (which would come into the program as an empty string), then we give

the student a zero for that score. When we are finished with that loop, we have the total

score for that student. We then call our letterGrade function to convert the score into a

letter grade. As the last thing in our loop, we write out this student’s name, percentage,

and letter grade. When we are done, we close the file.

Running the program generates the following output:

Joe Percent: 89.0 Letter Grade: B

Mariah Percent: 91.5 Letter Grade: A

John Percent: 83.5 Letter Grade: B

Mary Percent: 85.5 Letter Grade: B

Fred Percent: 69.0 Letter Grade: D

Martha Percent: 98.0 Letter Grade: A

Craig Percent: 98.0 Letter Grade: A

Kathy Percent: 75.5 Letter Grade: C

Miles Percent: 92.0 Letter Grade: A

Stacey Percent: 83.0 Letter Grade: B

George Percent: 59.5 Letter Grade: F

Sue Percent: 80.0 Letter Grade: B

Tom Percent: 96.5 Letter Grade: A

If we want to, we could easily modify the code to write a new .csv file where each

student line could contain the existing information and the additional percent and/or

letter grade information (separated by commas). The resulting .csv file could then be

opened in a spreadsheet program, such as Microsoft Excel.

Also, if we had wanted to do more analysis of the scores data—for example, ranking

students or scores per assignment or test—we could have saved all the information in a

larger list of lists data structure. In other words, we could have created an empty list,

like this:

allScores = []

CHAPTER 11 DATA STRUCTURES

316

Then every time we iterated through the loop, we could have appended the current

row of data into that list, like this:

allScores.append(row)

With this approach, we can have all the data from the original .csv file in a single

Python list of lists, and we can do any analysis we want.

 Dictionary

Another extremely important data structure available in Python is called a dictionary. A

dictionary is similar to a list in that it allows you to refer to a collection of data by a single

variable name. However, it differs from a list in one fundamental way. In a list, order is

important, and the order of the elements in a list never changes (unless you explicitly do

so). Because the order of elements in a list is important, you refer to each element in a

list using its index (its position within the list).

In a dictionary, the data is represented in what are called key/value pairs. The syntax

of a dictionary looks like this:

{<key>:<value>, <key>:<value>, ..., <key>:<value>}

Note that this is the only place in Python where the curly braces { and } are used.

I’ll show you an example of how this works. Imagine that we wanted to represent

several attributes or properties of a physical object using Python. We could create a

single variable for each item. For example, let’s try to describe a house using several

variables:

color = 'blue'

style = 'colonial'

numberOfBedrooms = 4

garage = True

burglarAlarm = False

streetNumber = 123

streetName = 'Any Street'

city = 'Anytown'

state = 'CA'

price = 625000

CHAPTER 11 DATA STRUCTURES

317

Variables like these work fine. But the data in these variables is all related—each

variable is a property of a single house. We could build a dictionary to represent the

related data about the house. The same information built as a dictionary would look like

this:

houseDict = {'color' : 'blue', 'style' : 'colonial', 'numberOfBedrooms' : 4,\

'garage' : True, 'burglarAlarm' : False, 'streetNumber' : 123,\

'streetName' : 'Any Street', 'city' : 'Anytown', 'state' : 'CA',\

'price' : 625000}

We are naming this dictionary houseDict to make it clear that this is a dictionary.

Again, this is not a requirement; we are using a name like this as an extension to our

naming convention. In this example, all the keys of this dictionary are strings, which

is a very common practice. However, the keys in a dictionary can be of any type of

immutable data—integers, floats, Booleans, and tuples can also be used as keys.

Whatever data type you use for keys, each key in a dictionary must be unique. The values

in a dictionary can be of any type.

Let’s print out houseDict to show that Python understands the dictionary data

structure:

print(houseDict)

{'color': 'blue', 'style': 'colonial', 'numberOfBedrooms': 4, 'garage': True,

'burglarAlarm': False, 'streetNumber': 123, 'streetName': 'Any Street',

'city': 'Anytown', 'state': 'CA', 'price': 625000}

Dictionaries rely on the key/value pair relationships rather than on positioning.

Therefore, when we want to access any piece of data in a dictionary, we do it by using

a key as an index (rather than the position index that we use with a list). Here are some

examples:

>>> print(houseDict['color'])

blue

>>> print(houseDict['state'])

CA

>>> print(houseDict['numberOfBedrooms'])

4

>>>

CHAPTER 11 DATA STRUCTURES

318

To assign a new value for an existing key in a dictionary, we use an assignment

statement, like this:

>>> houseDict['price'] = 575000 #change value of an existing key

>>> print(houseDict)

{'color': 'blue', 'style': 'colonial', 'numberOfBedrooms': 4, 'garage': True,

'burglarAlarm': False, 'streetNumber': 123, 'streetName': 'Any Street',

'city': 'Anytown', 'state': 'CA', 'price': 575000}

>>>

To add a new key/value pair into a dictionary, we use an assignment statement the

same way. If the key we are specifying does not exist in the dictionary, then the key/value

pair is added to the dictionary:

>>> houseDict['numberOfBathrooms'] = 2.5 # numberOfBathrooms is not in the

dictionary yet

>>> print(houseDict)

{'color': 'blue', 'style': 'colonial', 'numberOfBedrooms': 4, 'garage': True,

'burglarAlarm': False, 'streetNumber': 123, 'streetName': 'Any Street',

'city': 'Anytown', 'state': 'CA', 'price': 575000, 'numberOfBathrooms': 2.5}

>>>

Notice that the numberOfBathrooms key has been added to the dictionary.

There are two additional operations (functions) you can use on a dictionary. If you

want, you can find all the keys defined in a dictionary with a call to <dictionary>.

keys(). You can find all the values with a call to <dictionary>.values(). Both calls

return an iterable list—perfect for use in a for statement. Here is an example using our

previously defined dictionary:

>>> print(houseDict.keys())

dict_keys(['color', 'style', 'numberOfBedrooms', 'garage',

'burglarAlarm', 'streetNumber', 'streetName', 'city', 'state', 'price',

'numberOfBathrooms'])

>>> print(houseDict.values())

dict_values(['blue', 'colonial', 4, True, False, 123, 'Any Street',

'Anytown', 'CA', 575000, 2.5])

>>>

CHAPTER 11 DATA STRUCTURES

319

 Using the in Operator on a Dictionary

When we try to access an element in a list, we need to ensure that any index we use is a

valid number. That is, the index has to have a value between 0 and the length of the list

minus 1. (Remember that if a list has N elements, then the valid indices are 0 to N – 1.)

When accessing items in a dictionary, we have to ensure that we are using a valid

key; that is, we have to use a key that exists in the dictionary. If the key we use is in the

dictionary, we get the value associated with that key. But if we try to use a key that is not

in the dictionary, we get an error:

>>> print(houseDict)

{'color': 'blue', 'style': 'colonial', 'numberOfBedrooms': 4, 'garage':

True, 'burglarAlarm': False, 'streetNumber': 123, 'streetName':

'Any Street', 'city': 'Anytown', 'state': 'CA', 'price': 575000,

'numberOfBathrooms': 2.5}

>>>

>>> print(houseDict['streetName'])

Any Street

>>>

>>> print(houseDict['roofType'])

Traceback (most recent call last):

 File "<pyshell#65>", line 1, in <module>

 print(houseDict['roofType'])

KeyError: 'roofType'

>>>

This is similar to what happens if we try to use an index that is too large or too small

for a list. In that case, we get an “index out of range” error. With a dictionary, we get a

KeyError, meaning the key does not exist in the dictionary.

To ensure that we are using a valid key, we can use the in operator before attempting

to use a key in a dictionary. The in operator is used like this:

<key> in <dictionary>

CHAPTER 11 DATA STRUCTURES

320

It returns True if the key is found in the dictionary, or False if the key is not found:

>>> print('city' in houseDict)

True

>>> print('roofType' in houseDict)

False

>>>

In any code where we think a key might not be found, it’s a good idea to add some

defensive coding to check and ensure that the key is in the dictionary before we attempt

to use it on the dictionary. Typically, we build this type of check using an if statement:

if myKey in myDict:

 # OK, we can now successfully use myDict[myKey]

else:

 # The key was not found, print some error message or take some other

action

Sometimes, it may make more logical sense to code the reverse test. We can use not

in to test for the key not being in the dictionary:

if myKey not in myDict:

 # The key was not found, do whatever you need to do

 Programming Challenge

This challenge asks you to build a dictionary and use keys into that dictionary to extract

information. The information is given as a table of state names (keys) and the population

of each state (values). The program should allow the user to enter the name of a state.

If the state is found in the dictionary, then the program should report the population of

that state. If the state is not found, then the program should output a message like “Sorry,

but we do not have information for that state.” The program should run in a loop, allow

the user to enter any number of states, and then exit when the user presses Return (Mac)

or Enter (Windows). As of 2018, the data for the 12 states with the highest populations is

shown in Table 11-1.

CHAPTER 11 DATA STRUCTURES

321

This is the solution using a dictionary:

Get the population of a given state

statesDict = {

 'California':39776830, 'Texas':28704330, 'Florida':21312211,

'New York':19862512,\

 'Pennsylvania': 12823989, 'Illinois': 12768320, 'Ohio':11694664,

'Georgia': 10097000,\

 'North Carolina': 10390149, 'Michigan':9991177, 'New Jersey': 9032872,

'Virginia': 8525660}

while True:

 usersState = input('Enter a state: ')

 if usersState == ":

 break

 if usersState in statesDict:

 population = statesDict[usersState]

 print('The population of', usersState, 'is', population)

Table 11-1. U.S. States with Highest Population

State Population

California 39776830

Texas 28704330

Florida 21312211

New York 19862512

Pennsylvania 12823989

Illinois 12768320

Ohio 11694664

Georgia 10545138

North Carolina 10390149

Michigan 9991177

New Jersey 9032872

Virginia 8525660

CHAPTER 11 DATA STRUCTURES

322

 else:

 print('Sorry, but we do not have any information about',

usersState)

 print()

The code for this program is based on a dictionary of state/population key/value

pairs. The main loop allows the user to enter a state name. The program tests to see if

the given state is in the dictionary by using the in operator. If the state is found, then the

program finds the population of that state and reports it. Otherwise, the program says

that it does not have any information about that state.

 A Python Dictionary to Represent a Programming
Dictionary

Another example of using a dictionary is a program that works as a real dictionary. In

this example, it will be a dictionary of a few of the programming terms introduced in

this book. In the following program, programming terms are used as keys, and their

matching definitions are specified as values:

Using a dictionary to represent a dictionary of programming terms

programmingDict = {

 'variable': 'A named memory location that holds a value',

 'loop' : 'A block of code that is repeated until a certain condition is met.',

 ' function' : 'A series of related steps that form a larger task, often

called from multiple places in a program',

 'constant' : 'A variable whose value does not change',

 'Boolean' : 'A data type that can only have values of True or False'}

while True:

 print()

 usersWord = input('Enter a word to look up (or Return to quit): ')

 if usersWord == ":

 break

 if usersWord in programmingDict:

CHAPTER 11 DATA STRUCTURES

323

 definition = programmingDict[usersWord]

 print('The definition of', usersWord, 'is:')

 print(definition)

 else:

 print()

 print('The word', usersWord, 'is not in our dictionary.')

 yesOrNo = input('Would you like to add a definition for ' +

usersWord + ' (y/n) ')

 if yesOrNo.lower() == 'y':

 usersDefinition = input('Please give a definition for ' +

usersWord + ': ')

 programmingDict[usersWord] = usersDefinition

 print('Thanks, got it!')

print('Done.')

This example is very similar to the previous challenge. It starts with a dictionary of

programming terms, where the words are the keys and the values are the definitions.

However, this program has an additional twist. If the user enters a word that is not in the

dictionary, it asks the user if they want to add a definition for the word they entered. If

the user chooses to add a definition, the program allows the user to enter the definition,

and the key/value pair is added to the dictionary.

 Iterating Through a Dictionary

If you need to iterate through all the elements in a dictionary, similar to a list, you can

use a for loop. In the case of a dictionary, however, the variable you specify in the for

statement is given the value of a key in the dictionary every time through the loop. Here

is an example using the earlier dictionary of state populations:

>>> statesDict = {

 'California':39776830, 'Texas':28704330, 'Florida':21312211,

'New York':19862512,\

 'Pennsylvania': 12823989, 'Illinois': 12768320, 'Ohio':11694664,

'Georgia': 10097000,\

 'North Carolina': 10390149, 'Michigan':9991177, 'New Jersey': 9032872,

'Virginia': 8525660}

CHAPTER 11 DATA STRUCTURES

324

>>> for state in statesDict:

 print(state)

California

Texas

Florida

New York

Pennsylvania

Illinois

Ohio

Georgia

North Carolina

Michigan

New Jersey

Virginia

>>>

You can be assured that using a for loop this way will iterate through every key in the

dictionary. If you need each matching value while iterating through a dictionary, you can

reach into the dictionary using the current key in the body of the loop. For example:

>>> statesDict = {

 'California':39776830, 'Texas':28704330, 'Florida':21312211,

'New York':19862512,\

 'Pennsylvania': 12823989, 'Illinois': 12768320, 'Ohio':11694664,

'Georgia': 10097000,\

 'North Carolina': 10390149, 'Michigan':9991177, 'New Jersey': 9032872,

'Virginia': 8525660}

>>> for state in statesDict:

 population = statesDict[state]

 print(state, population)

California 39776830

Texas 28704330

Florida 21312211

New York 19862512

Pennsylvania 12823989

CHAPTER 11 DATA STRUCTURES

325

Illinois 12768320

Ohio 11694664

Georgia 10097000

North Carolina 10390149

Michigan 9991177

New Jersey 9032872

Virginia 8525660

>>>

 Combining Lists and Dictionaries

Now you have seen examples of lists of lists and you can build dictionaries of

dictionaries. But highly complex data structures can be built by mixing and matching

lists and dictionaries. You can have a list of dictionaries or a dictionary where all values

are lists. Beyond that, every sublist or subdictionary can also be a dictionary or a list.

Although that may seem very complicated, data structures like this can be extremely

useful in representing hierarchical data.

In this first example, we want to represent a number of cars. This data could refer

to cars we own, cars we are interested in purchasing, or even cars that are at a used car

dealership waiting to be sold:

carsList = [\

 {

'make':'Toyota', 'model':'Prius', 'year': 2006, 'color':'gold', 'doors':4,

'leather':False, 'license': 'ABC123', 'mileage': 777777},\

 {

'make':'Honda', 'model':'Civic', 'year': 2010, 'color':'red', 'doors':2,

'leather':False, 'license': 'DEF444', 'mileage': 54321},\

 {

'make':'Ford', 'model':'Fusion', 'year': 2012, 'color':'blue', 'doors':4,

'leather':True, 'license': 'GHI999', 'mileage': 24680},\

 {

'make':'Chevy', 'model':'Volt', 'year': 2015, 'color':'black', 'doors':4,

'leather':False, 'license': 'JKL444', 'mileage': 7890}\

]

CHAPTER 11 DATA STRUCTURES

326

In this example, each element in the list is a dictionary. Each dictionary has an

identical set of keys. Given this structure, it would be easy to iterate through all the cars,

searching for all cars that match a given set of criteria. For example, if we wanted to

search through our list of cars and find all cars that have four doors and mileage less than

50,000 miles, we could use the following code:

for carDict in carsList:

 if (carDict['doors'] == 4) and (carDict['mileage'] < 50000):

 print(carDict['make'], carDict['model'], carDict['license'])

That would produce the following results:

Ford Fusion GHI999

Chevy Volt JKL444

The following example is slightly more complicated:

personalDataDict = {

 'Joe': {'height':73, 'weight': 200, 'sex':'M', 'age':35,

'allergies':['tree pollen', 'carrots', 'onions']},\

 'Sally':{'height':58, 'weight': 100, 'sex':'F', 'age':32,

'allergies':['bee stings']},\

 'John': {'height':36, 'weight': 75, 'sex':'M', 'age':8,

'allergies':['peanuts']},\

 'Mary': {'height':35, 'weight': 60, 'sex':'F', 'age':7,

'allergies':[]}\

 }

In this example, we have a dictionary of people. We use their names as keys. Each

person is represented as a dictionary of key/value pairs. But if you look at the allergies

key, you can see the value for each person is a list of all things that person is allergic to.

The list can have any number of elements, including zero. We can find the list of allergies

for a specific person in this way:

joesData = personalDataDict['Joe']

joesAllergies = joesData['allergies']

print(joesAllergies)

CHAPTER 11 DATA STRUCTURES

327

marysData = personalDataDict['Mary']

marysAllergies = marysData['allergies']

print(marysAllergies)

The code produces this output:

['tree pollen', 'carrots', 'onions']

[]

Using a person’s name as a key provides a dictionary of information about them.

Within that dictionary, if you use a key of allergies, you get back the list of things that

person is allergic to. In the case of Joe, we see that he is allergic to tree pollen, carrots,

and onions. Mary’s list of things she is allergic to is empty, meaning she is not allergic to

anything.

If we wanted to generate a printout of all people and their allergies, we could use the

following:

for personName in personalDataDict:

 onePersonDict = personalDataDict[personName]

 allergyList = onePersonDict['allergies']

 if allergyList == []:

 print(personName, 'is not allergic to anything')

 else:

 print(personName, 'is allergic to the following:')

 for allergy in allergyList:

 print(' ', allergy)

That would produce this output:

John is allergic to the following:

 peanuts

Sally is allergic to the following:

 bee stings

Joe is allergic to the following:

 tree pollen

 carrots

 onions

Mary is not allergic to anything

CHAPTER 11 DATA STRUCTURES

328

Using lists and dictionaries together allows us to build up highly complex data

structures. As long as you understand the layers that make up the data structure, Python

code can be written in a very straightforward way to get the specific information you

want. As shown, extracting the data that is important to you is done using an appropriate

sequence of indices and/or keys.

 JSON: JavaScript Object Notation

In Chapter 10, there is an example of a program that displays stock quote information.

The program asks the user to enter a stock symbol, uses an API call to get current

information about the stock, and extracts the stock price from the returned string. As

an example, when we created a request for the price of Apple (stock symbol AAPL), the

returned string looked like this:

{

 "Meta Data": {

 "1. Information": "Batch Stock Market Quotes",

 "2. Notes": "IEX Real-Time Price provided for free by IEX

(https://iextrading.com/developer/).",

 "3. Time Zone": "US/Eastern"

 },

 "Stock Quotes": [

 {

 "1. symbol": "AAPL",

 "2. price": "165.7500",

 "3. volume": "65336628",

 "4. timestamp": "2018-04-20 16:59:43"

 }

]

}

Now that we have discussed Python’s dictionaries, the layout of this string should

look more familiar. The information is returned in a special format called JSON (short

for JavaScript Object Notation). JSON format is a generalized text-based format for

structuring data. JSON-formatted data is often used as a mechanism for transmitting

hierarchical data in response to requests sent to servers.

CHAPTER 11 DATA STRUCTURES

329

The JSON format is almost identical to Python’s data structures. In fact, it is so close

that there is a Python json package that allows us to translate a string formatted in JSON

into Python lists and dictionaries. If we make the same API call that we did earlier, we

can translate the returned string into a Python dictionary using a single call in the json

package. Then, rather than using a slice, we can pick out the specific information we are

looking for more easily, in a clearer way, and with much less code.

If you look at the preceding response, you will see that the returned string is the

equivalent of a Python dictionary. At the top level, there are two key/value pairs. The

keys are Meta Data and Stock Quotes. Interestingly, the value associated with the Stock

Quotes key is a list. That’s because the API allows for more than one stock symbol in

the query. However, our program is only supplying one stock symbol in each request.

In the list of Stock Quotes, each element is a dictionary of information about one

stock symbol. We can now easily get the stock price for our stock by asking for the data

associated with the key "2. price".

Here is our full program that makes the same request but handles the returned data

as JSON-formatted data:

Getting a stock quote

import urllib.request

import json

API_KEY = 'xxxxx' # <- replace this with your API key

Data provided for free by Alpha Vantage. Website: alphavantage.co

#

typical URL:

https://www.alphavantage.co/query?function=BATCH_STOCK_QUOTES&

symbols=AAPL&apikey=<key>

def getStockData(symbol):

 baseURL = 'https://www.alphavantage.co/query?function=BATCH_STOCK_

QUOTES&symbols='

 ending = '&apikey=' + API_KEY

 fullURL = baseURL + symbol + ending

 print()

 print('Sending URL:', fullURL)

CHAPTER 11 DATA STRUCTURES

330

 # open the URL

 connection = urllib.request.urlopen(fullURL)

 # read and convert to a string

 responseString = connection.read().decode()

 print('Response is: ', responseString)

 responseDict = json.loads(responseString) # convert from JSON to a

Python dictionary

 print('Response as a dict is:', responseDict)

 # The dictionary has an entry with a key of Stock Quotes

 stockList = responseDict['Stock Quotes']

 # We get back one dictionary for every stock symbol

 # Since we only gave 1 stock symbol, we look at element 0

 stockDict = stockList[0]

 # Reach into the stock dict and pull out the price

 price = stockDict['2. price']

 return price

while True:

 print()

 userSymbol = input('Enter a stock symbol (or press ENTER to quit): ')

 if userSymbol == ":

 break

 thisStockPrice = getStockData(userSymbol)

 print()

 print('The current price of', userSymbol, 'is:', thisStockPrice)

 print()

print('OK bye')

The main code of this program is identical to the one introduced in Chapter 10. All

the changes have been made in the getStockData function. In that function, the call to

json.loads (the s means that the input comes from a string) converts the returned JSON

data into its Python form, which in this case is a dictionary. Then, understanding the

CHAPTER 11 DATA STRUCTURES

331

structure of the dictionary, we get the value associated with the Stock Quotes key. That

gives us another list. But because we know that it will only have one element, we can

extract element zero, which is a dictionary. Finally, we get the price by using the key 2.

price as a key.

The responses to many different APIs are returned in JSON format. Often the

response string is made up of combinations of lists and dictionaries. Applying the

techniques demonstrated here allows us to reach into these complex data structures to

get the desired information.

 Example Program to Get Weather Data

In the previous chapter, we showed a program that retrieved weather information using

an API from OpenWeatherMap.org. The OpenWeatherMap API can return data in a

number of different text formats. Here is an example of the result of requesting current

weather information for the city of Boston as a JSON string:

{"coord":{"lon":-71.06,"lat":42.36},"weather":[{"id":800,"main":"Clear",

"description":"clear sky","icon":"01d"}],"base":"stations","main":{"temp":

288.53,"pressure":1026,"humidity":13,"temp_min":286.15,"temp_max":290.15},

"visibility":16093,"wind":{"speed":4.1,"deg":310,"gust":7.7},"clouds":

{"all":1},"dt":1524423120,"sys":{"type":1,"id":1296,"message":0.004,

"country":"US","sunrise":1524390672,"sunset":1524440080},"id":4930956,

"name":"Boston","cod":200}

In this form, this data may seem rather intimidating. With just a quick glance, you

can tell there are a number of nested dictionaries and lists. Let’s make this more human

readable by adding some newline characters. That should make it easier to understand

the overall structure of the data as a dictionary:

{"coord":{"lon":-71.06,"lat":42.36},

"weather":[{"id":800,

 "main":"Clear",

 "description":"clear sky",

 "icon":"01d"}],

"base":"stations",

 "main":{"temp":288.53,

 "pressure":1026,

CHAPTER 11 DATA STRUCTURES

http://openweathermap.org

332

 "humidity":13,

 "temp_min":286.15,

 "temp_max":290.15},

"visibility":16093,

"wind":{"speed":4.1,

 "deg":310,

 "gust":7.7},

"clouds":{"all":1},

"dt":1524423120,

"sys":{"type":1,"id":1296,

 "message":0.004,

 "country":"US",

 "sunrise":1524390672,

 "sunset":1524440080},

 "id":4930956,

 "name":"Boston",

 "cod":200}

You can see that there is a great deal of weather information available here. To get to

the temperature value, we first have to use the main key. The value found there is another

dictionary. In that dictionary, you can see the temp key (you also see information about

the minimum and maximum temperatures, humidity, pressure, and so on).

The following code is used to get the temperature for any city the user specifies. To

run this code, you need to obtain your own API key and assign it to the API_KEY constant.

Note that in the URL that is built up, we are specifying json (as the mode parameter) to

indicate that we want the data to be returned in JSON format:

Get temperature for a given city

import urllib

import json

API documentation from: http://openweathermap.org/API

Go to openweathermap.org, get an API Key, and paste it between the quotes

below'

API_KEY = 'xxxxxx' # <- replace with your API Key

CHAPTER 11 DATA STRUCTURES

333

def getTemperature(city):

 urlAndParams = 'http://api.openweathermap.org/data/2.5/weather?q=' +

city + '&mode=json'+ '&APPID=' + API_KEY

 # Make the request and save the response as a string.

 response = urllib.urlopen(urlAndParams).read()

 responseDict = json.loads(response) # convert from JSON to a Python

dictionary

 mainDict = responseDict['main'] # get the information associated with

the main key

 degrees = mainDict['temp'] # get the temperature from that dictionary

 return float(degrees)

Convert from Kelvin degrees to Fahrenheit

def convertKToF(degreesK):

 degreesF = (1.8 * (degreesK - 273.)) + 32

 return degreesF

while True:

 city = input('What city would you like the temperature of? ')

 if city == ":

 break

 tempK = getTemperature(city)

 tempF = convertKToF(tempK)

 print(tempF)

 print()

The main code is a loop that continually asks the user to choose a city. It then calls

a function called getTemperature, passing in the city. getTemperature builds the URL

and makes the request. Once we get the returned data back, we convert the response

from a JSON-formatted string into a Python dictionary. From there, it is a matter of using

the appropriate dictionary keys. First, we use the main key to get the main dictionary.

Within that dictionary, we get the temperature using the temp key. (You can see how

we could now extract any of the other weather information just as easily.) We convert

the temperature string to a float and return it to the main code. Finally, we convert the

temperature from Kelvin to Fahrenheit and report the result to the user.

CHAPTER 11 DATA STRUCTURES

334

 XML Data

In the OpenWeatherMap API we just used, we set the mode parameter to return the data

in json format. One of the other options is xml (short for eXtensible Markup Language).

In many ways, XML is similar to HTML, the HyperText Markup Language used to define

web pages. XML is designed as a self-documenting format that allows computers to

exchange data. Similar to HTML, the information to be exchanged is formatted using

tags (opening and closing tags). Whereas HTML has a well-defined set of tags that can be

used, XML allows you to create your own tags to describe your data.

There are entire books written to explain the intricacies of XML, and I will certainly

not try to cover the details here. Instead, I’ll show an example of XML-formatted data

and explain how to access that data in Python.

If we make the same request to get the temperature of Boston, but we specify the

mode as xml, the XML formatted response looks like this:

<current><city id="4930956" name="Boston"><coord lon="-71.06"

lat="42.36"></coord><country>US</country><sun rise="2018-04-22T09:51:13"

set="2018-04-22T23:34:40"></sun></city><temperature value="288.53"

min="286.15" max="290.15" unit="kelvin"></temperature><humidity

value="13" unit="%"></humidity><pressure value="1026" unit="hPa">

</pressure><wind><speed value="4.1" name="Gentle Breeze">

</speed><gusts value="7.7"></gusts><direction value="310" code="NW"

name="Northwest"></direction></wind><clouds value="1" name="clear sky">

</clouds><visibility value="16093"></visibility><precipitation mode="no">

</precipitation><weather number="800" value="clear sky" icon="01d">

</weather><lastupdate value="2018-04-22T18:52:00"></lastupdate></current>

Let’s take that XML data and reformat it a little to make it more human readable by

adding newline characters and some indenting:

<current>

 <city id="4930956" name="Boston">

 <coord lon="-71.06" lat="42.36"></coord>

 <country>US</country>

 <sun rise="2018-04-22T09:51:13" set="2018-04-22T23:34:40"></sun>

 </city>

CHAPTER 11 DATA STRUCTURES

335

 <temperature value="288.53" min="286.15" max="290.15" unit="kelvin">

</temperature>

 <humidity value="13" unit="%"></humidity>

 <pressure value="1026" unit="hPa"></pressure>

 <wind>

 <speed value="4.1" name="Gentle Breeze"></speed>

 <gusts value="7.7"></gusts>

 <direction value="310" code="NW" name="Northwest"></direction>

 </wind>

 <clouds value="1" name="clear sky"></clouds>

 <visibility value="16093"></visibility>

 <precipitation mode="no"></precipitation>

 <weather number="800" value="clear sky" icon="01d"></weather>

 <lastupdate value="2018-04-22T18:52:00"></lastupdate>

</current>

The formatting of the XML data looks very similar to HTML data. Every grouping has

start and end tags (for example, <current> and </current>, <city> and </city>, and so

forth). Each grouping like this is called an element or node. We’ll use the term node here

so as not to confuse you with elements in a list. Then there are nodes within nodes, each

with its own start and end tags. When a node only has text inside it, it is called the text of

the node. For example, within the city node, there is a country node that looks like this:

<country>US</country>

Additionally, nodes can have individual name/value pairs. For example, the coord

node has values for lon (longitude) and lat (latitude):

<coord lon="-122.08" lat="37.39"></coord>

In XML, items like these are called attributes.

Fortunately, Python provides a package (not surprisingly, called xml) that allows

programmers to extract the information from XML-formatted data. To use the package,

we first have to bring the xml package into our programs with an import statement.

Rather than import the entire xml package (which includes the ability to write and

modify XML documents), we only need the part that allows us to turn XML strings

into XML documents and retrieve information. That portion is called xml.etree.

CHAPTER 11 DATA STRUCTURES

336

ElementTree. That is a rather long name—Python provides a way to import a package

and give it a shorthand name. You do that using the following variation of the import

statement:

import <full imported package name> as <shorthand version of package name>

In the following code, we use this variation of the import statement and use a

shortened name of etree. This is not required, but is often done as a convenience by

programmers so that they won’t have to type long names when specifying a function in a

package.

XML data is often thought of as a tree. Using our example data, try to think of

the data in the form of a tree lying on its side. The root of the tree is the node named

current. From that node, we see the following nodes: city, temperature, humidity,

pressure, wind, clouds, visibility, precipitation, weather, and lastupdate. Coming

off of the city node are the coord, country, and sunrise nodes. The coord and sunrise

nodes each have two attributes. What we need is a way of taking the data that we have

as a string and turning it into a tree-structured document. That is done with a call to a

function in the xml package, like this:

tree = etree.fromstring(XMLAsAString)

After that call, we have the data in a form that allows us to get any information we

want to from the XML in its tree form. The xml package has a number of functions that

can be used to easily find any individual piece of information we want.

Here is the code for the XML-based version of the program:

Get weather data from openweathermap.org - as XML

import urllib.request

import xml.etree.ElementTree as etree

API documentation from: http://openweathermap.org/API

API_KEY = 'xxxxxx' # <- replace with your API Key

def getInfo(city):

 urlWithParams = 'http://api.openweathermap.org/data/2.5/weather?q='\

 + city + '&mode=xml' + '&APPID=' + API_KEY

CHAPTER 11 DATA STRUCTURES

337

 # Make the request and save the response as an XML-formatted string.

 connection = urllib.request.urlopen(urlWithParams)

 # Read the data and convert to a string:

 responseString = connection.read().decode()

 print(responseString)

 # Turn the string into an XML document

 tree = etree.fromstring(responseString)

 # Find the temperature node, then get the value attribute inside it

 temperatureInfo = tree.find('temperature')

 degrees = temperatureInfo.attrib['value']

 return float(degrees)

Convert from Kelvin degrees to Fahrenheit

def convertKToF(degreesK):

 degreesF = (1.8 * (degreesK - 273.)) + 32

 return degreesF

while True:

 city = input('What city would you like the temperature of? ')

 if city == “:

 break

 tempK = getInfo(city)

 tempF = convertKToF(tempK)

 print(tempF)

 print()

The main code and the function to convert from Kelvin are identical to those of the

previous example. The changes are in the getInfo function. As mentioned earlier, the

URL in this version specifies that the mode of the response should be XML. Once we

receive the response, we use the following lines to get the specific information we want:

Turn the string into an XML tree

tree = etree.fromstring(responseString)

CHAPTER 11 DATA STRUCTURES

338

Find the temperature tag, then the value attribute inside that

temperatureInfo = tree.find('temperature')

degrees = temperatureInfo.attrib['value']

The first line converts the response string from the server into an XML tree. The

next line reaches into the resulting XML tree structure and finds the temperature group.

Within that group, the last line finds the value attribute. If we wanted to, we could now

get to any other piece of data in the XML tree.

There are many more functions available within the etree package. More

information on all the functions available to parse XML documents is in the official

Python documentation at https://docs.python.org/3/library/xml.etree.

elementtree.html.

JSON and XML are two solutions to the same problem of representing arbitrary

hierarchical data. Most often, these two formats are used to transmit data between two

computers. JSON is much more succinct and Python-like, or Pythonic. JSON is easily

accessible in pure Python because JSON-formatted data can be parsed using Python lists

and dictionaries. XML is more descriptive because it has tags that identify the data built

into the data structure itself. Because of that, equivalent XML-formatted data tends to be

considerably longer. Further, when attempting to read XML-formatted data, code must

be written using a set of calls defined in the xml package.

 Accessing Repeating Groupings in JSON and XML

Sometimes, the data returned by an API has repeating groupings. For example, imagine

you made a request to a site to get information about all the members of a band. In

response, you get back a set of blocks where each block contains information about one

member of the band—for example, the member’s name, age, and instrument played.

I’ll show what this data structure might look like in JSON format and then in XML format.

I’ll also show how we can use Python to access the data about each band member:

Demonstration of repeating blocks in JSON and XML

import json

import xml.etree.ElementTree as etree

Build a JSON structure as a triple quoted string

myJSON = "'{

CHAPTER 11 DATA STRUCTURES

https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html

339

 "bandMembers": [

 {

 "name": "Keith Emerson",

 "age": 32,

 "instrument": "keyboards"

 },

 {

 "name": "Greg Lake",

 "age": 42,

 "instrument": "guitar"

 },

 {

 "name": "Carl Palmer",

 "age": 35,

 "instrument": "drums"

 }

]

}"'

bandMembersDict = json.loads(myJSON)

memberList = bandMembersDict['bandMembers']

for member in memberList:

 print(member['name'], member['age'], member['instrument'])

As you might expect, the repeating blocks are handled as a list.

In the JSON code, the entire structure is converted into a dictionary with only one

name/value pair. Using a bandMembers key, we get a list of band members. We then

iterate through the list, and each member is represented as a dictionary. For each

member, we print out their name, age, and instrument using an appropriate key:

Build an XML structure as a triple quoted string

myXML = "'

<bandMembers>

 <member>

 <name>Keith Emerson</name>

 <age>32</age>

 <instrument>keyboards</instrument>

CHAPTER 11 DATA STRUCTURES

340

 </member>

 <member>

 <name>Greg Lake</name>

 <age>42</age>

 <instrument>guitar</instrument>

 </member>

 <member>

 <name>Carl Palmer</name>

 <age>35</age>

 <instrument>drums</instrument>

 </member>

</bandMembers>“'

tree = etree.fromstring(myXML)

bandMembersList = tree.findall('member')

for member in bandMembersList:

 (print member.find('name').text, member.find('age').text,

member.find('instrument').text)

The XML code is similar. We first convert the structure into an XML tree. We then use

a call in the xml package to find all the band members (each is a node). That returns a list

of all band members. Like the JSON code, we iterate through all band members. Within

each band member, we use the find operation in the xml package to find each member’s

name, age, and instrument and print out the text associated with each of these nodes.

The output of both of these sections of code is exactly the same:

>>>

Keith Emerson 32 keyboards

Greg Lake 42 guitar

Carl Palmer 35 drums

Keith Emerson 32 keyboards

Greg Lake 42 guitar

Carl Palmer 35 drums

>>>

CHAPTER 11 DATA STRUCTURES

341

 Summary

This chapter introduced a number of data structures that can be used in Python. It

started by showing a tuple—a list that cannot change. Then I gave examples of the uses

of a list of lists, a construct that can be used to represent grids, spreadsheets, the world

of an adventure game, and anything that you can think of that is arranged as a number

of rows and columns. We went through the process of taking data that was exported as a

comma-separated value file (.csv) and bringing that data into a Python program as a list

of lists.

I introduced the Python dictionary. In a dictionary, the data is structured as key/

value pairs. You only access the data using keys. Using the in operator is an easy way

to determine whether a key is in a dictionary. I then gave you a challenge to build a

dictionary and write some code to access data found in it.

As another example, we built a dictionary of programming terms, where the keys

were programming terms and each related value was the definition of the term. This

demonstrated the ability to add keys and values to a dictionary. I then showed you

how to iterate through a dictionary using a for loop. Next, I explained how lists and

dictionaries could be combined to build highly complex data structures.

Finally, we went through examples of how APIs often return data using either

JavaScript Object Notation (JSON) or eXtensible Markup Language (XML). There were

examples of how to convert API responses into these two data structures and how to

retrieve data from each.

CHAPTER 11 DATA STRUCTURES

343

CHAPTER 12

Where to Go from Here

As I said in Chapter 1, this book is not intended to be comprehensive. Instead, the goal is

to provide you with a general understanding of programming using the Python language.

The good news is that if you have made it this far, you should have a solid understanding

of most of the syntax and constructs of Python. However, the more exciting news (if you

want to look at it that way) is that there is much more to explore.

This chapter discusses the following topics:

• Python language documentation

• Python Standard Library

• Python external packages

• Python development environments

• Places to find answers to questions

• Projects and practice, practice, practice

 Python Language Documentation

The Python Software Foundation is the owner/developer of the Python language. In

addition to the language itself, it provides a number of pages of documentation about the

language, libraries, and other information useful to Python developers. The official top-

level documentation for the Python language can be found at https://docs.python.

org/3.6/ (the current version at the time of writing).

https://docs.python.org/3.6
https://docs.python.org/3.6

344

 Python Standard Library

The Python Standard Library (which is installed when you download and install Python)

contains a large number of built-in packages, each with many built-in functions just

waiting for you to find and take advantage of them. We have only had space to scratch the

surface of a few of these packages. We only talked about one or two functions of a handful

of packages. Each of these packages provides functionality that is much more extensive.

There are many other built-in packages that we didn’t even get to. In Table 12-1,

I present the ones mentioned, along with a few more of the more well-known packages

available in the Python Standard Library that you may be interested in learning more about.

Table 12-1. Built-in Python Packages

Package Name General Functionality

csv Reading and writing comma- separated values

datetime Basic date and time types

itertools Functions for creating iterators for efficient looping

time Time access and conversions

json Creating and processing JSON- formatted data

logging Logging facility

os Many operating systems functions

math Trig functions (sin, cos, tan, etc.) and constants (such as pi)

random Generating random numbers

re Regular expression operations

TKInter Graphical user interface package

turtle Turtle graphics

urllib Opening arbitrary resources by URL

xml Creating and processing XML- formatted data

A description of the entire Python Standard Library is at https://docs.python.

org/3.6/library/.

An alphabetical module index is at https://docs.python.org/3.6/py-modindex.html.

ChapTeR 12 WheRe TO GO FROM heRe

https://docs.python.org/3.6/library
https://docs.python.org/3.6/library
https://docs.python.org/3.6/py-modindex.html

345

 Python External Packages

The Python “ecosystem” is extremely large and healthy and continues to grow. A huge

number of external packages is available to Python programmers. Table 12-2 contains

some of the most well-known external packages.

Table 12-2. External Python Packages

Package Name General Functionality

beautifulsoup Library for parsing hTML and XML files

django high-level framework for building python-based web applications

flask Microframework for building python-based web applications

Matplotlib 2D plotting library, produces publication quality figures

MySQL-Python python connector to a MySQL database

NumPy adds support for large, multidimensional array and high- level math functions

SciPy Library used by scientists, analysts, and engineers doing scientific computing

Pandas Data structures and data analysis tools

PyGame Designed for writing games, adds support for windows, mice, and more

Requests Makes hTTp requests in a syntax easier for humans

Scikit-learn Software machine learning library

The official Python wiki (https://wiki.python.org/moin/UsefulModules) has a

listing of what it thinks are the most useful external modules.

There is a site called PyPI (the Python Package Index) that calls itself “a repository

of software for the Python programming language.” It may be a little difficult and

intimidating to find what you are looking for there because there are over 80,000

packages cataloged. Before considering writing a package of your own, it may be worth

your time checking to see whether someone has already built and published a similar

module. PyPI is at https://pypi.python.org/pypi.

ChapTeR 12 WheRe TO GO FROM heRe

https://wiki.python.org/moin/UsefulModules
https://pypi.python.org/pypi

346

 Python Development Environments

This book has demonstrated the use of the IDLE development environment that comes

free with Python. It is a very good place to start. However, if you want to do “real” software

development, you soon find that IDLE has a number of deficiencies. As mentioned earlier,

the lack of line numbers is truly annoying. Perhaps most importantly, IDLE does not have

a usable debugger. A debugger is a tool that allows a programmer to set places in a program

(called breakpoints) where the program will stop and allow the programmer to see the

value of variables, and allows the program to be executed a line at a time. IDLE claims to

have a debugger, but its debugger is impossible for the average human to use. If you decide

to get into serious Python development, you will probably want to graduate from using

IDLE. There are a number of alternatives. I’ll tell you about some of the most popular.

Surprisingly (to me), many people develop Python code by using any basic text

editor (for example, Notepad++, TextEdit, and so on). Many programmers use a text

editor like Sublime Text that (using a settings file) can be configured to have some

Python-specific settings. Files are edited in the text editor and then run from the

command line.

There is a well-known language-independent software development environment

called Eclipse that has a plug-in called PyDev that enables Eclipse to be used as a Python

development environment. If you have experience setting up an Eclipse environment,

this might be a good choice for you.

The IPython Notebook is now known as the Jupyter Notebook. It is an interactive

computational environment in which you can combine code execution, rich text,

mathematics, plots, and rich media. A key thing about Jupyter Notebook files is that they

can contain any number of small to medium-sized pieces of Python code in a single file,

and you can run any of them separately. It is an excellent environment for demonstrations

and classroom use and for sharing code. It allows a wide variety of documentation types,

including text with special fonts, images, YouTube videos, and so on.

PyCharm (by JetBrains) is a serious, full-featured Python IDE (short for integrated

development environment). It comes in two flavors: Community Edition (free) and

Professional Edition (paid). Beginning programmers should find the free Community

Edition to have everything you need. The Professional Edition has additional features

that make it worthwhile to someone who is developing Python code for a living.

Yet another option is Visual Studio from Microsoft. Visual Studio is a generic

development environment that markets itself as “any language, any OS.” It has full

support for Python with a downloadable source plug-in.

ChapTeR 12 WheRe TO GO FROM heRe

347

 Places to Find Answers to Questions

The official Python documentation is a great place to go for detailed information on any

Python syntax or documentation on any Python Standard library call.

Programmers often go to the web site www.stackoverflow.com to ask and answer

programming questions. If you are stuck trying to figure out how to code something in

Python, try going there and searching through the questions and answers. Often, you

find that someone else has had the same question before you and other programmers

have chimed in with answers. (When you start to feel comfortable with the language, try

to answer some questions posed there.)

Many major cities have a local “user group” where programmers get together for

talks and/or socialization. Python user groups are sometimes called PIGgies, for Python

Interest Groups. A listing of many of these groups is at https://wiki.python.org/moin/

LocalUserGroups.

Although there are many local conferences about Python, PyCon (Python

Conference) calls itself “the largest annual gathering for the community using and

developing the open-source Python programming language.” Go to www.pycon.org for

details.

 Projects and Practice, Practice, Practice

The only way to truly learn programming is through practice. As with a foreign language,

it takes time to feel comfortable using a computer programming language. With

experience, you start to recognize useful patterns in programming problems and in your

solutions. To that end, I suggest that you take the time to work on developing projects on

your own to gain experience. The following are some suggestions for projects that you

should be able to build, using just the information presented in this book. These are all

text-based projects:

• Rock, paper, scissors: The user chooses rock, paper, or scissors by

entering the first letter, and the computer randomly chooses one.

Rock crushes scissors, paper covers rock, scissors cuts paper.

• Hangman: Challenge the user to discover a randomly chosen word

within a given number of guesses of individual letters.

ChapTeR 12 WheRe TO GO FROM heRe

http://www.stackoverflow.com
https://wiki.python.org/moin/LocalUserGroups
https://wiki.python.org/moin/LocalUserGroups
http://www.pycon.org

348

• Blackjack: Build a game of 21, where the player plays against the

dealer. Add in a betting system and keep track of how much the

player wins or loses.

• Craps: The rules are a little complicated, but this is a good

programming challenge. A betting system for wins and losses makes

this fun.

• Flash cards: Build a generic flash card testing program. Build a

program that reads a file of questions and answers. Read in the file,

randomize the questions, pose them to the user, and compare their

answers to correct answers. For an extra challenge, allow the program

to handle multiple forms of correct answers.

• Adventure game: Take the program we built that demonstrated the

concept of a list of lists to represent a grid and turn it into a real game.

Add battles against monsters, treasure hunts, and anything else

you like.

• Use an API: Like our stock price information and weather

information examples, find a publicly available API that gives you

data about some topic that you care about. Build a user interface that

allows the user to get the information they are interested in.

 Summary

This chapter was more of a reference chapter, suggesting places to go to get more

information about Python. I provided links to the official documentation, where to find

more information about the Standard Python Library, and external packages. I gave a

listing of what I consider some of the important packages within the Standard Python

Library and some of the most important external packages.

I discussed a number of alternative development environments that you can use

when you outgrow IDLE. Then I listed a number of sites, groups, and conferences

that you can contact for more information about what’s going on with the language.

I wrapped up with suggestions for projects that you might consider building to give you

experience.

Most importantly, becoming a good Python programmer requires practice, practice,

practice!

ChapTeR 12 WheRe TO GO FROM heRe

349

Index

A

Absolute path, 247

Absolute value program, 120–123

Adding game

add loop and score counter, 261–263

join function, 266

random numbers, 260–261

split function, 267

user name, 268

version 3, 263–264

Adventure games, 307–310

Analogy for building software

recipe example

baking chocolate cake, 68–69

crack eggs into bowl, 69–71

Assignment operator, 25

Assignment statements, 24–26, 32–33

B

Blackjack game, 110

blend function, 76–78

Boolean expression, 16, 18, 108

conditional logic

and operator, 133–134

not operator, 132–133

or operator, 135

elif statement, 117

else statement, 111–112

if statement, 111, 136

Building blocks of programming

coding, 14

data

Booleans, 16

definition, 14–15

floating-point numbers, 15

integer numbers, 15

strings, 16

Built-in functions

arguments, 52

assignment statement, 53–54

concatenation, 61–63

dynamically typed

language, 55

function call, 52

overview, 51–52

real programs, 58–60

type function, 53–55

user input function, 55–56

Built-in list operations, 214–215

Bytecode, 281

C

Camelcase naming

convention, 29

Chevron prompt, 4

C language, 31

Class scope, 96

Coin flipping, 157–158

https://doi.org/10.1007/978-1-4842-3879-0

350

Comma-separated value (.csv) file

grades spreadsheet, 311–312

if/elif/else statements, 313–314

letterGrade function, 315

Comments

after a line of code, 44

full-line, 43

multiline, 44–45

Comparison operator, 109

Compile error, see Syntax error

Concatenation operator, 193–194

Conditional logic

and operator, 133–134

not operator, 132–133

or operator, 135

Conversion functions

float function, 57

int function, 57

str function, 57–58

D

Data

Booleans, 16

collections of, 184

definition, 14–15

floating-point numbers, 15

integer numbers, 15

strings, 16

Data structure

adventure games, 307

.csv file

grades spreadsheet, 311–312

if/elif/else statements, 313–314

letterGrade function, 315

dictionary

houseDict, 317–320

key/value pairs, 316

and list, 325–326, 328

programming terms, 322–323

U.S. states population, 320–321,

323–324

grid/spreadsheet, 306

JSON, 328

lists of lists, 305

OpenWeatherMap API, 331–333

tuples, 302–304

weather data program, 331–333

XML, 334–335, 337

Debugger tool, 346

Dice program, 210–211, 213

E

Elements, 185–186

elif statement, 115, 117–119

else statement, 111–115

Empty list, 187

Errors

exception, 48

logic, 49

syntax, 46–47

Exception error, 48

F

File input/output

data saving and reading, 257, 259

file handle, 250–251

FileReadWrite.py, 271–272

import modules, 255–257

MultiLineData.txt, 273

os module, 251–252

path to text file, 247, 249

reading from and writing to file, 249

reusable functions, 252–253

save file, 246

writing to and reading from file, 254

INDEX

351

Five-dollar bills program, 39–40

Floating-point numbers, 15–17

Flowchart

definition, 104

if/else statement, 112–114

if statement (see if statement)

for store checkout, 105

for weekday morning routine, 107

Full-line comment, 43

Function calls, 63–64

G

General-purpose programming

language, 2

getGroceries function

arguments, 76

def statement, 75–76

hard-coding, 76

main code, 74

parameters, 78–81

runtime error, 98–99, 101

Grading program, 120

H

Hard-coding, 76

Hello World program, 4–5

I

IDLE

dedent/outdent, 72

install, 3

on multiple platforms, 8

open file, 7, 72

quit buttons, 7

if/else statements, 114

if statement

blackjack game, 110

Boolean expression, 108

comparison operator, 109

gas station, 111

syntax, 108

Infinite loop, 148, 160

Integer numbers, 15, 17, 36

Inventory game, 216

IPython Notebook, see Jupyter Notebook

isEven function, 128–130

isRectangle function, 130–131

isSquare function, 125–126, 128

J

JavaScript Object Notation (JSON), 328

and XML format, 338–340

join function, 266–267

Jupyter Notebook, 346

K

Keywords, 29–30

L

len function, 196–198

Lists, 185

Logic error, 49

Loops

break statement, 161–162, 175

coding challenge, 179–181

coin flipping, 157–158

continue statement, 175–176

empty string, 163

error-checking utility

functions, 178–179

INDEX

352

flowchart, 146

Guess the Number

program, 164, 166–170

increment and decrement, 151–152

infinite, 148, 160

playing multiple games, 171–173

pseudocode, 164

Python’s built-in packages, 154–155

random number generation, 155–157

real-life example, 146–147

rock-paper-scissors, 158–159

running a program, 152–154

target number, 150

try/except block, error

detection, 173–174, 176–178

user’s view of game, 144–145

while statement, 147–148

while True, 160

M

Mad Libs game

choice function, 202

chooseRandomFromList

function, 201–202

concatenation operator, 193–194

len function, 197

pool of names, 195

random package, 195–196

sentences, 198, 200

Magic 8-Ball program, 12, 14

Math game, 112

Math operators, 35–37, 136

Mental model, 21

Methods of an object, 214

Modulo operator, 37

MoneyInWallet.py program

one-dollar bills and five-dollar

bills, 39–40, 42

ten-dollar bills and twenty-dollar

bills, 43

Multiline comment, 44

Multiple choice test, 275

N

Naming convention, 28–29

Negative index, 192–193

negativePositiveZero function, 123–124

Nested if statement, 111

Numbers list

calculate total, 206–207

integer, 208–209

range function, 207–208

O

One-dollar bills program, 39–40

One Infinite Loop Drive, 149

OpenWeatherMap API, 331–333

OpenWeatherMap.org, 294–295, 297

Order of operations, 38–39

P, Q

Parameter, 77

Parameter variable, 77

Parentheses Exponents Multiplication

Division Addition Subtraction

(PEMDAS), 38–39

Persistent data, 245

PIGgies, 347

Pizza toppings program, 217

Print statements, 33–35

Prompt, 4

Loops (cont.)

INDEX

353

Pseudocode, 164

PyCharm (by JetBrains), 346

PyDev plug-in, 346

Pythagorean theorem, 40–41

Python

advantage, 4

constant, 92

external packages, 345

functions, 89

installing, 2–3

language documentation, 343

Mac, 8

open source, 2

print statements, 6

.py extension, 7

run, 7

save, 6–7

Shell, 3–4

Python Conference (PyCon), 347

Python Package Index (PyPI), 345

Python Standard Library, 154, 344

R

Random-access memory (RAM), 19,

21–22

Random numbers program, 13–14

Relative paths, 247

Request/response model, 283–285

return statement

addTwo function, 83

calculateAverage function, 83

generic form, 83

return many values, 85–86

returns no value, 84

Reusable file I/O functions, 252–253

Right triangle program, 90–91

Runtime error, see Exception error

S

Screen scraping approach, 287

Scripting language, 2

Shipping program, 137–138, 140

Shopping list

assignment statement, 189

change value, 192

elements, 185

enter an integer, 190–191

for loop, 205–206

for statement, 204

index, 188

len function, 197

myList bracket 2 bracket, 190

negative index, 192–193

print statement, 189

square bracket syntax, 186

strings, 185

while statement, 203

Shorthand naming convention, 41–43

split function, 267

Stepwise refinement, 69

Stock price

APIs

key, 289, 291

program code, 292–293

for retrieving data, 288

string, 291

Apple stock, 285–287

HTML text, 286

name/value pair, 289

screen scraping, 287

stock symbol, 285

URL, 288–289

Strings, 16–17

accessing characters, 227–228

countCharInString, 237

INDEX

354

directory style, 241–242

findChar, 237–238

for loop, 229–230

indexing characters, 226–227

len function, 226

not changeable, 236

operations, 238–241

slicing

bread, 230–231

list, 236

month number, 232–234

syntax, 231, 235

targetString, 237–238

while loop, 228

Sublime Text editor, 346

Syntax error, 46–47

T

Temperature conversion functions, 88–89

Traceback, 46, 98–101

Tuples, 302–304

U

Universal Resource Locator (URL),

297–299

User-defined functions

blend function, 77

calculates average of

numbers, 81, 86–87

definition, 72

getGroceries function (see getGroceries

function)

global variable, 93–94, 97–98

local variable, 95–98

startingValue, 81

V

Variables

assignment statement, 24–26

case sensitive, 31

global, 93–94, 97–98

local, 95–98

names

in calls and functions, 86–87

conventions, 28–29

illegal, 28

Python’s rules, 27

RAM, 19, 21–22

visualize envelope, 22–24

W

Weather data program, 331–333

Weather information program, 294–297

Whitespace, 45

WidgetsRUs.com, 18

Working wage program, 40

Wrong answer, see Logic error

X, Y, Z

XML data, 334–338

Strings (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started
	What Is Python?
	Installing Python
	IDLE and the Python Shell
	Hello World
	Creating, Saving, and Running a Python File
	IDLE on Multiple Platforms
	Summary

	Chapter 2: Variables and Assignment Statements
	A Sample Python Program
	The Building Blocks of Programming
	Four Types of Data
	Integers
	Floats
	Strings
	Booleans
	Examples of Data
	Form with Underlying Data

	Variables
	Assignment Statements
	Variable Names
	Naming Convention
	Keywords
	Case Sensitivity
	More Complicated Assignment Statements

	Print Statements
	Simple Math
	Order of Operations
	First Python Programs
	Shorthand Naming Convention
	Adding Comments
	Full-Line Comment
	Add a Comment After a Line of Code
	Multiline Comment

	Whitespace
	Errors
	Syntax Error
	Exception Error
	Logic Error

	Summary

	Chapter 3: Built-in Functions
	Overview of Built-in Functions
	Function Call
	Arguments
	Results
	Built-in type Function
	Getting Input from the User
	Conversion Functions
	int Function
	float Function
	str Function

	First Real Programs
	Concatenation
	Another Programming Exercise
	Using Function Calls Inside Assignment Statements
	Summary

	Chapter 4: User-Defined Functions
	A Recipe as an Analogy for Building Software
	Ingredients
	Directions

	Definition of a Function
	Building Our First Function
	Calling a User-Defined Function
	Receiving Data in a User-Defined Function: Parameters
	Building User-Defined Functions with Parameters
	Building a Simple Function That Does Addition
	Building a Function to Calculate an Average
	Returning a Value from a Function: The return Statement
	Returning No Value: None
	Returning More Than One Value
	Specific and General Variable Names in Calls and Functions
	Temperature Conversion Functions
	Placement of Functions in a Python File
	Never Write Multiple Copies of the Same Code
	Constants
	Scope
	Global Variables and Local Variables with the Same Names
	Finding Errors in Functions: Traceback
	Summary

	Chapter 5: if, else, and elif Statements
	Flowcharting
	The if Statement
	Comparison Operators
	Examples of if Statements
	Nested if Statement
	The else Statement
	Using if/else Inside a Function
	The elif Statement
	Using Many elif Statements
	A Grading Program
	A Small Sample Program: Absolute Value
	Programming Challenges
	Negative, Positive, Zero
	isSquare
	isEven
	isRectangle

	Conditional Logic
	The Logical not Operator
	The Logical and Operator
	The Logical or Operator
	Precedence of Comparison and Logical Operators
	Booleans in if Statements
	Program to Calculate Shipping
	Summary

	Chapter 6: Loops
	User’s View of the Game
	Loops
	The while Statement
	First Loop in a Real Program
	Increment and Decrement
	Running a Program Multiple Times
	Python’s Built-in Packages
	Generating a Random Number
	Simulation of Flipping a Coin
	Other Examples of Using Random Numbers
	Creating an Infinite Loop
	A New Style of Building a Loop: while True, and break
	Asking If the User Wants to Repeat: the Empty String
	Pseudocode
	Building the Guess the Number Program
	Playing a Game Multiple Times
	Error Detection with try/except
	The continue Statement
	Full Game
	Building Error-Checking Utility Functions
	Coding Challenge
	Summary

	Chapter 7: Lists
	Collections of Data
	Lists
	Elements
	Python Syntax for a List
	Empty List
	Position of an Element in a List: Index
	Accessing an Element in a List
	Using a Variable or Expression as an Index in a List
	Changing a Value in a List
	Using Negative Indices
	Building a Simple Mad Libs Game
	Adding a List to Our Mad Libs Game
	Determining the Number of Elements in a List: The len Function
	Programming Challenge 1
	Using a List Argument with a Function
	Accessing All Elements of a List: Iteration
	for Statements and for Loops
	Programming Challenge 2
	Generating a Range of Numbers
	Programming Challenge 3
	Scientific Simulations
	List Manipulation
	List Manipulation Example: an Inventory Example
	Pizza Toppings Example
	Summary

	Chapter 8: Strings
	len Function Applied to Strings
	Indexing Characters in a String
	Accessing Characters in a String
	Iterating Through Characters in a String
	Creating a Substring: A Slice
	Programming Challenge 1: Creating a Slice
	Additional Slicing Syntax
	Slicing as Applied to a List
	Strings Are Not Changeable
	Programming Challenge 2: Searching a String
	Built-in String Operations
	Examples of String Operations
	Programming Challenge 3: Directory Style
	Summary

	Chapter 9: File Input/Output
	Saving Files on a Computer
	Defining a Path to a File
	Reading from and Writing to a File
	File Handle
	The Python os Package
	Building Reusable File I/O Functions
	Example Using Our File I/O Functions
	Importing Our Own Modules
	Saving Data to a File and Reading It Back
	Building an Adding Game
	Programming Challenge 1
	Programming Challenge 2
	Writing/Reading One Piece of Data to and from a File
	Writing/Reading Multiple Pieces of Data to and from a File
	The join Function
	The split Function
	Final Version of the Adding Game
	Writing and Reading a Line at a Time with a File
	Example: Multiple Choice Test
	A Compiled Version of a Module
	Summary

	Chapter 10: Internet Data
	Request/Response Model
	Getting a Stock Price
	Pretending to Be a Browser
	API
	Requests with Values
	API Key
	Example Program to Get Stock Price Information Using an API
	Example Program to Get Weather Information
	URL Encoding
	Summary

	Chapter 11: Data Structures
	Tuples
	Lists of Lists
	Representing a Grid or a Spreadsheet
	Representing the World of an Adventure Game
	Reading a Comma-Separated Value (.csv) File
	Dictionary
	Using the in Operator on a Dictionary
	Programming Challenge
	A Python Dictionary to Represent a Programming Dictionary
	Iterating Through a Dictionary
	Combining Lists and Dictionaries
	JSON: JavaScript Object Notation
	Example Program to Get Weather Data
	XML Data
	Accessing Repeating Groupings in JSON and XML
	Summary

	Chapter 12: Where to Go from Here
	Python Language Documentation
	Python Standard Library
	Python External Packages
	Python Development Environments
	Places to Find Answers to Questions
	Projects and Practice, Practice, Practice
	Summary

	Index

